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Abstract

This thesis presents a methodology for use in building intonation synthesis
models which are automatically trained from annotated speech data. The
research investigates four subtopics: intonation synthesis, automatic intona-
tion analysis, intonation evaluation, and interactions between intonation and

speech segments (phones).

The primary goal of this research is to produce stochastic models which
can be used to generate fundamental frequency contours for synthetic ut-
terances. The models produced are binary decision trees which are used
to predict a parameterized description of fundamental frequency for an ut-
terance. These models are trained using the sort of information which is
typically available to a speech synthesizer during intonation generation. For
example, the speech database is annotated with information about the loca-
tion of word, phrase, segment, and syllable boundaries. The decision trees

ask questions about such information.

One obvious problem facing the stochastic modelling approach to into-
nation synthesis models is obtaining data with the appropriate intonation
annotation. This thesis presents a method by which such an annotation can
be automatically derived for an utterance. The method uses Hidden Markov
Models to label speech with intonation event boundaries given fundamental
frequency, energy, and Mel frequency cepstral coefficients. Intonation events
are fundamental frequency movements which relate to constituents larger

than the syllable nucleus.

Even if there is an abundance of fully labelled speech data, and the intona-
tion synthesis models appear robust, it is important to produce an evaluation

of the resulting intonation contours which allows comparison with other in-



tonation synthesis methods. Such an evaluation could be used to compare
versions of the same basic methodology or completely different methodolo-
gies. The question of intonation evaluation is addressed in this thesis in terms
of system development. Objective methods of evaluating intonation contours
are reviewed with regard to their ability to regularly provide feedback which

can be used to improve the systems being evaluated.

The fourth area investigated in this thesis is the interaction between seg-
mental (phone) and suprasegmental (intonation) levels of speech. This in-
vestigation is not undertaken separately from the other investigations. Ques-
tions about phone-intonation interaction form a part of the research in both

intonation synthesis and intonation analysis.

The research in this thesis has resulted in a methodology which can be
used to automatically train and evaluate stochastic models for intonation

synthesis from automatically annotated speech databases.
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Chapter 1

Introduction

Intonation processing techniques have reached the point where the resulting
analyses and synthetic contours are useful in computing applications. Into-
nation in speech synthesizers can now account for variation in intonation,
rather than relying on a very limited number of possible intonation contour
patterns as was once the case (e.g. [IP88]). Even the synthesizers which

’ are robust in their generative ca-

use a restricted “intonational vocabulary’
pacities (e.g. [Bea94]). However, it seems that intonation synthesis has
reached a performance plateau. Recent research shows that, while both rule-
based and stochastic models can produce natural sounding intonation, there
is wide variability of success in different conditions [SCM™]. There is also a
recognition among researchers in the field that many of the current methods
for intonation processing utilize only a small portion of the available data.
The aim of this research is to improve the capacity of intonation generation
models to produce natural contour shapes by training intonation synthesis
models from data. The models should be able to produce natural sounding

fundamental frequency contours which vary according to the patterns of the

training data.

18
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Intonation, for the purposes of this thesis, refers to movements of fun-
damental frequency over time which relate to linguistic constituents larger
than the syllable nucleus. High-level linguistic information results in what
is known as macro-intonation (or, more generally, intonation). Typically,
such pitch movements are judged to be large movements such as those which
correspond to phrase final falls and rises or audible pitch accents. Micro-
intonation is loosely defined as everything that is left over. More specifically,
micro-intonation takes in the small fluctuations in fundamental frequency
which are caused by the physiology of speech rather than intentional com-
munication through pitch. Within this thesis, the scope of investigation
of micro-intonation is restricted to vowel intrinsic FO and coarticulation FO
effects on intonation events. Some interactions between micro- and macro-
intonation are investigated within the context of automatically training in-

tonation synthesis models.

This thesis presents a methodology with which fundamental frequency
can be synthesized using statistical models that have been automatically
trained from annotated speech data. A review of intonation modelling the-
ories and techniques examines the possibilities for the infrastructure of the
research and explains the use of the Tilt intonation model. The research
has addressed the basic problems of how to acquire database annotations
and how to create and use FO synthesis models once the annotations have
been acquired. An automatic annotation method which uses Hidden Markov
Models to label speech with Tilt intonation labels is presented. The FO syn-
thesis models consist of a set of regression trees which are trained to predict
parameterized descriptions of fundamental frequency contours. Within the
context of these two systems, the role of segmental effects on intonation is

reviewed and empirically tested. Finally, a number of methods which may
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be used to evaluate the output of the two systems are reviewed.

As Figure 1.1 shows, several areas must be addressed to automatically
create intonation synthesis models from data. While the primary goal of the
research in this thesis is to build stochastic models which can be used to syn-
thesize fundamental frequency, the initial problem addressed is one of data
availability. Statistical models generally require substantial data. Automatic
intonation labelling is an alternative to manual intonation labelling, which
has been the preferred method of data acquisition in the past. An approach
to automatic intonation labelling is discussed in Chapter 4. Prior to the dis-
cussion of the automatic labelling models examined in the research, Chapter
2 provides a review of literature on segmental effects on fundamental fre-
quency. This review concludes by suggesting that accounting for segmental
effects on FO will provide better automatic intonation analysis and synthesis
than would be available from a system which did not account for such effects.

This suggestion is tested within the research in Chapters 4 and 5.

Before the synthesis or analysis models can be built, an intonation model,
or framework, has to be chosen. Chapter 3 reviews four common approaches
to intonation modelling. This review includes discussions of framework-
internal specifics as well as actual applications which follow each approach.
The Tilt intonation model was chosen for the framework for this research,

based on these discussions.

With the framework and background in place, Chapter 4 returns to the
question of data acquisition. The goal of the research in this chapter is to
improve on previous efforts to automatically annotate speech with intonation
labels. The experiments test the suggestion that including information which

could account for segmental effects on intonation would assist in this goal.
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The results of these experiments show that including Mel Frequency Cep-
stral Coeflicient data improves the performance of a methodology which pre-
viously used only fundamental frequency and RMSE energy measurements.
The added low-level acoustic information improves the number of correctly
labelled intonation events, and in some cases reduce the number of erroneous
labels. However, the automatic labelling models are only successful when the
database which they modelled is large enough to provide many examples of
each intonation event type. Therefore, while the methodology is sound, it is
more useful as an aid to manual annotation until such a time as more data

is available to build more robust models.

The main body of research in this thesis concerns using annotated speech
data to automatically build and train fundamental frequency synthesis mod-
els. Chapter 5 discusses the experiments which were used in the composition
of a methodology to produce such models. This training consists of providing
information to a regression tree building system which automatically chooses
what parts of the information to use when building the trees. The trees pre-
dict parameterized descriptions of the fundamental frequency contour for the
synthesized utterance. The data features used in the trees give detailed de-
scriptions of the text which is to be synthesized. The data features which the
decision trees use were selected based on the theoretical and experimental
literature reviewed in Chapter 3. These data features are pared down using
an automatic step-wise data reduction method. An advantage of using this
type of algorithm is that only features which are necessary for training a
tree are used in the training, allowing a large number of features to be tested
without undue problems of inter-feature noise. The greatest advantage of the
overall methodology is that it is possible to investigate the utility of features

and feature classes when the training algorithm is combined with the use
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of the Tilt model, which has parameters for individual aspects of intonation
events. This aspect of the modelling technique is an improvement on previ-
ous research, which does not present the contribution of different information

types within a system.

The definition of success criteria for intonation synthesis is an extremely
difficult task. Objective evaluation of intonation processing output is vi-
tal if researchers are to have immediate feedback on the progress of small
changes in their systems. As section 5.5 shows, subjective methods of eval-
uation, which have been applied to the output of the synthesis methodology
used in this thesis, do not always provide the correct information. Objec-
tive measurement techniques which are designed for use with fundamental
frequency evaluations would be ideal. However, at present, the currently
best supported metric is Root Mean Squared Error. When viewed in con-
cert with knowledge of a speaker’s pitch range, this metric is a useful tool
for assessing the success of an intonation synthesis system. As Chapter 5
shows, the methodology developed within this thesis is as successful as pre-
vious techniques at producing intonation similar to the natural intonation
on which it is based. Section 5.4 shows that training synthesis models from
automatically annotated data is nearly as successful as training the models
from manually labelled data. Thus, the synthesis of FO from models auto-
matically trained from data can be extend to include data-labelling models

which are also automatically trained from data.



Chapter 2

Segments and Intonation

Until recently, research in segmental acoustics and intonation research were
virtually mutually exclusive. Researchers worked very hard to separate the
two as early as possible. In synthesis, those interested in the linguistic aspects
of an interaction joined in work on improving the quality of synthetic speech,
and enjoyed some success. This chapter examines investigations into the na-
ture and use of micro-intonation within the context of intonation processing.
A presentation of segmental interaction with intonation expands on the brief
introduction into micro-intonation from the previous chapter. A discussion
of uses for micro-intonation within speech applications follows, covering past
and current approaches to including information about segments in supraseg-
mental research. This discussion provides a background for the investigations
into adding aspects of micro-intonation to both the analysis and synthesis of

intonation, as examined in chapters 4 and 5.

2.1 Joining Source and Filter

Looking at intonation with Fant’s source/filter model ([Fan60]) in mind,

macro-intonation refers to the fundamental frequency of the voice source

24



2.1. JOINING SOURCE AND FILTER 25

(glottal waveform), and micro-intonation reflects interactions between the
source and the vocal tract (filter). This simple interpretation of Fant’s model
has formed the basis of much intonation work in the past. Fundmental fre-
quency contours are smoothed to remove any trace of micro-intonation, with
the justification that the smoothing results in a clearer picture of intentional
pitch movements. This justification assumes complete independence of the
source from the filter. The independence of the source and filter breaks down
somewhat when one considers the effects the filter has on the communicative

pitch movements (intonation events). As Reinholt Petersen states:

It is a well-established fact that the fundamental frequency
(FO) of speech is not only determined by higher-level linguistic
information such as sentence type, stress pattern, and tone, but

also by the segments constituting an utterance. ([Pet86]:31)

This chapter is not concerned with a detailed analysis of micro-intonation,
but with interactions between micro-intonation and macro-intonation. Such
interactions can be investigated by examining the correlations between re-
gions of macro-intonation (e.g. pitch accents) and categories of segments
associated with those areas. Intonation synthesis research (e.g. [vSH94|) has
shown that the segmental text of an utterance is highly correlated with both
the timing and size of intonation events. Because the fundamental frequency
is being purposely modulated during intonation events, the interaction be-
tween such events and the vocal tract is complex. The question remains as
to whether correlations between event shape and linguistic text are the re-
sult of the vocal tract (filter), communicative necessity (e.g. placing a pitch
movement over a consonant cluster is not an effective way of using pitch to

signal meaning), or both. This thesis assumes the third option, and attempts
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to explore and exploit some of these correlations, without becoming lost in
an exhaustive examination of the filter effects on FO over “intonationally

insignificant” text.

The perceptual relevance of micro-intonation has been the subject of
much research and discussion. While researchers generally acknowledge that
segmental interaction with FO exists, there has been a wide disregard for its
possible importance. Mertens et al [MBd97] go to great lengths to deter-
mine the threshold at which a pitch movement may be classified as “macro-

”

prosodic.” The reason for this effort is that microprosodic pitch excursions
vary in size, with the largest movements sometimes being larger than audi-
ble pitch accents [Sil87]. If micro-intonation is capable of greater magnitude
than macro-intonation, then the question of perceptual relevance becomes

clouded. Do listeners notice all pitch excursions? If they do, how do they

know which ones are macro-intonation and which are micro-intonation?

The research in chapters 4 and 5 is concerned with exploiting three types
of interaction between linguistic text and intonation events. The first type of
interaction is what generally falls under the micro-intonation banner - vowel
intrinsic FO and coarticulation FO effects on intonation events. The second
type of interaction concerns subsyllable constituents (onsets and codas) and
their relationships with event peak height and timing. The final interaction is
between individual segments and salient points within intonation events. The
rest of this chapter discusses these interactions in sufficient detail to provide

the necessary background for the new research presented in this thesis.
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2.2 The Relevance and Function of Micro-
Intonation

The small perturbations in FO which are generally attributed to the shape
of the vocal tract have caused confusion and difficulty for many researchers.
They create difficulties for pitch tracking (e.g. [MYC91]) as well as adding to
the problems that intonation researchers must contend with. Traditionally,
the favored method of studying micro-intonation has been to study ways of
eliminating it. Bagshaw [BHJ93] tested a number of methods for extracting
fundamental frequency, finding the super-resolution pitch detection method
[MYC91] superior to others he tested. Taylor [TCB98| improved on the
super-resolution pitch detection (SRPD) algorithm by introducing smoothing

to create an “intonation contour.”

Figure 2.1 shows one FO contour which was extracted using the SRPD
method, with minimal smoothing, and the intonation contour for the same
utterance, extracted using Taylor’s “intonation contour detection algorithm”
(ICDA). Notice that the outlying pitch readings in the SRPD contour are
eradicated in the ICDA contour. ICDA contours are very useful tools for the
human labeller. The lack of visual “noise” from the outlying dots, as well
as the ease of a fully interpolated and continuous line, enable the labeller
to speedily pick major peaks and troughs for further consideration. Pitch-
tracking errors (e.g. jumps of 200Hz in 10ms as near 3.5sec) are easily observ-
able in the isolated points of the SRPD contour. Micro-intonation remains
observable as small bumps in the ICDA contour (e.g. near 2.5sec). While
both of these types of FO movement can obstruct intonation analysis, only the
micro-intonation is of interest in this thesis. As Figure 2.1b shows, it is pos-

sible to minimize the pitch tracking errors while retaining micro-intonation
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(b) ICDA Contour

(a) SRPD Contour

Figure 2.1: FO contours extracted using SRPD and ICDA methods
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information. In the last fifteen years, the body of micro-intonation research
has been slowly moving towards understanding what causes micro-intonation,
and how such knowledge might be applied to speech processing. In this thesis,
micro-intonation is investigated in relation to macro-intonation. That is, only
areas where macro- and micro-intonation overlap are studied. The reason for
this focus is, as discussed below, that intonation processing is sufficiently
poor that good micro-intonational models can be completely overshadowed

by poor macro-intonation.

Two basic types of micro-intonation are discussed in this section - coar-
ticulation effects on FO (CF0) and vowel intrinsic FO (IF0). Coarticulation
effects on FO generally consist of perturbations in F0 of varying sizes which
are the result of vocal tract shape and movement during non-vocalic speech.
Vowel intrinsic F0 is a variation in F0 level due to the geometry of the vocal
tract and postioning of the tongue during vocalic speech. The literature sug-
gests that both types of micro-intonation are perceived by listeners, to such
an extent that they are actively removed from speech should they be likely
to cause confusion with intonation (e.g. [Sil87]). Gandour and Weinberg
[GW80] show that vowel intrisic FO is produced by laryngectomized speakers
with equivalent magnitudes of non-laryngectomized speakers, which also sug-
gests that micro-intonation plays a role in speech perception. This chapter
presents an introduction to micro-intonation. Silverman [Sil87] provides a
thorough analysis of micro-intonation with a comprehensive review of basic

literature.

Coarticulation effects on FO often appear on raw F0 traces as sudden
jumps or outlying points. These steep movements are often removed from the
contour using smoothing techniques, as discussed above. Frequently, though,

the perturbations are less obvious. These perturbations are the effect of a
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shift in FO over a longer period of time. Effects of this type can look like a
small pitch accent, and have been shown to cause low accuracy in automatic
analysis methods (e.g. [MBd97]). An illustration of coarticulation effects on
fundamental frequency is shown in Figure 2.2, where the F0 during /ti/ is
shown to start slightly higher than during /di/. These two syllables are in the
context “a X ta.” The two syllables are marked by the vertical dashed lines.
Though the F0 is not as clear in some longer speech sections, the contours do
show a clear difference between /ti/ and /di/. The FO during the /i/ portion
of /ti/ is represented in the picture by two dots at approximately 150Hz and
125Hz. Interpolating between these points gives an indication of the F0 for
the /i/ segment. Similarly, the best indication of FO for /di/ is in the section
of contour at 130Hz. Looking at these two sections of contour, it is clear
that /ti/ begins roughly 20Hz higher than /di/. While it is will always be
possible to find examples of /ti/ which are higher than /di/, and vice versa,
Figure 2.2 illustrates the type of differences which can be expected based on

experimental research such as Silverman ([Sil87]).

In an experiment to examine the main effects that consonants have on
nearby FO0, Silverman presented subjects with target nonsense words of the
type @QCv;Cv;C followed by @ (where @ is schwa, and the consonant is the
same) in a carrier phrase. He found that FO falls before consonants, with a
steeper fall before voiceless consonants than voiced ones. He also found that
the magnitude of the perturbations increases with the amount of stress placed
on a syllable. Other interesting findings from this experiment were that the
FO perturbations were the same across stops and fricatives, and that sonorant
consonants also perturb FO. Silverman also found that post-consonantal
perturbations do not depend on vowel height, which implies that CF0 and

IF0 are indeed two separate types of micro-intonation. Figure 2.3 contains
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Figure 2.2: Fundamental frequency contours over two syllables (each
bounded by vertical dashed lines)
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examples of micro-intonation which looks similar to macro-intonation. The
smoothing of the intonation contour will have removed some segmentally-
induced perturbation. However, not all micro-intonational FO movement is
gone. One example of coarticulation effects on FO is found between 28 and
28.5 seconds, during “for an.” This small bump in F0, which occurs during
the transition out of the /r/, is still large enough and of the correct shape to
potentially disrupt automatic analysis. On the larger end of the perturbation
scale is the large FO movement at the end of “emergency.” This steep drop
occurs during an unstressed syllable, with no audible pitch change. This
drop could be the result of effects of the /m/ in “meeting” on the preceding

vowel, and is easily large enough to confuse an intonation analysis system.

Vowel intrinsic F0 is a natural variation in FO level due to the type of
vowel being uttered, (e.g. /i/ has a higher IF0 than /a/). Like CF0, IFO mag-
nitudes are often greater during stressed syllables. Silverman finds that IFO
magnitudes can be of the same order as pitch accent magnitudes (sometimes
over 20Hz). Therefore, vowel intrinsic FO poses problems for intonation anal-
ysis, in that either human or computer must decide whether a perturbation
is macro- or micro-intonational. Silverman and Reinholt Petersen ([RP80],
[Pet86]), find that listeners adjust their perception of IFO, to the extent that,
all else being equal, a high vowel is perceived as having a lower pitch than
a low vowel, even when the FO is the same. This can cause difficulties for
magnitude estimation of intonation events. During synthesis, it may be nec-
essary to increase or decrease the magnitude of an event based on the vowel
associated with it. Figure 2.4 shows an example of vowel intrinsic FO differ-
ences. These two pictures show the syllables /pi/ and /pa/ in precisely the
same intonation and segmental context (within the nonsense words “apita”

and “apata”). The difference between /pi/ and /pa/ is approximately 10Hz
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in this case. Even though much of /i/ is lost in aspiration, an intonation
processing system would still have to model the F0O in such situations. One
would possibly want to synthesize the extra magnitude and would certainly

not want to analyze the extra height as a pitch event.
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Figure 2.4: An example of vowel intrinsic F0 differences between two syllables
(bounded by the dashed lines)

Figure 2.3 contains an interesting example of vowel intrinsic FO. The
falling boundary associated with “Monday” begins to fall, but levels off dur-
ing the latter half of the dipthong. It is probable that an /a/ in the same
location for this speaker would continue the sharp F0 drop, rather than level-
ling off. This conjunction of micro- and macro-intonation is a good example
of the type of interaction which is examined further in chapters 4 and 5.
In terms of intonation synthesis, it may be important to raise or lower the

FO slightly over some syllables regardless of their accentual status, simply
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because of the type of vowel they contain. For analysis and synthesis alike,
it may be the case that accents will have different magnitudes based on the
vowel type. Such effects, if present, should be accounted for, and could be

quite useful for intonation processing.

If one intends to use micro-intonation within an intonation processing
application, its importance to listeners should be taken into account. It
becomes necessary to determine the way in which people perceive and use
micro-intonation. DiCristo and Hirst [DCH86] argue that micro-intonation is
both perceived and used by listeners. They note that coarticulation effects on
F0 can be quite large (up to three semi-tones), and can influence the F0 level
throughout the syllable in which they occur. While vowel intrinsic FO effects
are smaller (they observe a 1-2 semi-tone difference between open and close
vowels), these effects also appear large enough to be noticeable. DiCristo
and Hirst claim these effects may be useful for segmental identification by

listeners. These findings are consistent with a number of previous studies

([L.S84], [Pet86], [Sil87]).

Interestingly, DiCristo and Hirst also find that their intonation synthesis
algorithm is not significantly improved perceptually by including a coarticu-
lation effects model. Coupled with the finding that vowel intrinsic intonation
effects are less in continuous speech than isolated words [LS84], one wonders
what forms the basis of any belief in the importance of micro-intonation in

intonation synthesis. The following paragraphs explain this basis.

Reinholt Petersen [Pet86] provides support for including micro-intonation
in speech synthesis in his work on how and where listeners perceive micro-
intonation. He presented listeners with a synthetic vowel continuum from

Ju:/ to /o:/ within a two-syllable carrier nonsense word, with F0 in one of
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three pitch ranges (high, middle, low). The subjects reliably judged low-
pitched vowels in the middle of the continuum as /o:/, and /u:/ for the
same vowels in the high-pitched condition. He concludes that while micro-
intonation is used in the perception and disambiguation of segments, they
are effectively “compensated” for prosodically. In other words, listeners do
perceive and use micro-intonation, but they use it in the segmental domain.
The effects of segments on intonation are used to assist in segmental per-
ception, rather than intonation perception. Understanding of prosody allows

listeners not to be confused.

Silverman [Sil87] includes models of micro-intonation in his rule-based in-
tonation synthesis system. IF0 and CF0 are modelled separately, and the fre-
quency contours are added to base intonation contours. In tests which asked
subjects to rank two synthetic voices as more or less natural than the other,
where the only difference was the intonation synthesis method, Silverman’s
method was ranked higher in five out of six cases. However, no systematic
evaluation of the contributions to the individual perturbation models was
performed which would decisively explain the reasons for the better results.
Perhaps the improved results Silverman attained by adding micro-intonation
to his synthesizer are as much to do with removing segmental ambiguities as

with reducing pitch ambiguities.

If DiCristo and Hirst have examined the effect of including CF0 in their
intonation synthesis and found no improvement in the perception of intona-
tion by subjects, it may be because the effects of the inclusion are not real-
ized in the perception of intonation. They find segmental effects from both
CFO and IFO which improve overall quality, but their intonation model
is not improved by the discovery. Therefore, if, as Vaino et al [VAKA97]

assert, modelling micro-intonation will improve a synthesizer’s quality, all
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other things being equal, then such a model may be relevant to speech synth-
sis. However, it seems that it is not relevant to perception of “intonationally
significant” pitch movements. It seems logical, therefore, that it is more im-
portant in intonation synthesis to correctly model macro-intonation than the
micro-intonation over intonational “connective tissue.” Dusterhoff and Black
[DB97] amend this conclusion by showing that some aspects of segment-F0
interaction are useful in improving specific aspects of the statistical models.
In terms of intonation analysis, however, any information which may help dis-
tinguish between large micro-intonation (or pitch tracking errors) and small
macro-intonation could be useful in automatically labelling speech for macro-
intonation. Improved distinction between macro- and micro-intonational
movements should result in more small intonation events receiving correct
event labels and fewer micro-intonational movements incorrectly receiving

event labels.

2.3 Subsyllable Units and Intonation

The consensus of the researchers discussed is that speech quality, rather than
intonation quality, is likely to improve with the inclusion of micro-intonation.
However, exploiting relationships between segments and intonation can be
useful in modelling intonation event peaks for synthesis. Van Santen and
Hirschberg [vSH94] and others (e.g. [PvSH95], [vSM97], [DB97] show that
segmental content is associated with both the timing and height of FO peaks
during pitch accents. All of these authors utilize the categorizations of onset
and coda from Van Santen and Hirschberg [vSH94] to enhance stochastic

models for intonation generation.

Van Santen and Hirschberg [vSH94| examine the effects of segmental con-
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text on pitch accent height and alignment. They divide onsets and codas into

the following three categories, based on the least sonorant portion of the unit.

e -V (voiceless consonants)
e +V-S (voiced obstruents, including null onset)

e +S (sonorants, including null coda)

Table 2.1 shows some examples of these categories. Null onsets were classified
as +V-S due to the glottal stops which invariably preceded them in the
data. Null codas were classified as +S, ostensibly to allow for heavy vowel
constructions which mimic a CVV-type construction.

-V /st/,/sl/
+V-S | /b/,/dr/

+S | /n//r/

Table 2.1: Examples of Onset and Coda Classificatoin

The study examined phrase final nuclear accents. Van Santen and
Hirschberg observe that peak location varies systematically according to on-
set and coda type. They find that differences in peak location related to
onset type can be partially explained in the different lengths of the three
types (e.g. -V consonants averaged 173ms to 104ms for +S consonants).
However, correlations between peak location and coda class could not be
reduced to such simple explanations. They report that peak alignment can
be accurately determined given segment durations and coda class, without

reference to onset class or vowel height.

In their study, van Santen and Hirschberg also confirm the claim (by

[Pet86] and [LS84], among others) that vowel intrinsic F0 has a greater effect
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on pitch accented syllables than on unaccented syllables. The effect can be
viewed as an amplification of the accent which is larger the higher the vowel.
They also find that longer syllables tend to have greater FO height movements
than shorter syllables, and that onset-induced F0 excursions tend to last only

a short time (< 50ms).

All of the findings in van Santen and Hirschberg (1994) have applica-
tions in modelling F0 curves over intonation events (accents and boundaries).
While the initial study examined short sentences (e.g. “Now I know X”), the
onset and coda classification system has been successfully adapted to other
contexts and speech types (e.g. radio news broadcast) and shown noticeable

improvement for FO generation ([DB97]).

2.4 Segmental Anchor Points

Recent work by Ladd and others (JALM98]), [LFFS99]) provide an interesting
insight into intonation/segment interaction. Their studies have investigated
anchor segments for intonation events (e.g. rises start at the beginning of an

accented vowel and end at the beginning of the next vowel).

In a study of Greek rise (L+H*) accents, Arvaniti et al [ALM98] investi-
gate regularities in L and H placements with regards to word, syllable, and
segmental boundaries. Their three experiments cover accents placed on syl-
lables in a variety of contexts. Post-accentual syllables were varied between
one and five. Lexical stress location was varied in one study and remained
constant (antepenult) in the other two. In the most constrained experiment
(low number of sentences repeated six times), the peak occurred, on aver-
age, 10ms into the vowel (SD=14ms). The peak and the onset of the first

post-accentual vowel correlated heavily (R?=0.806). In less constrained envi-
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ronments, where both the sentence content and the accented syllable length
were varied, the timing was similar (mean 17ms into the vowel, SD=32ms),
and the correlation was lower, but still high enough to suggest a pattern
(R?=.453). In no case was the length of the post-accentual vowel shown
to be correlated with the distance from the vowel onset to the peak (R? <
0.010). Their final experiment was a pilot which judged the effect of tonal
crowding on the peak anchor. Tonal crowding occurs when multiple intona-
tion events occur on a single or successive syllables. Crowded events tend
to be truncated or compressed, when compared with uncrowded events. Of
their five subjects, only one showed any evidence of tonal crowding effects.

As a whole, these results suggest a segmental anchoring pattern.

Investigating the effects of altered speech rate on the alignment of rising
accent start and peak points, Ladd et al asked speakers to change their speech
rate while reading a short piece of text. Thirteen test words were placed in
locations conducive to rise accents (Adjective + Noun, Adverb + Verb).
Six subjects were tested. At a “normal” speech rate, the onset of the rise
was consistently within 25ms of the beginning of the onset consonant of the
accented syllable for five of the six subjects. At “fast” and “slow” rates, the
rise and syllable onsets were consistently within 20ms of each other for all
six subjects. This finding supports Arvaniti et al by showing that the rise

onset’s segmental anchor is not likely to be affected by speech rate.

The peak of the rise accent was measured in relation to both the offset
of the accented vowel and the onset of the following vowel. The results of
these experiments were less clear-cut than those for the rise onset. The slower
speech rate appeared to cause difficulties due to inserted prosodic boundaries.
Therefore, the slow rate data was removed for a clearer picture. In the fast

and normal speech rate, rate had, at best, a marginally significant effect on
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the alignment of the peak in relation to accented vowel offset (p=0.047). The
effect of rate on peak alignment relative to the onset of the following vowel
was insignificant, supporting the claim that the peak is aligned to segments,
rather than being the result of a fixed time or slope function. This result

further supports Arvaniti et al.

Though the experimental work on this topic is still in its early stages,
the concept of segmental anchoring is interesting. In a survey of the F2B
database (see section 4.2.3 for details of this database), where syllabification
is derived from lexical lookup, 2275 of 2700 accent peaks occurred during the
final consonant of the accented syllable. These results are rather different
from Ladd’s and Arvaniti’s. In Ladd et al and Arvaniti et al the intonation
contours are not interpolated through voiceless speech, as the target words
are all sonorants, while the contours used in the survey of F2B were interpo-
lated through voiceless speech. This difference in contour type could explain
why more peaks fall during consonants than in Ladd et al. Another possible
reason for the large difference could be the relatively unconstrained nature
of the F2B database, as compared with the experimental conditions under
which Ladd’s data was acquired. Ladd’s analyses are based on a small num-
ber of syllables which included only sonorant phones (9 test words in one
experiment, 14 in another). The F2B data is not constrained for segmental

content.

Should segmental anchors be found systematically occurring in natural
speech and speaking conditions, they could be quite useful in building rule-
driven intonation synthesis systems. Segmental anchors could also prove
helpful in constraining statistical models of intonation. The use of anchor
points was briefly investigated within the context of the research in Chapter

5. However, the information which anchor points provided to the statistical
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models was already provided by other features, which resulted in anchor

points not being used in any of the experiments detailed in Chapter 5.

2.5 Intonation Analysis and Segments

While researchers have noted the difficulties in analyzing intonation which
micro-intonation can cause, little has been done to address the problem. The
study of segmental effects on intonation for analysis purposes remains almost
completely in the area of how to avoid such effects, rather than in qualitative
or quantitative examinations of them. Taylor’s Intonation Contour Detection
Algorithm [TCB98] is one of the latest examples of the desire to smooth
an FO until almost no segmental perturbations are left. Taylor’s algorithm
allows the user to select the amount of FO smoothing. For the purposes of
manually labelling data, for example, a very smooth FO may be desirable.
For the experiments within this thesis, the smoothing is minimized, as is
discussed in section 4.2.3. Mertens et al [MBd97] search for ways of stylizing
F0 contours automatically, which is essentially the same process. They found
that, even with a FO smoothing algorithm, some of the large coarticulation
excursions remained. These excursions generally look like small-to-medium

sized pitch accents, and confuse intonation analysis.

Ljolje and Fallside [LF87] chose instead to control their dataset in their
work to model “rise,” “fall,” “rise-fall,” and “fall-rise” pitch movements over
isolated words. Their analysis system, which used Hidden Markov Models
to model the pitch movements, was designed to automatically recognize the
above classes of movements. Rather than use smoothing algorithms, they
control for coarticulation effects and vowel intrinsic pitch by using minimal

pair word sets. Thus, each type of segmental effect would be modelled in
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the context of the type of pitch movement over a single word. While not
necessarily an ideal method for use with continuous speech recognition, the
research shows that there are ways of working with the segmental content of

data without destroying data through excessive smoothing.

However, as Mertens and his colleagues noted, ignoring the effects of
segmental context on F0 is non-trivial, and perhaps using the context in some
way would be more productive. Ostendorf and Ross [OR97] use a stochastic
segment model which was originally meant for phone modelling to attempt
to give the segmental context (phone labels). As is discussed in Chapter 3,
their accent detection is quite successful, while boundary detection is less

accurate.

Chapter 4 discusses continued work on including segmental data in into-
nation analysis. The research examines several acoustic aspects of the seg-

mental stream and attempts to exploit them in automatic intonation analysis.

2.6 Summary

This chapter has provided an insight into the complex nature of micro-
intonation, including methods of addressing the interaction between segments
and intonation. An interesting segmental anchoring hypothesis from Ladd et
al is reviewed. Research into interactions between sub-syllable units (onsets,
rhymes, codas) and intonation event peak height and location is presented,
and placed into the context of intonation processing. Much of the research
that forms the basis of this thesis is an extension of this movement towards

incorporating segments into intonation processing.



Chapter 3

Intonation Models for
Intonation Processing

Intonation plays a humanizing role in speech synthesis. By emulating the
intonation patterns of human speakers, speech synthesizers can take on the
characteristics of different languages, dialects, or speakers. One of the more
difficult tasks in building models for speech synthesis is capturing the variety
of intonation patterns that occur in natural speech. Early models of into-
nation (e.g. [OA61]) consisted of a small number of canonical forms. Such
a system captures the basic needs of language learners, who, with increased
use, are then able to increase their “intonational vocabularies.” However,
writing rules for all possible, or even probable, intonation contours is im-
possible. A compromise between modelling a small number of prototypical
intonation contours and modelling all likely forms is to model as many types
of intonation event as possible over a specific style of speaking. If one desires
a synthesizer which will answer the phone and relay information to callers,
then only a specific style of intonation is necessary. Similarly, if the task
is to read news over the Internet, a different speaking style should be mod-

elled. This approach is similar to O’Connor and Arnold [OA61] in its use
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of prototypical intonation contours. Both abstract away from FO contours.
O’Connor and Arnold view the prototypical contours as whole units. Unlike
O’Connor and Arnold, though, the models which are discussed in this thesis

approach intonation contours as sequences of events.

This chapter presents a some of the more popular intonation models which
have been used for automatic intonation synthesis, analysis, or both. This
chapter also includes a review of techniques for evaluating synthetic intona-
tion and intonation analysis output. Once a model is presented, some appli-
cations which use the model are presented. The applications are discussed

in terms of evaluation techniques reviewed in this chapter.

There are several different approaches to intonation event modelling, and
each approach has spawned multiple variations. In some cases, the difference
between models begins with a difference in the theoretical assumptions of the
modellers. The AM (Autosegmental-Metrical) school represents intonation
as a sequence of tone levels. IPO! has rejected the tonal representation, and
treats intonation as a sequence of pitch movements. The superpositional
models are based on a physiological model of the speech chain ([Fuj83]),
combined with a hierarchical theory of prosodic phonology [NV86]. These
models represent intonation as a sequence of events whose domains overlap.
Continuous parameterized models attempt to interpret FO in an acoustic
domain, describing intonation in terms of FO movement over time (e.g. rise
and fall height, slope, duration). Each of these methods has its strong points.
Some methods, however, may lend themselves more readily than others to

the automatic intonation processing tasks which form the basis of this thesis.

Each of the modelling techniques is represented by at least one application
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for intonation synthesis. The applications discussed here were chosen because
they are among the most successful instances of the various techniques and
because each application illustrates difficulties in automated intonation pro-
cessing. The ToBI (an instance of the AM approach, [SBP192]) implemen-
tations are effective (e.g. [Ros94|, and result in a fully automatic system for
modelling intonation for speech synthesis from an annotated database. The
superpositional (SP) implementation is also fully automatic, and is based on
an annotated database ([Spr98]). Beaugendre’s French TPO model is auto-
matically derived from an annotated database, but the required automatic
stylization system is not integrated as yet. The Tilt synthesis implementa-
tion is, like the other synthesis modelling techniques, automated and built

on the basis of an annotated database.

Regardless of the methods one uses to process intonation, some type of
evaluation of the method is required. Both subjective and objective assess-
ment techniques have been applied to synthetic intonation. Intonation anal-
ysis also requires evaluation, either by comparing symbolic output with orig-
inal symbolic data, or by using an analysis-by-synthesis method. Analysis-
by-synthesis is an assessment method whereby the intonation analysis output
becomes input to an intonation synthesis system, and the resulting synthetic
output is evaluated using one of the methods for evaluating synthetic into-
nation. The following section introduces the basic ideas behind intonation
evaluation. Specific evaluation methods are discussed in more detail together

with the intonation processing applications that they assess.
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3.1 Intonation Evaluation

One of the primary difficulties of analyzing synthetic intonation is how, or
if, one should use subjective perceptual examinations. While it is desirable
for people to listen to system output and proclaim that it sounds acceptable,
the opinion of listeners is not always constructive. When naive subjects are
used, it can be difficult to find out why they are giving one score or another.
The naivete that makes them so useful for opinions uncoloured by theory and
sensitivity to the subject matter also acts as a barrier if explanations and
discussions of their opinions are required. It is important to know the reasons
behind the opinion as well as the opinion itself. For example, if ten out of
ten subjects rate an utterance as acceptable, or even as natural, this must
be qualified. How does that result compare to previous results? What has
changed since the previous test? Which changes in the system could have
caused the change in results? In order to know precisely what the scores
reflect, it is necessary to carry out a subjective test every time the synthesis

system changes.

Similarly, while an objective metric which implies that an utterance has
been produced with intonation just like the original may be useful, there is a
question of how fine a judgement is available for less-than-perfect intonation.
It is necessary to know how well the metric relates to perceived intonation
quality. Given that no known speech synthesis system produces intonation
with the controlled variation in pitch and timing of your average human,
it is necessary for an objective metric to give an insight not just into how
good intonation is, but also how much, and in what ways, it has improved

or deteriorated.

As mentioned above, assessing intonation analyses is a necessary part of
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intonation processing. The benefit of an analysis-by-synthesis approach to
evaluating intonation analysis methods is that it allows one to use the same
evaluation methods for analysis output as for synthesis output. Therefore,
the discussion of methodology above is relevant to both directions of into-
nation processing. Alternatively, the use of symbolic output of intonation
analysis systems for evaluation creates a parallel with other speech recogni-
tion tasks. If the symbolic output matches the symbolic representation of

the data, the analysis system is successful.

The parallel with speech recognition assessment gives rise to its own diffi-
culties. In speech recognition tasks, if “I would like a large pepperoni pizza,
please” is recognized as “I would like a large pepperoni pizza, please” then the
analysis is generally successful (limitations to this assumption are discussed
in section 4.2.5). However, unlike textual recognition, where the text is the
only important output, intonation evaluation involves the time at which the
symbol is “recognized” as well as the recognition of the symbol itself. Rec-
ognizing, correctly, that there are three accents and a falling boundary on
an utterance is only successful if the accents and boundary are recognized as
being in the correct location. With intonation analysis, it is quite possible
for the symbolic representation to be the same in the analysis output and
the original data, while the timing is completely different. For example, with
a poor recognizer, the sequence “Accent Accent Falling Boundary” may be
output on the first word of a five word phrase. Using evaluation methods
which only assess whether the output string is correct could result in a score
of 100%, where in truth, the output is exceptionally wrong, because the into-
nation events are not in the right place. Thus, the timing of the symbols is at
least as important, if not more so, than what they are called. This evaluation

technique is revisited in Chapter 4, in a discussion of the intonation analysis
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methodology which was developed for this thesis.

3.1.1 Subjective Evaluation of Synthetic Intonation

Any evaluation of synthetic speech has three basic tasks: determining the
quantity of “good” speech (how much of the output is understandable?),
assessing the quality of the speech as a whole (is there enough clear speech to
out-weigh any errors?), and examining the ability of listeners to understand
the message which the speech is meant to carry. Evaluating intonation is
somewhat less straight-forward. Quantification of movements in F0 is at best
a difficult task. While it is fairly simple to judge a symbolic string which
is then translated into an acoustic signal (e.g. [ML90]), it is, in the long
run, the quality of an acoustic signal which must be evaluated. Regardless
of whether pitch accents are placed on the correct syllable, the fundamental

frequency must conform to patterns of the language being used.

Perceptual evaluation of intonation comes in a variety of forms, all of
which offer similar benefits and suffer similar difficulties. The primary benefit
of perceptual tests is that they can provide an insight into the opinions of
system users. In the end, regardless of experiments and statistics, synthetic

speech which is unacceptable to its users is a failure.

The most accepted form of intonation assessment at present is some form
of subjective perception test. Any improvement in intonation synthesis is
immediately queried by other researchers until it has been subjected to such
tests. Two of the methods widely used in intonation evaluation are pairwise

comparison and acceptability ranking.

Pairwise comparisons generally compare the similarity of two utterances

under a variety of conditions. A sound experiment requires a subject to
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recognize that two equivalent utterances (with either synthetic FO or FO re-
generated from natural speech) are equivalent, while a different pair (with
one synthetic and one natural) is ranked for similarity. The purpose of the
first type of pair is to establish that the subjects can reliably complete the
task, and to give a baseline against which the different pair’s ratings are
judged. Subjects have been successful in completing the judgement task
(e.g. [dP83]), and van Bezooijen and Pols [vBP90] have confidence in the
abilities of subjects to reliably judge suprasegmental quality. The biggest
problem with the design of this sort of test is that it is only useful for short
segments of speech, due to the difficulties with accurately remembering the

details of intonation over longer utterances.

Acceptability ranking involves listening to an utterance and ranking it
on a scale (typically 5 to 10 points) according to how natural the intonation
sounds. Van Bezooijen and Pols [vBP90| note that such tests are usually
undertaken using short utterances. The benefit of ranking over pairwise
comparison is that the subject’s memory limit when comparing paragraph-
length passages is less likely to cause a problem. The subjects do not need
to worry about the previous paragraph. They only need to decide how good
the current one sounds. Isard and Pearson [IP88] illustrate the problem with
not using long passages: isolated sentences may sound natural, while two or
three sentences together may not, even if the same model is used to generate
them. Therefore, in order to gain meaningful judgement, acceptability tests
should place the type of utterance which the system is meant to generate in

the context of its use (e.g. dialogue, telephone prompts, news reading).

The primary difficulty with subjective rankings is that they are depen-
dent on the individual experiences and thoughts of each subject, as well as

the quality of the speech. Monaghan and Ladd [ML90] also highlight the dif-
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ficulty of evaluating subjective rankings. Individual examples of speech may
score equally well (or poorly) for entirely different reasons, which are not
always clear to the experimenter. Monaghan and Ladd attempted to lessen
the unknowns by restricting the judgements to symbolic descriptions of in-
tonation, rather than pitch. In this way, they eliminate noise from synthesis
quality and acoustic interpretation of the symbolic descriptions of intona-
tion which most current synthesizers use. In a similar attempt to reduce the
possible reasons for poor evaluation, Dusterhoff and Black [DB97] use the
original symbolic descriptions of utterances and test intonation generation
based on equivalent intonation event placement and a stochastic generation
model. Thus, any audible difference between an utterance synthesized using
the original FO and one using synthetic FO is solely due to the difference
between the two FO contours. Similarly, any objectively measured difference
between the original and synthetic contours could be reflected in the differ-
ence between the utterances synthesized from the contours. How important
any given difference between contours is remains a difficult question which is

revisited in the assessments of the applications throughout this thesis.

3.1.2 Objective Evaluations of Synthetic Intonation

While there are many subjective testing methods available, a sound test with
a representative sample of subjects and examples is time consuming, and
not always useful for day-to-day model development. Therefore, objective
measures of FO0 modelling are necessary. Two general techniques are used in
developing the synthesis models in the research for this thesis. One technique
evaluates how well individual aspects of the models represent the data, while
the other evaluates how well the synthetic FO of an utterance matches the

natural one. The first technique is only applicable to the research in Chapter
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5, and will be discussed there. The second technique is more widely used
(e.g. [Ros94], [DB97]). The basic idea is to measure the difference between
natural intonation for an utterance and intonation synthesized for the same
utterance. Chapter 5 goes into more detail about the way this method is used.
The most common objective evaluation metrics currently in use are Root
Mean Squared Error (RMSE) and Pearson’s Correlation ([Edw84], [GD82]).
RMSE measures how far apart two intonation contours are, while Correlation
shows how closely one contour (e.g the synthetic one) relates to another (e.g.
the natural one) in direction and range. Root Mean Squared Error measures
the distance between two contours on the time axis, such that the distance
being measured at regular (e.g. 10ms) points is perpendicular to the time
axis, regardless of the F0 shape. Similarly, Pearson’s Correlation is calculated
based on measurements every 10ms. The correlation coefficient measures the
degree to which the variables are linearly related. Thus, a high correlation
coefficient shows a close linear relation (which should be the case with two
similar FO contours from the same utterance), while a low coefficient shows
that the linear relationship is not close: that the two lines are diverging
regularly. These objective metrics cannot determine whether a variation in
the synthetic contour makes the synthetic speech sound any more or less

natural. They only measure how much two contours vary.

This section has provided a basic outline of the methods used to evaluate
intonation processing applications. The many difficulties in such assessments
are discussed as they arise in the discussions of the models and applications

below.
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3.2 Autosegmental-Metrical Intonation
Modelling

Autosegmental descriptions of tone languages developed by Goldsmith (1976,
[Gol76]) and others have been applied to intonation by proponents of the
Autosegmental-Metrical school of intonation modelling. Previous attempts
at describing intonation as tonal sequences (Pike, 1945) were discredited by
their inability to deliver a predictable and consistent tonal inventory. Each
pitch level found in a dataset was described as a new tone, resulting in four

or five tone categories which did not behave in a categorical manner.

In 1980, Janet Pierrehumbert [Pie80] used an autosegmental approach
to American English intonation which allowed her to describe the multiple
tone categories of her predecessors with two basic tones, High and Low. This

advance enabled intonation study to treat pitch contours as tonal sequences.

N\
(Boundary Tone) Pitch @ Phrase Tone Boundary Tone

Figure 3.1: Finite state tonal grammar

Pierrehumbert’s tonal inventory is used within a finite state grammar,
which as shown in Figure 3.1, consists of an optional boundary tone, one
or more pitch accents, a phrase tone, and a boundary tone. The grammar
constrains the interaction of tone types, such that, for example, multiple final

boundary tones cannot occur.

3.2.1 Tone Inventory

The basic tone inventory in Pierrehumbert’s system consists of a High tone

(H) and a Low tone (L). Tones are used to describe three basic types of
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intonation event: pitch accent, phrase tone, and boundary tone. Each event
type is represented by adding a diacritic to the tone: * for pitch accents, ~ for
phrase (floating) tones, and % for boundary tones. By combining the basic
tones, Pierrehumbert arrives at a larger inventory which is used to describe
rises and falls as well as level pitch. The L and H tones are combined to make
L+H and H+L accents, which each have two further classes. The * diacritic
is used to show which tone is aligned with an accented syllable (e.g. L+H*
is an accent where the High tone aligns with the accented syllable and the
pitch rises to the high from a preceding Low tone, while the L*+H aligns the
Low tone with the accented syllable). The full inventory is shown in Table
3.1 (%H is sometimes used to mark an initial High boundary).

L* L*+H L+H* L~ L%
H* H*+L H+L* H- H%

Table 3.1: Tone Inventory

3.2.2 Tonal Phonology

The use of tones as phonological units is the keystone of the AM approach to
intonation modelling. In its original form, Pierrehumbert’s system involved
the process of downstep (a successive lowering of accent height) being an
automatic result of interaction among tone types. The model also presents an
interaction between tone types and phonetic realization, in rules of rightward
tone spreading. In these rules, floating tones (X™) spread rightward to more
prominent tones. Thus, the floating tone (or phrase tone) would typically
be associated with a series of syllables, resulting in, for example, a long
low frequency trough. The ability to accurately describe downstep within

the two-tone inventory makes Pierrehumbert’s system more attractive than
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previous tonal systems (e.g. [Pik45]), which required a different tone for
each level of downstep. Because accounting for downstep has been difficult
for some approaches in the past, it is one important test of whether a model
can cope with a wide range of intonation phenomena. The AM school has
evolved in its approach to downstep, as is discussed below. The discussion
of downstep serves not just as a presentation of an important aspect of an
intonation model, but also shows how one intonation model has adapted and

progressed from inception to successful application.

The original form of downstep as a phonological process [Pie80] states
that, given a sequence of H I. H which contains a bitonal accent, the accent
following the bitonal accent will be downstepped. Thus, if the sequence is
H*+L H*, the second H* is downstepped. If the sequence is H* L*+H, the
next accent will be downstepped. Ladd [Lad83], suggests that downstep be
treated as a binary feature [+/- downstep|] which reflects a choice by the
speaker to downstep accents or not. Beckman and Pierrehumbert [BP86]
note a number of flaws with this suggestion, notably that a binary downstep
feature makes it possible to represent impossible and non-occurring accent
types. They attempt to improve the downstep rule by stating that it is
triggered by L+H accents, rather than worrying about non-bitonal /bitonal
sequences. Ladd [Lad90] proposes a metrical structure which acts as a con-
straint on downstep and pitch range. This suggestion allows Ladd to support
the idea that intonation is not necessarily locally dependent on preceding tone

types while retaining a phonological process to explain downstep.

In Beckman and Pierrehumbert [BP86], which applies the Pierrehumbert
model to a comparative study of English and Japanese intonation, the basic
nature of Pierrehumbert’s system remained intact. However, some structural

changes played a large part in improving the model. First, the expansion of
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the model for use with Japanese gave the model support as being more than
an ad hoc description of American English. The Japanese data also brought
about the inclusion of intermediate phrases in English. The intermediate
phrase (ip) structure was an important addition to the model. The ip is
bounded by the phrase tone (L~, H™), giving these units a purpose, rather
than a mere existence. The ip was also identified as the domain for downstep.
Such a domain restriction was seen to improve the ability of the model to
handle pitch range resetting. Accounting for downward trends in intonation
was therefore more useful, as the return to a higher pitch range was also
accounted for. The use of the ip as a constituent in the intonational hierarchy

has been further supported by work involving Bengali intonation [HLI1].

The final piece of the evolution of Pierrehumbert-based intonation mod-
elling, in terms of moving a theoretical model towards successful applica-
tions, is the ToBI [SBP192| intonation transcription system. ToBI (Tones
and Break Indices) is a system used to transcribe prosodic phrasing (Break
Indices) and intonation. ToBI uses the basic Pierrehumbert tonal inventory,
except that downstepped H tones are explicitly marked as 'H, which allows
the accent to be accounted for by an automatic phonological process, or not,
as individual researchers wish. This system is one of the most widely used
intonation transcription systems in the world, and has been adapted for a

number of languages and dialects with moderate success.

3.2.3 Applications of the AM approach

The ToBI labelling convention is currently one of the most popular prosodic
annotation systems. As a result, it has been used in developing intonation
models for a wider range of uses than some of the other models. Ross and

Ostendorf [Ros94], [OR97] have used a modification of ToBI in developing
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stochastic models for both intonation synthesis and prediction of intonation
labels. Black and Hunt ([BH96]) use a similar modified-ToBI system to
build a stochastic intonation synthesis model. All of these systems collapse

the ToBI tone inventory into the simpler inventory of H*, 'H* and L*.

e FO Synthesis using ToBI

Ross’s intonation synthesis system ([Ros94], [RO94|) predicts the location
and tone type of pitch accents for each syllable in an utterance using clas-
sification trees and Markov sequences. The level of prominence is predicted
using regression trees. The F0 is generated from these predicted accents us-
ing a dynamic system ([Dig92]) which models (and predicts) FO and RMS
energy jointly [RO94].

Classification and regression trees [BFO84] are fairly common in stochas-
tic modelling of intonation, as are Markov sequences [RJ93]. Decision trees
(which include both classification and regression trees) are typically binary
decision trees. Tree nodes are typically questions which have “yes” and “no”
branches, terminating in a class identifier or a numeric value. The trees
are used to make predictions for feature vectors based on the distribution of
similar vectors in a training set. Markov sequences are probabilistic models
where each state in the sequence has a probability of remaining in that state

and a probability of moving out of that state.

The dynamic system that Ross and Ostendorf use is a hybrid model. The
classification trees in this model are used to provide probability distributions
for use by the Markov sequences. Ross ([Ros94]) reasons that intonation
is, in some important ways, a series of inter-related events. The lack of

independence among tones in the Autosegmental-Metrical model creates, ac-
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cording to Ross, a difficulty for the classification tree. Because the timing of
a pitch accent, for example, is affected by the proximity of other pitch ac-
cents (“accent clash”), the tree’s feature vector is an inadequate description
of all relevant information. He argues that a sequence of related events can
be modelled better by incorporating a sequential model. For each utterance,
the tone sequence is predicted by Markov sequences. Regression trees then
predict the prominence (encoded in normalized peak energy and F0) of each

pitch accent.

The statistical models are trained and tested on a portion of the Boston
University Radio News Corpus [OPSH95]. The label prediction model as-
signs intonation labels from a collapsed ToBI inventory to each syllable in
an utterance. The inventory is collapsed to take account of the nature of the
database. Some tone types - L*+H, L*+!H, %H, H4+!H*, and X*? (undecided
accent by the labeller) - are rarely seen in the database, and are combined
with similar tone types. Further labeller incertainty led Ross to collapse the
accent tone inventory to four: unaccented, high, low, and downstepped. The
boundary tones are divided into three categories: L-L%, L-H%, and H-L%.
These labels are predicted for each syllable using information about the syl-
lable, the word of which the syllable is a part, the larger prosodic phrase, the

paragraph, and nearby intonation labels.

The syllable information that Ross uses includes lexical stress, from a dic-
tionary, and vowel type (tense/lax). The word information includes part-of-
speech, content/function classes, neighboring part-of-speech labels, whether
the word is a part of a complex nominal, and a given/new distinction. The
length of the prosodic phrase and the position within the phrase of the syl-
lable are also used in the tone prediction model. For the boundary tone

prediction, information about the location of the prosodic phrase within a
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sentence, the phrase and sentence within a paragraph, sentence length, and
punctuation are also used. Finally, the prediction models include information
about surrounding intonation labels: preceding label, number of unaccented
syllables prior to the syllable, and other tones on the word. The regres-
sion trees which predict peak prominence use subsets of the above features,
selected using clustering experiments. The accent prominence tree, for ex-
ample, uses information about the tone label, the number of accents within
the phrase, the position of the phrase in a sentence, and the previous accent
label. The prominence values are used by the dynamical system to generate

fundamental frequency and energy contours.

Black and Hunt ([BH96]) produced a similar, if less complex, system
to Ross and Ostendorf. Unlike Ross ([Ros94]), Black and Hunt are not
predicting the location and type of intonation events. They take the event
type and location as given, and predict only the FO contour. Black and Hunt
use linear regression to model FO values for the start, middle, and end of

each syllable. Twenty-eight features, as follows, are modelled:

the ToBI accent type on the syllable and the two preceeding and suc-
ceeding syllables

e the ToBI endtone type on the syllable and the two preceeding and

succeeding syllables

e the lexical stress on the syllable and the two preceeding and succeeding

syllables

e the number of syllables from the previous major phrase break and to

the next.
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e the number of stressed syllables from the previous major phrase break

and to the next.

e the number of accented syllables from the previous major phrase break

and to the next.

e the phrase break index (0-4) of the syllable and the two preceeding and

succeeding syllables

As discussed in section 3.1, one method of assessing synthetic intonation
is to objectively compare intonation contours. Both Ross and Black and
Hunt evaluate their synthetic intonation using Root Mean Squared Error.
Ross’s comparison of the original contours with the generated ones results in
a RMSE of 34.7Hz on independent test data [Ros94]. Black and Hunt report
RMSE of 34.8Hz on the same database as used Ross [BH96]. In isolation,
these values do not carry any weight. For some voices, a 35Hz difference in
FO can be phenomenally bad. For others, it can be barely noticeable. The
speaker which these experiments used has a standard deviation in FO of 42Hz.
As section 5.3 discusses further, it is likely that producing a smaller RMSE
than the standard deviation will produce generally acceptable intonation
contours. This interpretation of the results is supported by a perceptual
experiment performed by Ross, where subjects rated his synthetic intonation
to be as natural as the original intonation from the database ([Ros94], section

5.3.2).

e Intonation Analysis using ToBI

Ostendorf and Ross [OR97] use what is effectively the reverse of their synthe-

sis model for automatic intonation labelling. The analysis system requires
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word and sub-word labelling, which, as with their synthesis data, is auto-
matically labelled and hand-corrected. Using the FO, energy, and linguistic
context, the system determines whether or not each syllable is accented, and
gives accented syllables a tone label. This automatic analysis method re-
sulted in 88% correct labels with 11% insertions. In terms of the evaluation
metrics described in Section 4.2.5, these results translate as 88% correct, 77%
accuracy, 23% error: where correct is the number of recognized accents which
are correct, accuracy is correct minus recognized accents which are incorrect,
and error is 100% - accuracy. These results are comparable to the accuracy
of human labellers who have the same data available (e.g. syllable, segment,
word, and phrase boundaries) as shown in Silverman et al [SBPT92] and

Taylor [Tay00].

3.2.4 Summary

The drive to create a system of intonation which is related to a system for
describing tone has a number of linguistic implications which are outwith
the context of this thesis. Debates over whether intonation should, “theo-
retically,” be described in terms of levels or movements are well outside the
scope of this thesis. The question here is whether it is possible to model
intonation automatically. The ability to describe a language’s intonation in
terms of two basic units encourages automatic processing. Such a minimal

inventory invites systematic treatment and categorization of intonation units.

However, the reality is that systematic treatment of English intonation
as a two “tone” system is not a simple matter. The ToBI system has been
widely criticized, even from within the AM school (e.g. [Lad96]), for unnec-
essary complexity and an inability to cope with natural language use. The

complex issue of whether the bitonal inventory is adequately described, or
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even needed, illustrates that the power of the AM models needs constrain-
ing. Because a large portion of all realized accents are simple or downstepped
H*, much work in using ToBI has abandoned over half of the possible tone

inventory (e.g. [Ros94]).

The autosegmental/metrical school of intonation modelling has con-
tributed heavily to the current state of intonation theory. The ability to
break intonation contours into pitch accent units has brought intonation
modelling to a stage where automatic synthesis and analysis are computa-
tionally viable. ToBI has allowed for large-scale intonation data creation,
making stochastic models for synthesis ([BH96] [RO94] [Ros94]) and analysis
([OR97]) a reality.

3.3 The IPO Modelling Method

Like the AM model, the IPO model represents intonation in a series of dis-
crete events. However, where the AM model uses an inventory of tones, the
IPO model inventory consists of pitch movements. The basic premise of the
IPO model is that in modelling intonation, one only need model those pitch
movements which are perceptually relevant to intonation. The pitch move-
ments which are deemed relevant to intonation are those which have been
intentionally produced by the speaker. Pitch movements are seen to have
some psychophysical properties (e.g. FO of over 40Hz, as in [tHCC90]), and
may be approximated as linear changes in the (log)F0/time domain ([dP83]).
Based on experimental data, a basic inventory of rises and falls is created
for a language (e.g. five rises and five falls for Dutch). The basic model and
methodology were developed for Dutch (e.g. [tHCC90]). However, attempts
to apply the model to British English [dP83] and French [Bea94] have given



3.3. THE IPO MODELLING METHOD 63

support to the wide applicability of the model.

3.3.1 Contour Stylization

IPO has invested a great deal of time into the study of approximating fun-
damental frequency with straight lines (in the log domain). The process of
straight-line stylization presumes that the use of linear sequences for approx-

imating FO does not detract from the perceived pitch quality [tH91].

The method of creating “perceptually equivalent” approximations, or
“close-copy stylizations” is interactive [tHCC90]. A listener will replace a
small section of a pitch contour with a straight line, and then resynthesize
the utterance. This process iterates through the contour until the minimum
number of straight lines is used to approximate F0, while the perceived pitch

quality has not changed.

DePijper [dP83] tested a small database of British English close copies
against original pitch traces, using 64 native speakers of British English to
judge the equivalence. Utterances which were synthesized with the copy were
mistaken for utterances synthesized with the original F0 in over 85% of cases.
Thus, IPO are able to support the use of the close-copy stylization as a tool

for approximating fundamental frequency.

3.3.2 Pitch Movement Inventory

The basic unit of perceptual analysis in the IPO model is the pitch movement.
The model describes movements according to direction, timing in relation to
syllable boundaries, rate of change, and size. The IPO model limits the
movement inventory according to the perceptual differentiation among rises

and falls.
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Using the stylization method described above, experimental data is ex-
amined to determine the smallest possible inventory which may be used to
adequately account for all relevant pitch movements. Table 3.2 shows a fea-

ture description of the 10 pitch movements used to describe Dutch intonation

[tHCC90].

1 2 3 4 5/A B C D E
rise + + + + +|- - - - -
early + - - - +|- 4+ - - +
late -+ -+ -]1- - + + -
spread | - - - + - |- - - 4+ -
full + + + + - + + + -

Table 3.2: Feature description of Dutch pitch movements ('t Hart et al,
1990:153)

The Dutch inventory consists of five rises and five falls, which are further
distinguished in timing of the movement in relation to the syllable perceived
as accented (early, late, middle), duration (spread, unspread), and height
(full, half). These features describe the standardized movements which are
used to account for the stylizations, rather than individual pitch movements
of individual contours. They are, in effect, standardized approximations of
approximated contours. The second level of approximation results in a small
number of standardized pitch movements, to which it is possible to give

acoustic values.

Full rises and falls take 160ms to move one octave. Half-size elements have
the same slope, but take only 80ms to complete their movement. The spread
feature is somewhat redundant here, as it relates to the syllabic content of
the element (-spread takes place in one syllable, +spread in two or more).
The choice of early, middle, and late for the elements corresponds roughly to

a position in the accented syllable where the movement begins.
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Similar inventories have been created for several languages, British En-

glish [dP83], French [Bea94|, Russian [Ode89], and German [Adr91].

3.3.3 Configurations and Contours

Once a pitch movement inventory is determined for a language, the next step
is to organize the use of the movements in synthetic speech. The IPO model
uses a grammar of pitch movements to constrain the possible combinations

of movements over a given domain (e.g. the clause).

Two or more pitch movements can combine to form a configuration. The
possible configurations are determined by movement sequences in experimen-
tal data. For example, because the rise ‘1’ is followed by fall ‘B’, but never
fall ‘C’, there is a restriction on the number of acceptable combinations or

rise ‘1’ and fall elements based on the data being modelled.

Configurations, themselves, are classified as Root, Prefix, and Suffix con-
figurations. Using this classification, a contour may then be made following

Equation 3.1.

Contour — (P)"R/(S) (3.1)

Thus, a contour is made up of one Root configuration (e.g. 3C: a full,
middle, fast rise followed by a full, late, fast fall), an optional Suffix configu-
ration (e.g. 2), and an optional Prefix configuration, which may or may not
be nested. In terms of the British School [OA61], the contour consists of any
number of pre-heads of the same shape, a nucleus, and an optional tail. The

full grammar for Dutch is detailed in [tHCC90].

The contour grammar for a language is used by a generative rule set
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to arrive at a contour for individual utterances. Rules determine accent
placement, prosodic phrasing, de-accentuation, and similar functions that

are typical of an intonation generation system.

3.3.4 Applications Using the IPO Approach

The IPO methodology has yielded intonation models for a number of lan-
guages. De Pijper [dP83] developed a model for English, Beaugendre [Bea94|
has developed an IPO-style model for French synthesis, and Mertens et al
[MBd97] have recently begun work on an automatic FO stylization system
for French. Unlike work in the AM school, IPO modelling does not require a
great deal of automatic analysis of the stylized contour. Once a contour has
been stylized according to the IPO methodology, the pitch movements are

categorized statistically, a process which is easily automated anyway.

The difficulty in automating the IPO method is in the stylization process.
The stylization process has been justified based on its interactive nature,
which allows listeners to determine how much a section of contour may be
stylized. Without this interactive perceptual testing, it is difficult to main-
tain the “perceptual equivalence” between the natural contour the stylized
contour. Therefore, if Mertens et al are able to automate stylization, the

IPO method will become more usable.

e FO Synthesis Following the IPO Approach

French intonation is widely recognized as having two accent types (c.f.
[AEFN97], [Bea94]), a primary and an optional secondary accent. The pri-
mary accent is located on the final syllable of an accent group (i.e. accent

groups are right-headed). The secondary accent is similar to the English
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pitch accent, in that it is used to signal intentional prominence, and can fall
anywhere in a phrase. Beaugendre uses a number of accentuation and de-
accentuation rules to assign locations and pitch movements to the two accent
types. The pitch movements, augmented by a number of connection rules,

dictate the resulting FO contour.

Beaugendre’s pitch movements are classified by four features: direction,
amplitude, duration, and syllable content. Unlike other intonation models,
Beaugendre includes syllable content as a feature of his pitch accents. The
first three rise elements (R1-R3), for example, are distinguished not only by
the pitch movement. They are specifically used only on syllables of the type
mentioned (e.g. R2 is only used with syllabic consonants). The ten basic

pitch movements are described as follows:

R1 CV sgyllable, rises above the top-line, very steep
R2 C, rises to the top-line, very steep
R3 CV, rises to the top-line, steep

R4 V+CV, rises to the top-line, shallow, starts midway between top and

baseline
R4+ steep version of R4
R5 C, rises to mid-line, steep
F1 gradual fall to baseline covering several syllables
F2 steep fall to baseline

F3 short, steep fall from baseline even further down
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D flattish connection.

Using a combination of the seventeen accentuation, de-accentuation, and
movement selection rules, the system assigns one of the ten pitch movements
to each accent location. The accent locations are assigned as the system it-
erates through the words of the text to be synthesized. The de-accentuation
rules then deal with cases of adjacent accents, removing one if they are in the
same accent group. Finally, a series of rules fill in connections. The resulting
FO0 contours were judged by a group of native speakers as being “qualitatively
similar” to the originals. However, as the goal of IPO is to provide percep-
tually adequate synthesis, objective evaluations of the synthetic intonation

was not provided.

e FO0 Analysis Following the IPO Approach

Mertens et al [MBd97] has attempted to automate the IPO stylization pro-
cess in order to make the IPO methodology more accessible for widespread
use. The system takes a smoothed F0 and, using zero-crossing and energy
data, segments the speech into voiced and unvoiced sections. The voiced

segments are then processed to produce the stylization.

For each voiced section (typically syllable-sized), the pitch contour is
divided into tonal segments. Each tonal segment is classified as a single
pitch event (rise, fall, level). The tonal segment is characterized by the time
and pitch at its starting and ending points. The tonal segments are classified

in reference to thresholds for slope and amplitude of pitch movement.

The resynthesized contours were judged by 10 native French speakers to
be “perceptually equivalent” [dP83] to both the manually stylized contours

and the originals. As with other IPO evaluations of synthetic intonation, no
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objective measurement of the output was provided.

3.3.5 Summary

The TPO method represents intonation in a series of discrete pitch move-
ments. IPO models are based on experimental data, from which a basic,
standardized inventory of rises and falls is extracted. A model is then used

in the automatic analysis and synthesis of intonation.

The IPO intonation modelling methodology is one that appears successful
in its aim to adequately model macro-intonation. The rectilinear approxi-
mation techniques used to create close-copy stylizations, and the tests which
support their adequacy, have opened the way for a number of stylization

techniques used in more recent work (e.g. [CFHV97]).

Because of the standardized pitch movement inventory, the IPO method
has been criticized for inflexibility. It has been lumped into a category of con-
crete inventory systems (e.g. Pike’s 4 tone system [LP84]) on the grounds
that it uses a strict declination system, and pitch movements occur only in
certain shapes and sizes, the idea being that such a system cannot be used
to account for downstep. However, no proof of this claim has been offered.
Taylor [Tay92] contends that more than two layers of downstep cannot be
reconstructed from an utterance, based on use of the standardization pro-
cedure described above. However, no evidence of this difficulty exists. The
ability of the Dutch grammar, for instance, to produce contours of half rise,
full fall type allow for a small peak followed by a steep fall, which is the
pattern of multiply downstepped utterances. It is also possible for there to
be no rise at all in the contour. The variability of concatenative possibilities

allows the TPO system to produce peaks which are scaled down relative to
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previous peaks, and other factors of downtrends.

The problem which poses the greatest problem for TIPO models is that
they are meant to be useful for both analysis and synthesis, which has proven
a difficult task. The interaction between human and computer during the
stylization process requires long hours of intensive listening to and resyn-
thesis of speech in order to arrive at a robust account of a language’s pitch

movements.

As Taylor [Tay92] notes, lack of formality in the creation of data for
experimentation places doubt on the adequacy of IPO models. However,
Mertens et al [MBd97] have begun to address this problem with a perceptu-
ally grounded automatic stylizer for French. While the initial results show
that the result of resynthesis is a good close-copy stylization, the automatic
stylizations contain far more straight line segments than the manual method.
Because of the larger inventory of pitch movements, which are not as easily
categorized as the hand-labelled inventory, the output requires a change in

the grammar in order to be integrated into the rest of the IPO methodology.

3.4 Superpositional Intonation Modelling

Where the previous models have consisted of linearly ordered tones or pitch
movements, the superpositional (SP) models are the result of interactive
intonation “commands” [Fuj83], which represent syllables, accent or stress
groups, phrases, and increasingly larger units. These commands are com-
bined so that each level of the hierarchy is represented in the generated FO
contour. Fujisaki’s model has been used to model Japanese, and to some
extent English, intonation. Variations of his model have been used to model

German [M&b95] and Danish [Grg95].
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The superpositional model stems from two sources. Fujisaki’s model is
based on the peak and decay of F0 as produced by the glottal source [Fuj83].
Coupled with the desire to model the production mechanism is the need to
account for evidence of intonation being the result of local and non-local
factors. However, phenomena such as downstep, which suggest that into-
national planning takes place over a large domain (e.g. Ggnnum’s textual
domain) are difficult for the Fujisaki model and its variations to replicate

[Tay92], [LP84].

3.4.1 Commands

Each command consists of a peak (or valley) followed by an exponential de-
cay. The style of peak differs from model to model. In Fujisaki’s model, the
peak is the output of a filter which has been excited by a rectangular com-
mand input (as shown in Figure 3.2). Grgnnum dispenses with the rectangle

and simply provides peak and decay parameters.

The larger the command domain, the smaller the command peak. Thus,
a textual unit [Grg95] which encompasses multiple utterances has a general
decay, where the beginning frequency is approximately half an octave higher
than the end. Grgnnum’s utterance command begins with a minimal peak,
and then decays. Below this domain, the various superpositional models are
very similar. The phrase command, which is the largest unit of Fujisaki’s
model, has a large peak relative to the larger domains of Grgnnum’s model.
This command basically sets the intonation register for the phrase. The
phrase command domain is roughly comparable to the Contour domain of
the IPO models and the Intermediate Phrase from the AM models. The
accent command, which is comparable to IPO’s pitch movement and the

AM pitch accent, is a sharp peak with a short decay time, representing F0
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movement over an intonation event. Figure 3.2 shows how commands can

combine to form an intonation contour.

3.4.2 Applications Using the Superpositional Ap-
proach

The superpositional modelling technique is the basis of the intonation mod-
els for a number of languages in the Bell Labs multilingual TTS synthesis
system. [vSSM98] The model used by Bell Labs uses commands (curves)
for minor phrases, accents, and sonorant-obstruent transitions. The system
is somewhat of a hybrid with a simplified ToBI system, in that it predicts
command parameters based on a predicted tone from a collapsed ToBI tone
inventory. The curves are added together in the logarithmic FO domain to

result in a fundamental frequency contour.

Minor phrase curves are the result of interpolation between the beginning
of the phrase and the beginning of the final accent group in the phrase and the
start and end of the final accent group in the phrase. The F0 is computed by
rule based on the location of the minor phrase within a major phrase. While
this method of deriving the phrase curve parameters is rather simplistic, its

designers admit this and intend to improve this module in future research.

The accent curves are defined with time-warped templates. The templates
are basic command parameters based on the location within the phrase of
the accent, and whether the accent group contains a question or continuation
rise. The time-warping of the template is the result of using a number of
peak alignment rules to alter the pre-defined peak location. The size of the
prominence is determined by the location of the accent group in the phrase,

the prominence (which is determined by rule based on accent location within
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Figure 3.2: A functional model for generating FO contours using a superpo-
sitional model. ([Fuj83]:42)
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an accent group and the tone type being predicted), and the duration of the

accent group.

Segmental effects on FO are modelled by adding a small curve at conso-
nant/vowel junctions. Where the consonant is sonorant, the curve is flat.
The height of the curve rises in inverse proportion to the sonority of the

consonant.

3.4.3 Summary

Taylor [Tay92] adapted the Fujisaki model for English in order to determine
how well the model was able to reproduce intonation contours. While no
formal results were mentioned, he asserts that a superpositional approach
successfully reproduces neutral declarative utterances, but encounters diffi-
culty with a wider representation of language. Other superpositional models
have shown more promise than Fujisaki’s original model. Bell Labs [Spr98§|
uses a similar SP model in its multilingual synthesis system. The SP ap-
proach is promising, but questions remain about its viability in a stochastic

modelling domain, rather than a rule-based system.

3.5 Continuous Parameterized Models

The continuous parameterized (CP) models attempt a slightly different man-
ner of describing F0. Taylor’s Tilt model [Tay00] and Portele’s prominence-
based description [Por97] describe the FO of intonation ‘events.” Like the
other models, the CP models generally ignore the detail of FO in between
events. Campione et al [CFHV97| use a different method of describing the
F0 in a continuous manner: they judge target points in relation to a speaker-

specific pitch range and in relation to adjacent target points, creating a con-
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tinuous description of the upward and downward movement of F0.

In comparison to the previous methods of intonation modelling, the Tilt
and prominence-based description (PBD) are something of a hybrid of the su-
perpositional and IPO modelling techniques. Like the superpositional mod-
els, these two models attempt a low-level analysis of the FO. There is no stan-
dardization technique which removes information from the already-stylized
F0. Both Tilt and PBD - which are quite similar to each other - exploit the
IPO claims that small pitch movements are not particularly relevant to in-
tonation perception. By modelling only intonation events (i.e. prominences,
or accents and boundaries), these methods expect that interpolation of the
remaining FO contour will not lead to a degradation of intonation quality.
Tilt and PBD also parallel the IPO models in that they treat both the rise
portion and the fall portion of a pitch prominence as important aspects of the
prominence. This differs somewhat from ToBI, where the primary emphasis
is on tone, with some influence of alignment. ToBI expects that the pitch
movement portions of a prominence are predictable, and therefore unimpor-

tant in the description of FO.

The INTSINT (INternational Transcription System for INTonation)
model (e.g. [CFHV97]) is of an even lower phonetic level than the other
two CP models. Target points are established at each point where the FO
changes direction and are described by their relationship to each other and
the speaker’s pitch range. This results in a serial description of the entire

contour, rather than a description of the so-called ‘important’ segments.

Each of these models is based on the idea that a phonetic description of FO
is necessary for accurate intonation modelling. The models also have varying

degrees of higher-level information, as may be noted in the discussions of the
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individual models.

3.5.1 Tilt

In an effort to simplify intonation analysis, Taylor [Tay00] presents a system
which is based solely on the acoustic details of the speech stream. Intonation
contours are divided into “phonetic phrases” delimited by silence. Rather
than posit a set of phonological features or a large, complex tonal inventory,
Taylor evaluates fundamental frequency contours based solely upon their

shape.

In the Tilt model, there are four basic intonational units: pitch accents,
boundary tones, connections, and silence. These four units can be divided
into two classes. Pitch accents and boundary tones (intonation events) form
one class, while connections and silences form the other. Intonation events
are described by five parameters. Connections and silence by one. Pitch
accents and boundary tones each contain two distinct parts, the rise and the
fall. Every event contains a description for both the rise and the fall. Often,
one or the other of these portions is described with parameters of zero, such
that they are simple rises or simple falls. The description is the result of

functions of the FQ movement over time.

Each of the descriptions includes the fundamental frequency at the start
of the unit. Pitch accents and boundary tones are also described by their
duration, their absolute amplitude (the sum of FO movement over the event),
the position at which the rising portion of the event stops and the fall begins
(peak position), and the tilt value. Such a description would appear in the
description file as in Table 3.3. Figure 3.3 shows how the parameters relate

to an example pitch accent.
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End | Event | Start | Absolute | Duration | Tilt | Peak
Time | Type | FO | Amplitude Pos.
1.253 a 206.5 35.2 0.302 0.012 | 0.124 ‘

Table 3.3: Example Tilt description

Peak Position
_—

Rise Fall

Amplitude

Starting FO Amplitude

|
| |
| |
| |
| |
| |
| |
1
| |
T T
o 1
|
| Start of vowel End of event
Start of event
| |

I 1
Duration

Figure 3.3: Tilt parameters

The starting FO of an event is the anchor point for all parameters in the
frequency domain. The amount of rise (in Hertz) from the starting F0 to the
peak is the first portion of the absolute amplitude parameter. The second
portion is the amount of fall from the peak to the end of the event. Either of
these portions may be zero, if the event is a simple rise or simple fall. The two

amplitude values are added together to form the absolute amplitude value.

It is obvious from the calculation of absolute amplitude that one must
know the point at which the rise becomes a fall. This point is called the peak
position. The peak position value is used not only to compute the absolute
amplitude, but it is necessary for the computation of tilt as well. Depending
on the intended use of a model, the peak position is described in terms of

absolute time (i.e. the number of seconds from the start of the speech signal)
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Figure 3.4: An Illustration of T%lt Parameter Values

or in relative time (e.g the number of seconds from the start of the accent,

or from the start of the accented syllable).

Tilt is described, as seen in equation (3.2), as the difference of the am-
plitude portions divided by their sum [DB97]. Tilt has a range of -1 to 1,
where -1 is pure fall, 1 is pure rise, and 0 contains equal portions of rise and

fall. This continuum is illustrated in Figure 3.4.

|Arise‘ - ‘Afall‘

tilt =
|Arz'se| + |Afall|

(3.2)

The Tilt approach to intonation provides a good phonetic model of FO.
As Chapter 5 discusses, the method for audibly assessing the success of an
intonation model is to synthesize an utterance with the generated FO con-
tour (test) and compare it to the same utterance generated using the original
F0 contour (reference). Section 5.5 discusses both this subjective evaluation
method and the objective assessment metrics noted below, but informal lis-
tening tests have shown that for most utterances, the test and reference F0
contours cannot be audibly distinguished. To objectively evaluate the Tilt
model, the reference FO was parameterized, and the test contour was gener-
ated from those parameters. For two large American English databases? a

comparison of the contours resulted in each database averaging a correlation

2over 400 sentences spoken by a male, 45 minutes of news broadcast spoken by a female
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of over 93% and a RMSE error of less than one-third the standard deviation

of the speaker’s natural FO variation.

There is almost no predictive grammar for the Tilt model (as opposed to
Pierrehumbert’s finite state grammar). The only compulsory ordering is that
no two connections should be juxtaposed. This restriction, however, has more
to do with the definition of connection than any ordering or constituency

constraints.

However, some higher-level information has found its way into the Tilt
model. The first “phonological” distinction made in the Tilt model is to
differentiate accents from boundaries. Because accent events and boundary
events are described in exactly the same fashion, different labels for the
two types is a concession to the phonological supposition that the events
types differ on a level above phonetic analysis. In addition to the concession
to “theory,” concessions to users of the model have added more high-level

information.

In its original instantiation, the Tilt model considered rising boundaries
and accents as events, and categorized falling boundaries (as the default con-
dition before silence) with connections and silences. However, when applying
the model to labelling natural speech data, where there are numerous dis-
fluencies to cloud the picture, the inclusion of falling boundaries into the
event class became necessary as not all silences in natural speech are a result
of a prosodic boundary. This alteration came about, not for model-internal
reasons, but due to labeller demand. Labellers found it preferable to have
a labelled distinction between the end of speech and a marked decline in
fundamental frequency which marked an intonation boundary. Not all Tilt

applications have included this expansion of the model (e.g. [DB97], [Tay00]).
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A final concession to the use of Tilt in labelling natural speech is the
inclusion of accent/boundary concatenations [Tay00]. At times, accents and
boundaries occur on a syllable in such a way that they blend into each other,
rather than having distinct borders (e.g. a rise-fall accent which ends with a
low falling boundary tone). In the ToBI system, such a phenomenon would
not be difficult to label, as the accent labels are placed at peaks and bound-
ary labels at the end of a pitch movement. The IPO models account for
such an occurrence as a typical combination of configurations. Similarly,
the combination label (e.g. afb - accent + falling boundary) has been in-
cluded into the Tilt model. However, one must remember that, as an event
type, the combination events are described in the same manner as all other
events. Therefore, phonetically, the model has remained unchanged. The

“phonological” inventory has merely gained a few allophones.

3.5.2 Prominence-Based Description

Portele [Por97] presents a model very similar to the Tilt model. He describes

pitch peaks in the following terms:

e peak position relative to syllable nucleus onset
e peak height relative to speaker-dependent top- and baseline

e slope of rise and fall portions of peak.

Because the peak is the anchor for both the frequency and the time do-
mains, the prominence-based description (PBD) dispenses with the starting
F0O parameter used in the Tilt model. The duration parameter from Tilt is

also unnecessary in this model, as the timing information is a portion of the
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slope calculations. Like the Tilt model, resynthesis using the PBD results in

no appreciable difference in intonation.

3.5.3 INTSINT

The INTSINT model (e.g. [CFHV97]) is a symbolic coding system which
provides a low-level account of FO movements. Target points are measured
every 30ms in reference to the speaker-dependent pitch range and each other.
Each target is then coded as being at the top, mean, or bottom of the range
or, if none of these “anchor points,” as being higher, lower, or the same as
the points around it. The result is a sequence of codes which represent the

heights of the target points.

A number of calculations are necessary for the translation of FO to the
coded sequence. Thresholds are set for the top (T) and bottom (B) codes
such that 5% of points must be coded as T and 5% as B (assuming a normal
distribution). The frequency of occurance of T codes is then calculated as
the mean value of the T and B targets beyond the thresholds. The frequency
range between the top and bottom thresholds is then divided into three, such
that each band contains 30% of the remaining target points. The higher and
lower (H and L) codes are then given values calculated by a regression of the
target points in the relevant band. In essence, this systematically normalizes
target points based on their relationship to a normal distribution of their

frequencies combined with the relationship among adjacent points.

Resynthesis based on the normalized coding resulted in contours which
were close to, but distinguishable from, the original curves. However, only
in the cases of extreme distance above or below the relevant top and bottom

threshold showed any perceptible differences. The total average variance



3.5. CONTINUOUS PARAMETERIZED MODELS 82

from the original curves was less than 0.1, which is a promising result.

Campione et al treat the INTSINT model as a first level of modelling an
intonation contour. The coded sequence is not meant to provide high-level
information, but to act as a reflection of the acoustic realities of speech data,
which may then be processed to provide a second-level model such as Tilt
or the PBD, or even a purely “phonological” model like ToBI. Therefore,
while INTSINT may be useful in creating intonation models, it cannot be

considered in the domain of this thesis as a such a model in itself.

3.5.4 Applications Using the CP Approach

The Tilt intonation model [Tay00] is one of the intonation modules being
used for FO generation in the Festival Text-to-Speech System [BTC98], and
is the object of recent research in automatic intonation analysis [Tay00],
[Dus98]. Unlike the ToBI and IPO models, Tilt is a recent development, and

the systems described are both new research and functional implementations.

e Synthesis

Dusterhoff and Black [DB97] have developed a model for predicting the in-
dividual Tilt model parameters using regression trees [BFO84], based on the
approach taken in Black and Hunt ([BH96]) above. They performed a num-
ber of experiments, using Tilt as an intermediate between ToBI labels and
FO0 as well as generating FO straight from Tilt descriptions. The first experi-
ments, using Tilt as an intermediate between ToBI and F0 included questions
about the ToBI labelling in the regression trees. The latter experiments did
not include any information about the ToBI labels in the feature database.

The experiments which did not use ToBI label information produced the
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best results, which are reported below. The regression trees predict each pa-
rameter (starting FO, amplitude, duration, tilt, and peak position) for each
intonation event. The experimental methodology is explained in detail in
Chapter 5, as Dusterhoff and Black [DB97] forms the basis for the work in
that chapter.

The experiments were undertaken using the same database as was used
by Ross [Ros94] and Black and Hunt [BH96]. Dusterhoff and Black use the
same contextual features listed above from Black and Hunt. Additionally,
they include features related to the syllable content - sonority of onset and

coda and duration of onset and rhyme.

Comparisons between the generated and original FO contours show that
the Tilt model is at least as effective for intonation synthesis as the various
ToBI models on the same database. Table 3.4 shows the results of Dusterhoff

and Black in reference to the studies discussed in section 3.2.3.

Dusterhoff & Black | Black & Hunt | Ross & Ostendorf
RMSE 32.5Hz 34.8Hz 33Hz
Correlation 0.60 0.62 Not Given

Table 3.4: Comparison among Tilt and ToBI F0O generation methods

Having shown adequate results, and generating contours which, infor-
mally, have been deemed acceptable to native English speakers, this mod-
elling technique has been included into the widely-distributed Festival system

while continuing research takes place.

e  Analysis

Taylor ([Tay00]) trains a set of Hidden Markov Models (one for each Tilt in-

tonation event type) to detect accents, boundaries, connections and silences.
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He trains the models using fundamental frequency and RMS energy. He
examines various combinations of normalized FO and energy along with the
first and second derivatives of each feature. He achieves his best results by
normalizing both FO and energy and including both derivatives. All of the
tests were constrained by a bigram/unigram grammar which was built from

the training corpus.

Taylor also tests the inclusion of a new event type in these experiments.
A “minor” pitch accent category was included in the label inventory, and is
defined as a pitch movement which a labeller believes might be an accent.
A portion of Taylor’s research looks into whether labeller uncertainty can be

quantified by use of the minor event.

Using the best combination of data types on a speaker-independent
dataset, Taylor achieves detection results of 72.7% correct and 47.7% ac-
curate if the minor event label is considered. Without the minor label, the
results are 81.9% correct and 60.7% accuracy. The auto-labelling results are
not dissimilar to inter-labeller results for humans (81.6% and 60.4% with mi-

nor, 88.6% and 74.8% without) though there is a notable insertion difference.

3.5.5 Summary

The continuous parameterized models all attempt to represent the acoustic
correlates of intonation. The INTSINT model is a low-level representation of
F0 movement, without the trappings of pitch accent or other “phonological”
classifications. It would be interpreted by a further modelling system to de-
termine the location and quality of such classes as pitch accents or boundary

accents.

The Tilt and PBD models are a step above the INTSINT model in that
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they only attempt to model the “important” FO movements in speech. The
theoretical assumption that these models rely on is that only some FO move-
ments are necessary for an accurate reflection of intonation. They assume the
location of such important movements is either already known (e.g. through
the use of a system which interprets an INTSINT-like sequence) or may be
found with relative ease. Tilt and PBD contain varying degrees of “phono-
logical” information, as befits their respective levels of use. Tilt is currently
used as a full intonation labelling system, and requires at least enough in-
formation to allow accurate use. PBD is being used to study perceptual
classification of tonal prominence, and currently only contains the location

of “important” prominences.

While each of the models have uses on different levels, all maintain the
ability to be used for accurate analysis and regeneration of fundamental fre-
quency contours. This quality is of great importance for automatically build-
ing models of intonation for speech synthesis from natural or near-natural

data.

3.6 Discussion

This chapter has discussed some of the prominent theories and models of
intonation. The four basic categories have resulted from the different aims
of intonation researchers, from theoretical linguistic concerns to acoustic-
phonetic description. While no claims are made within this thesis as to a
value ranking of models, there are some which fit the aim of this research

better than others.

The AM model has been used for tasks in automatic intonation synthesis

and labelling [Ros94], [OR97]. However, this work approached automatic
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labelling from the view that all other linguistic data was known (i.e syllable,
phrase, prosodic boundaries already existed). While this task is valid, it does
not represent the research of interest in this thesis. The AM model contains
little or no acoustic (or phonetic) information. As the AM model assumes
the location within speech of various high-level linguistic forms, it is unlikely
that it will be useful for the differentiation of intonationally important pitch

phenomena from unimportant ones.

The IPO methodology is more relevant to the task at hand, acoustically,
than the AM model. The standardized pitch movements are useful for both
analysis and synthesis. IPO provides psychoacoustic parameters for pitch
movements relevant to intonation study. The problems with this modelling
method is, as noted above, the lack of formality in the determination of a
stylized FO. The IPO method, parameters, and pitch movement inventory
all rely on an impressionistic interpretation of intonation. Such a basis is not

a good grounding for automatic intonation analysis.

The SP models are purely acoustic in nature. Their mathmetical formal-
ity and nature are ideal for building a formal intonation model. The models
themselves are reported to successfully reproduce fundamental frequency.
This approach may be useful for the task of automatically building synthesis
models. At present, the main difficulty of the SP approach is dividing the
various pitch movements by their causes. M&bius [M6b95| maintains that

the division of cause and effect is one of the advantages of SP models.

The most promising model class for both automatic synthesis and analysis
in an acoustic-phonetic domain is the continuous parameterized class. These
models are acoustic-phonetic representations of FO. While these models gen-

erally function on some sort of stylization, the Tilt model, in particular, has
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been shown to function equally well on high-quality, unstylized FO traces.
As noted above, the INTSINT model is not appropriate for developing the
synthesis models desired, as it requires further interpretation to distinguish
intonation events from non-event portions of the contour. The Tilt model has
two advantages over the other acoustic-phonetic CP models mentioned here.
First, the Tilt parameters represent salient areas of intonation. Modelling
success or failure of any of the parameters can be related to specific aspects
of FO movements which are important both experimentally and theoretically.
Second, all of the tools which are used in conjunction with the Tilt model

were easily and readily available at the outset of this research.



Chapter 4

Sub-syllable Acoustics in
Automatic Intonation Analysis

The goal of the intonation analysis research detailed in this chapter is to
create a system which can automatically label speech with intonation infor-
mation. As shown in Figure 1.1, the work in this chapter was designed to
assist in data collection for the intonation synthesis research which is dis-
cussed in Chapter 5. As Chapter 2 discussed, the relationship between seg-
ments and intonation can be exploited in intonation processing applications.
An investigation into one way of exploiting this relationship is presented in
the experiments below. These experiments are designed to examine what
acoustic correlates of segments can be used to improve an existing acoustic

modelling method.

The chapter begins with an outline of intonation analysis. This back-
ground discussion is followed by a description of experiments that examine
what sort of information may be used in the creation of such a system. The
system created by Taylor ([Tay00]) acts as the basis of the system which
is presented in this chapter. Taylor’s system uses Hidden Markov Models

to model intonation events based on fundamental frequency and RMS en-
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ergy data. This chapter presents experiments designed to show whether it
is possible to improve Taylor’s system by augmenting FO and RMS energy
with other acoustic data. The experiments expand the acoustic data used
for intonation analysis to include information about the segmental make-up

of the speech, such as zero-crossing and cepstral coefficient data.

4.1 Intonation Analysis

Intonation analysis generally involves three basic tasks: event detection,
event identification, and event-syllable association. Detection is the pro-
cess of finding intonation events. Identification is the process of naming the
detected events. In the Tilt model, for example, identification involves deter-
mining whether an event is an accent, a boundary, or perhaps a combination
of both. Using the ToBI model, the process involves not only determining
whether the event is an accent or boundary, but what the tones are that
make up the event. The third task, association, is the act of linking an event
with a portion of linguistic text (e.g. syllable nucleus, demi-syllable, syllable,
word, or phrase). The choice of linguistic constituent is somewhat arbitrary.
For example, it may make sense to associate accents with syllables, given
the roles of lexical stress and metricality in much of the prosodic literature.
However, associating boundaries to a prosodic unit above the syllable may
be an interesting way of investigating parallels in phenomena such as final

lowering and final lengthening.

This chapter is primarily concerned with event detection. Event identi-
fication is secondary, in that all intonation event types are treated simply
as events in the detection evaluation. However, the model-building process

involves first building models of individual event types, and then using all of
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the individual models to detect events in novel speech. This division of event
types parallels the approach Ross chose ([Ros94]) in order to minimize the
size of the training database. Because the events are already grouped into
broad classes, the data need only be used for making the finer distinctions

(e.g. early versus late peak), rather than both gross and fine distinctions.

While the detection process utilizes models of specific event types, the
detection evaluation counts all different event types as being simply events,
and therefore equivalent. This notion of equivalence relies on the nature of
the Tilt model, where each event is described in exactly the same format.
Details of this evaluation technique are discussed later in this chapter, in

section 4.2.5.

Once the task is defined, questions about data come into play. What type
of speech will be analyzed? What information about that speech will be used

for the analysis?

The first question is easily answered: use the type of speech that is be-
ing modelled. The basis for this answer lies in the distribution of event
types within speech sub-classes. In an application where many questions are
asked, training models on news speech is not likely to capture the variation
in question intonation forms. While the two types of speech have overlapping
distributions of intonation event classes, it is not likely that they will have
equivalent distributions. Both speech types will contain large pitch accents,
small pitch accents, rising boundaries, and falling boundaries. However, dif-
ferent event types will dominate each speech type. Rising final boundaries,
for example, do not often occur in a news broadcast. In fact, only 10% of
the F2B database used for the experiments in this chapter received rising

boundary labels. The probability of an event type being present in enough
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contexts, enough times, to build a robust model depends on whether that
event type is suitable for frequent use in the type of speech which comprises
the database. By building intonation models from the type of speech that
the models will be used on, one can capture the distribution of relevant in-
tonation event types with a smaller database than if the database contains

multiple or different speech tasks.

The second question is considerably more difficult to answer. Ostendorf
and Ross [OR97] have a database which contains information about words,
phrases, and syllables. They decide that, as they have all of this information,
they should use all of the data that is available. Taylor [Tay00] has the same
annotation for his data, but wants to use intonation to improve other speech
recognition tasks, so he opts to use only the data which can be derived from
the acoustic signal. Because the text is not required a priori, Taylor’s au-
tomatically detected intonation events can be used to assist in deriving the
text. Prior intonation analysis can be used for word disambiguation (e.g.
[Bar97]), and discourse analysis (e.g. [WT97]) to name but two applications.
Both of these approaches to automatic labelling of intonation are valid, and
each is suited to its application. The use of wholly acoustic data for intona-
tion labelling avoids the difficulties of acquiring accurate word, segment, and
syllable boundaries. Taylor’s method looks interesting and open for improve-
ment. Therefore, in an attempt to improve on Taylor’s work, the approach to
the research described in this chapter follows Taylor in building models only
from acoustic information which can be readily extracted from the speech

waveform.
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4.2 Experimental Methodology

As mentioned at the beginning of this chapter, the purpose of the experiments
presented in this chapter is to determine what, if any, acoustic features can
be used to augment and improve an automatic intonation analysis system.
As section 4.3 discusses, the added acoustic data is chosen because it is

associated with segmental interactions with fundamental frequency.

Each experiment is designed to test whether an acoustic property of
speech which relates to both segments and intonation can successfully aug-
ment Taylor’s FO and energy model. Initially, as section 4.3 will further
discuss, Taylor’s model was replicated to provide a baseline system. Each
experiment thereafter adds to this baseline system. First, a single acoustic
feature is added to the fundamental frequency and energy. Auto-correlation
peak coefficients, zero-crossing values, and Mel Frequency Cepstral Coef-
ficients are the acoustic features tested. Each of these added features is
tested in a number of conditions, as is detailed below. Auto-correlation is
tested because it can be used both in broad-scope phoneme classification (e.g.
vowel /sonorant consononant/obstruent) and fundamental frequency tracking
(e.g. Entropic’s get_f0). Similarly, zero-crossing can be used to broadly clas-
sify segments into voiced /unvoiced/sibilant categories. Mel Frequency Cep-
stral Coefficients are regularly used in speech recognition (e.g. [YJO196]),
and are therefore likely to adequately represent segment information. They
also provide a representation of the speech spectrum (a cepstrum is a trans-
formation of the spectrum). As section 4.2.4 discusses, the spectrum has

been linked experimentally to intonation events.

For each experiment, a number of Hidden Markov Models are built using

fundamental frequency, energy, and one or more of the acoustic features listed
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above. The experiments examine how these features affect the quality of the

intonation analysis.

Section 4.2.5 discusses how the output of the intonation analysis is evalu-
ated, so that a notion of success is available. Some experiments also vary the
ways in which the acoustic features are combined in the modelling process,

to gain an insight into the relative power of the features within the models.

4.2.1 Hidden Markov Models

The manner in which the analysis models are built and used is essentially
the same as that employed in word and phone recognition tasks. Figure 4.1
shows a diagram of the process. Hidden Markov Models are trained for all
of the speech events which are to be recognized. The difference between
phoneme recognition and event detection is that there are fewer than ten
possible segments to recognize (accents, rising boundaries, falling bound-
aries, accent/boundary combinations, silence, and connections). A standard
phoneme recognizer would have at least one HMM per phoneme in the lan-
guage. This intonation recognizer parallels the phoneme recognizer, with one

HMM per event type.

The Hidden Markov Models used in these experiments are created us-
ing Entropic’s Hidden Markov Model Toolkit [YJO196]. They are trained
using Baum-Welch Re-estimation. Figure 4.2 shows a simplified example of
a falling boundary HMM. This Hidden Markov Model is essentially a state
sequence where each internal state (numbered circle) has a probability that
the state will remain active (a) and a probability that the next state will ac-
tivate (b). The intonation event models are slightly more complicated than

this basic sequence model, in that some states may be skipped. As the figure
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shows, the first internal state may be skipped in the falling boundary model,
which means that, for the entry state, there is a probability (c) that the first

state will be skipped and the second state activated.

— O+ 0+ —
500D

a

Figure 4.2: Fall event HMM example

Once each event type is represented by an HMM, the quality of the mod-
els is tested by using them to produce intonation labels for a set of test
utterances. The test utterances are presented as a vector of acoustic data in
the same format as the training data. The result is, as shown in Figure 4.1,
a series of intonation labels similar to the original intonation labels for the

test utterances.

In each case, unless otherwise noted, five-state, left-to-right HMMs are
used. The states roughly represent the beginning, rise, peak, fall, and end of
a pitch event. Transitions exist from state to state serially, as well as from
beginning to peak and peak to end. By allowing the skipping of states, the
models match a conceptual model where a pitch event is rise-fall, rise, or fall
(e.g. the Tilt intonation model). One experiment with a four-state model
(conceptually leaving out the peak state) was undertaken. No noticeable
difference was found between the four- and five-state models, with the relative

error rates separated by less than one hundredth of a percentage point.

For most of the speech databases used in the experiments, the models
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were trained on 70% of the database, and tested on a validation set which
comprises the other 30%. The exception from this division is the case of the
F2B database, where the validation set contains 20% of the data and 10%
was held out for blind testing at the end of all experiments. This difference
is because this database is large enough to allow the extra division, as is

discussed further below.

4.2.2 Constraints

All of the tests were constrained by a bigram/unigram grammar which was
built from the corpus being tested. The likelihood that a particular event
will occur, as predicted from the Hidden Markov Models, is weighted by
the probability of that event occuring as a part of the sequence which has
already been predicted. The grammar was built using the CMU-Cambridge
Statistical Language Modeling Toolkit [CR97|. For each database, initial
evaluation of a grammar scaling factor was undertaken to determine the
general range of productive grammar weighting values. The weights tested
ranged from 3 to 20 (where 0 is no reference to the grammar at all). A
similar set of tests examined the use of an external transition weighting,
which can be used to globally penalize state transitions. A negative value
lowers the transition probability (which reduces insertions), while a positive
value raises the transition probability (which increases insertions). Values
were tested from -60 to 30 at five-point intervals. Models were trained using
odd-numbers of Gaussian components from 1 to 29. Scores were obtained
for each set of models, under each constraint combination. Thus, for each
database, for each testing condition (e.g. stream weight, feature type), 15
sets of models are examined. Seventeen possible grammar scaling factors and

eighteen possible transition weights are examined. As is discussed below,
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some experiments also examined different internal stream weights. Not all
of the scores provide immediately interesting insights. The complete set of
scores is presented in Appendix A. Once a set of weights is determined for
a testing condition, the possible combinations are reduced to cover only this
range. The constraints are then optimized over the validation set, and where
possible, tested at the end of all experimentation. Because many scores serve
only to delimit the search area, only the best results of each database are

reported here.

Most of the scores which are reported in this paper were achieved with
constraints optimized on the validation set, as no held-out testing set was
available for the smaller databases. However, the HMMs and optimized con-
straints which received the best scores were also used to automatically label
the blind (held-out) set on the F2B database once all other experiments were
complete. This score is comparable to the score received for the validation

set, as is discussed below.

4.2.3 Data

This research is primarily based on 45 minutes of radio news broadcast from
the Boston University Radio Corpus [OPSH95], speaker F2B (over 5000 in-
tonation events). Other corpora examined are two databases spoken by the
author (male American English speaker). Of these, one is a series of weather-
related sentences (KDW - 2400+ events), and the other is a museum guide
(KDS - 3200+ events). Each corpus has been hand-labelled with Tilt in-
tonation labels. The intonation event inventory for this study is accents,
rising boundaries, falling boundaries, and concatenated accents and rise/fall

boundaries (this represents an extended inventory of the Tilt model).
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The acoustic information was extracted using the following methods. In
each case, the fundamental frequency was derived using Taylor’s Intonation
Contour Detection Algorithm [TCB98| which provides a smoothed, interpo-
lated FO trace, as discussed below. The Mel Frequency Cepstral Coefficients
were calculated using the HCopy function of the Entropic HTK package. The
energy, auto-correlation peak, and zero-crossing values were extracted from
Entropic’s get f0 output. The FO and energy values were normalized on a
scale of -1 to 1 for each database individually, using a program within the
Edinburgh Speech Tools [TCB98]. The mean and standard deviation values
were calculated using only the speech portions of the database. Each FO0
or energy value is then normalized by subtracting the respective mean and

dividing by twice the standard deviation.

The fundamental frequency smoothing algorithm uses windows of 105ms
(first pass) and 3bms (second pass) to remove outlying points, but to leave
behind as much contiguous data as possible (thereby providing as much
micro-intonation information as possible while removing isolated outlying
FO points). The large first window eliminates many of the short, sharp
F0 movements often associated with micro-intonation, such as outlying FO
points. It does not, however, generally remove longer, more slowly varying
movements, such as intonation events and micro-intonation over multiple seg-
ments, such as raised FO over a high vowel. These movements are generally
contiguous and occur in a consistent direction, unlike the 20-100Hz jumps
from one 10ms frame to the next which can obscure the direction of fun-
damental frequency changes. The second window covers three frames, and
further smoothes the rough edges. Again, though, the constant, contiguous
movements which would normally cause problems for an intonation analysis

system because of their similarity to intonation events retain their character,
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and still have a capacity for causing confusion. As mentioned previously, the
confusion caused by these movements is what the experiments in this chapter

aim to reduce.

4.2.4 Mel Frequency Cepstral Coefficients

The use of cepstral coefficients reflects some of the experimental findings in
the literature. Spectral tilt and general formant information are represented
in cepstra. Campbell and Beckman [CB97], among others (e.g. [SvHP97]
[HW92]), have provided support for links between spectral tilt and the ex-
istence of pitch events. The formant values can provide useful information
about the type of segments associated with a given pitch event. Such infor-
mation should be useful in determining whether a F0 movement is associated
with segment classes which are likely to be associated with intonation events,
hopefully lowering the number of pitch movements which are incorrectly anal-
ysed as intonation events. The experiments in this chapter which use MFCCs

typically use the first thirteen coefficients (one of which represents energy).

4.2.5 Evaluation

The output of the intonation analysis process is evaluated in terms of three
basic measures: percent of detected events which are correct, accuracy (cor-
rect - percent of detected events which are incorrect), and error (100% -
accuracy). Because timing is as important as scaling in intonation, the eval-
uation method requires a definition of correctness which accounts for both a
symbol and its timing. As Hunt found with continuous speech recognition
([Hun88]), at low-performance levels, recognizers can provide the correct la-

bel, but at the wrong time. His solution was to require recognized words
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to occur in time with the reference word in order to be counted as correct.
Within this thesis, a similar convention, used by Taylor ([Tay00]), is adopted,
where a detected event is deemed correct when it overlaps an observed event
by at least 50%. This loose definition allows for the equivalent of two human
labellers disagreeing on the exact location of an accent within a syllable, or

at most, within a word.

An important difference between the evaluation method used here and
others which have been used is that it evaluates the intonation labels them-
selves, rather than the association between events and syllables. For exam-
ple, Ostendorf and Ross [OR97] score their intonation labeller in terms of the
number of syllables which are correctly labelled for intonation. This scoring
method is a valid and useful way of assessing the success of accent association
algorithms. It is also a useful way of evaluating intonation events which are
essentially event peak markers. This method, though,is not useful when the
intonation events have a duration. It is important, with the Tilt events, to
assess the location of the whole event. The evaluation method used in this
thesis looks at the timing and duration of each event, judging the success of

the model on an acoustic level.

A quantitative assessment of the automatic labels is a second way of de-
termining how well the models work. This type of evaluation shows whether
the models produce labels in a similar distribution to the manual labels in a
database. This type of evaluation is useful as a secondary check. If, for exam-
ple, the models are failing according to the acoustic evaluation, it could prove
useful to examine the distribution of the output. More importantly, though,
it is necessary to examine the output distribution if the models appear to
succeed according to the acoustic evaluation. Because the first evaluation

accepts a match between any event types, it is necessary to show that the
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models are actually labelling the data in a similar fashion to the human la-
bellers. Table 4.8 (109) shows such an analysis for the most successful model

set described in this chapter.

4.3 Pilot Study

An initial pilot study investigated links between sub-segmental acoustic
data and intonation. This series tested a number of low-level acoustic fea-
tures which are related to both intonation and broad classification of speech
sounds. Zero-crossings, auto-correlation peak, and energy are used in some
fundamental frequency calculation methods (e.g. Entropic’s get_f0). These
features are also useful in distinguishing broad classes of speech sounds (e.g.
voiced /unvoiced consonants, high /low vowels). Energy is already used in con-
junction with fundamental frequency in intonation analysis algorithms (e.g.
[Ros94] [Tay00]). The first experiments emulated Taylor’s study [Tay00],
building the HMMs using only fundamental frequency and RMS energy.
The second round of experiments examined whether zero-crossings or auto-
correlation could be used to improve intonation event detection. As discussed
below, these experiments showed that adding either zero-crossings or auto-

correlation to FO and energy did not improve intonation event detection.

In an attempt to continue approaching the task as one of speech recogni-
tion, a further experiment was designed to include Mel Frequency Cepstral
Coefficients with F0 and energy. MFCCs are used in some speech recognition
systems ([YJOT96]), and are accessible directly from the waveform. The ini-
tial experiment tested MFCCs 0-4 (energy and the first three coefficients) in
conjunction with FO. This experiment showed promising results, and a new

series of tests was designed to use all thirteen coefficients. This series forms
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the basis for the rest of the intonation event detection experiments described

in this chapter.

4.4 Experiments

The basis of comparison for this study is a portion of Taylor’s study [Tay00]
which examines event detection of the F2B data. However, prior to the
outset of this study, some errors in the hand-labelled events which he used
were corrected. Therefore, it is expected that, while very similar, the results

of the replication experiments will differ somewhat from Taylor’s results.

Taylor built models of intonation event types using FO and RMS en-
ergy. The portion of his research on F2B which relates to this study used
normalized FO and RMS energy, together with the first and second deriva-
tives of each feature. The results of the experiments which are relevant to
this chapter are 79% of detected events correct, and 59% accurate (error of
41%). Taylor’s use of normalized values stems from his desire to create a
speaker-independent, analyzer. Both normalized and non-normalized values

were investigated in the experiments discussed here.

Two forms of Taylor’s study were replicated in the process of creating
baseline results. First, non-normalized FO and RMS energy were modelled,
with results (Base 1) in Table 4.1 of 78% correct and 61% accuracy (error of
39%).

Correct | Accuracy | Error
Taylor | 79% 59% 41%
Base 1 | 78% 61% 39%
Base 2 | 78% 59% 41%

Table 4.1: Comparison of baseline results
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As these results were reasonably close to Taylor’s, normalized FO and
RMS energy were modelled in order to provide a direct comparison to [Tay00].
The results of this experiment (Base 2) were 78% correct and 59% accuracy
(error of 41%). The close similarity of these results allows for a reasonable

comparison between any results in this chapter and [Tay00].

4.4.1 Zero-crossings and Auto-correlation Peak

The results from the initial FO/energy experiments provide a point of de-
parture for investigating segmental /suprasegmental interaction in intonation
analysis. This investigation involved two variations on the basic method.
As noted above, the basic process is to build HMMs using fundamental fre-
quency and one or more additional features, as well as the first and second
derivative of each feature. The first variation is to build the HMMs using
only the additional feature data. One set of experiments follows the basic
methodology. The zero-crossing or auto-correlation peak data is included
when building, training, and using the hidden Markov models. This creates
a database of nine-item feature vectors (FO/energy/other feature + first and

second derivatives).

The second variation on the basic methodology involves splitting off the
new feature data so that the feature vector contains two streams which may
be weighted separately. This weighting is one of the constraints introduced
in section 4.2.2. One difficulty with using weighted data is determining what
the weighting should be. The experiments which involved weighted data also
involved testing a number of weights for each data stream. The weighting
tests consisted of holding one stream weighting at 1, while altering the other
stream weighting from 1.6 to 0.6 in 0.2 step intervals. The process was

repeated with the previously static stream being altered. The best weights
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were found to be 1 for the stream which includes FO and either 0.8 or 0.6 for
the other stream. The results reported in this section which involve weighted

data include the weighting for the second stream.

Table 4.2 shows the best results from the zero-crossing experiments (using
non-normalized data). It is obvious that zero-crossing data alone cannot
provide any useful input into event detection. The number of insertion errors
drove the error to well over 100% (accuracy of <0%). This means that any
correct detections were more than cancelled out by insertions. The results
of this test are borne out when zero crossing data is combined with F0 and

energy in unweighted data.

Z-C With FO
Alone | and Energy
<-0% 58%

Table 4.2: Accuracy of auto-labelling with HMMS using zero-crossing data

Table 4.3 provides more hopeful results. Auto-correlation peak informa-
tion was significantly more useful than zero crossing, with an error of 74%
(accuracy of 26%) when used alone. When added to FO and energy in un-
weighted data, the result was a reasonable 61% accuracy. The relative success
of tests on unweighted data encouraged weighting the data, which resulted

in further improvements

A-C Peak | With FO | Weighted with
Alone and Energy | FO and Energy
26% 61% 63% (0.8)

Table 4.3: Accuracy of auto-labelling with HMMS using auto-correlation
peak data

As table 4.4 shows, this experiment yielded a relative error reduction
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of 4% against the baseline result. The relative error increase of 8% over
the baseline result suggested that further experimentation with zero crossing

data would be fruitless.

4.4.2 Experiments with MFCCs

As mentioned above, the results of auto-correlation peak and zero-crossing
data encouraged experimentation on a somewhat different data type. If sim-
ple correlates of segments can affect the model output, a more complex form
of information may prove more effective. There are thirteen cepstral coef-
ficients used in leading speech speech recognition systems (e.g. [YJOT96]).
These coeflicients are typically used in conjunction with their first and second
derivatives, in order to trace the spectral change over time. In the interest in
saving computing space and time until the utility of MFCCs was determined,
the initial tests only used four of the coefficients. Table 4.5 shows the top

results of this series of tests.

Experiments on using Mel Frequency Cepstral Coefficients in conjunction
with non-normalized FO data show even greater error reduction than auto-
correlation. The relative error reduction over Base 1 of 9% (error of 36.5%)
encouraged experimentation using all coefficients. The success of weighted
data in the auto-correlation peak experiments suggested that weighting would

be interesting for these experiments.

The results from experiments with non-normalized FO and all thirteen
MFCC (all data for all experiments includes first and second derivatives) are
very promising. As Table 4.7 illustrates, a relative error reduction of 15%
(accuracy of 67%, weight: 0.6) shows that the use of MFCC data is a step

forward in automatic intonation analysis.
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In order to allow direct comparison between this work and previous re-
search, [Tay00], normalized FO was used. Table 4.6 shows the results for the
two best weightings for the normalized FO and MFCC experiments.

The relative error reduction of the MFCC experiments is encouraging,
but it could also be incomplete. The manner in which error is calculated
allows for an error reduction without a decrease in insertions (by improving
correct detection). Therefore, an investigation of all three evaluation metrics
is useful to determine whether using MFCCs to improve analysis results in
increasing the number of correct identifications, decreasing the percentage of

identifications which are insertions, or a combination of the two.

Table 4.7 shows a comparison of the MFCC experiments with the re-
spective baselines and [Tay00]. As accuracy is correct minus the percentage
of detections which are insertions (incorrect), it is important not only that
the correct score rises, but also that the gap between correct and accuracy
shrinks. The non-normalized experiment shows a rise in both correct and
accuracy, resulting in a reduction of error. However, one may note that the
percentage of insertions has remained the same (17%). This means that the
error reduction, while welcome, is not the result of reduced insertions. The
results of the normalized data, in contrast, show both an improvement in cor-
rect identification and a reduction of insertions (from 19% to 16%). Thus,
while the normalized data does not show as large an improvement over Base
2 as the non-normalized data shows against Base 1, the improvement is on

a wider scale.

Finally, the table shows that, on the blind set, the result pattern is upheld.
This result is the true test of the system, and was only performed once the

other MFCC experiments had finished. The blind set was labelled using
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Acoustic Features Error | Relative Change
FO and Energy + Zero Crossings 42% +8%
FO and Energy + Weighted A-C Peak | 37.5 % -4%

Table 4.4: Error change relative to the baseline

Unweighted

Weighted (0.8)

Relative Error Reduction to Baseline

64.5%

63.5%

9% (weighted)

Table 4.5: Accuracy of auto-labelling with HMMS using four MFCCs and

normalized F0

Weight | Accuracy | Relative Error

to Baseline

0.8 63% -10%

0.6 64% -12%

Table 4.6: Error of experiments using 13 Mel Frequency Cepstral Coefficients
to augment Normalized FO and energy, with relative error

Correct | Accuracy | Error
Base 1 78% 61% 39%
Non-normalized
MFCC 84% 67% 33%
Taylor 79% 59% 41%
Base 2 78% 59% 41%
Normalized
MFCC 80% 64% 36%

| Blind Set 8% | 66% | 34% |

Table 4.7: Comparison of results to baselines and Taylor
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normalized data and the HMM settings which were used for the best results
from the validation set. Thus, it should be compared with Base 2. The
similarity of the results between the blind and validation sets serves two
purposes. First, it confirms the results on the validation sets. Without this
confirmation, the validation results are not necessarily indicative of results
on unseen data. Secondly, the confirmation provides some strength to the
results of tests of this methodology on smaller databases, which were not
large enough to support dividing the utterances into three sets. As the table
shows, the blind set performs as well as any of the validation sets. The blind
set, reproducing the best results from the validation sets, produces results
which are comparable to the 88.6% correct and 74.8% accuracy scores of
human labeller comparisons using the Tilt model [Tay00]. While not quite of
the same level, the results from these experiments are very promising. The
work in this chapter was performed using a database of news broadcast. The
human comparison from Taylor is from a few minutes of a dialogue database,
with a large number of rising boundaries and large pitch excursions, which

made for generally straight-forward labelling.

e A quantitative analysis

As mentioned above, it is important to show that the successful models are
in fact producing labels with a distribution similar to the manual labels.
Table 4.8 shows how the models which produced the figures on the blind
set shown in 4.7 (85% correct, 34% error) compare quantitatively with the

manual labels.

The table shows that the distribution of intonation events of the auto-
matic labels is very similar to that of the manual labels (except for “rb”). It

is reasonable to conclude from this that the two label sets are similar. The
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Event Type | Automatic Labels | Manual Labels
a 4225 4581

afb 236 297

arb 34 99

fb 1102 1059

rb 348 632

Table 4.8: A quantitative assessment of automatic intonation labels

notable exception of rising boundaries is related to the poor representation
of rising boundaries in the data. Unlike the other event types which are
not well represented (afb, arb), rising boundaries need not be large pitch
excursions. The rises which have not been recognized are generally small ex-
cursions. These rises probably are not distinctive enough to train the HMM

adequately.

4.4.3 Using MFCCs without the Second Derivative

The pilot experiments showed that zero-crossing data was wholly ineffectual
for improving automatic intonation analysis. Auto-correlation peak infor-
mation was somewhat useful, but the greatest improvement in accuracy of
analysis was achieved by using normalized cepstral coefficients together with
fundamental frequency to build and use hidden Markov models. This large
improvement may well be the result of simply adding more data (42 data
items per vector as compared with 9) than auto-correlation peak can pro-

vide.

One risk of using MFCC data, as has been alluded to already, is that the
large feature vectors requires a large database for training, as the number of
distinctions which may be made is larger with a 42 element feature vector

than with a smaller vector. Two small experiments were used to further
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examine the nature of the MFCC data. One experiment adds acceleration
peak to the FO and MFCC data. The other removes the second derivative
from the MFCC data.

The first experiment combines the acceleration peak and MFCC data into
the second stream. Because the acceleration peak and MFCC coefficients
provide overlapping data, the expectation is that the results will not be
an improvement over the best results seen so far. However, there was a
possibility that, as both acceleration peak and MFCC data helped to improve
the simple FO/Energy model, the combination of the two acoustic feature
classes would result in a further improvement. The recognition result on
the blind set was 79.30% Correct and 62.31% Accuracy. This result is, as
expected, lower than the best results for FO and MFCC data.

The second experiment uses normalized FO and MFCC data without in-
cluding the second derivative for the cepstral coefficients. The second deriva-
tive was removed to reduce the vector size while hopefully retaining the abil-
ity of the model to track the change over time in the spectral shape. The
MFCC weight for this experiment was 0.8. This experiment resulted in higher
accuracy on the validation set than was seen in the experiments which in-
cluded both derivatives, as shown in Table 4.9. The table also shows that
the loss of the second derivative for the MFCC data coincides with a poorer
result on the blind test set. This result suggests that the second derivative
is required to minimize over-training, as it takes into account several frames
of data. It also suggests that using further derivatives to take into account

even longer time windows may be an interesting topic for further research.
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4.5 Extension to New Databases

The level of improvement which is achieved by adding cepstral information
to the intonation analysis process indicates that acoustic data which reflects
the type of segmental text associated with an intonation contour is useful for
intonation analysis. In order to press this claim, three databases were tested
in addition to F2B. As discussed above, each database is substantially smaller
than F2B. Therefore, no blind set was held out for further use, primarily
because it would consist of no more than a paragraph or two. Instead, the
tests rely on the assumption gained from F2B that, given a reasonable sized

database, the blind set will score similarly to the general test set.

Table 4.10 shows results on KDS, the largest of the databases read by
the author. The most notable aspect of these scores is that on all counts,
they are considerably lower than those for F2B. The list of possible reasons
for this difference is extensive. The most likely reason is that the database is
60% the size of F2B. The database must be large enough to provide enough
instances of each event type for the statistical model to form generalizations.
KDS is quite small, and there are some events (e.g. “rb”) which are not well
represented. One way to test the hypothesis that database size is affecting
the quality of results is to apply the method to another small database. We
would expect that performance would improve slightly with a larger database,

and degrade with a smaller database. This expectation is born out by KDW,

Correct | Accuracy | Error
Validation Set | 84.22% | 68.01% | 31.99%
Blind Set 79.96% | 59.69% | 40.31%

Table 4.9: Evaluation of FO with first and second derivatives plus MFCC
with first derivative
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‘ ‘ Correct ‘ Accuracy ‘
‘ Normalized Data ‘ ‘ ‘
FO + Energy 71.08% | 56.21%
FO0 + MFCC (weight 0.8) | 77.82% | 60.28%
FO0 + MFCC (weight 0.6) | 75.96% | 59.93%
‘ Non-Normalized ‘ ‘ ‘
FO + Energy 71.31% | 56.44%
FO + MFCC (weight 0.8) | 73.98% | 59.12%
FO + MFCC (weight 0.6) | 74.1% 59.7%

Table 4.10: Analysis Results for Database KDS

Correct | Accuracy
Normalized (0.8 weight) 84.16 56.19
Non-Normalized (0.6 weight) | 78.47 51.23

Table 4.11: Analysis Results for Database KDW

which is smaller than KDS, as shown in Table 4.11. For this very small
database, the process failed to result in HMMs capable of producing sensible
label files at all. The sequence of labels produced for KDW generally followed
the lines of “sil, c, rb, rb, rb, sil.” Considering that only 88 of the 2400+
events in the database are “rb” events, such results are not impressive. It
appears that the small continuation rises which constitute most of the “rb”
events in this database are contributing to a model which incorrectly labels
small rising FO movements as pitch events. The other models would generally
be expected to counter this error, with minor movements being modelled in
the “c” HMM. However, the paucity of data means that none of the models
is as robust as it should be for accurate labelling, and the fit of any portion

of changing F0 to the correct model is essentially chance.
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4.6 Discussion

This chapter has shown that it is possible to improve upon previous methods
of automatic intonation event detection without relying on interpretations
of acoustic data (e.g. phone, syllable, word annotation). One advantage of
improving the acoustic processing rather than relying on higher-level data
is that methods which do include linguistic constituents (e.g. [OR97]) in
the analysis process can also use the methods discussed here, hopefully with
improved results. The greatest advantage to improving acoustic intonation
processing methods is the minimization of process ordering constraints. In-
tonation analysis can be performed before, after, or in parallel with other
speech analysis tasks, without relying on a computationally expensive Viterbi

search.

The most important difference between this research and previous re-
search which uses only acoustic data is that this work presents a way of
approaching the interaction between the supraglottal vocal tract and into-
nation. As discussed in Chapter 2, exploitation of this interaction appears
to provide a significant step forward in intonation modelling in general. Ad-
vances in including sub-syllabic constituents in intonation generation rely on
knowing what those constituents are at generation time. Such knowledge,
though, is not always available to speech recognition and understanding sys-

tems.

The use of Mel Frequency Cepstral Coeflicients within the context of into-
nation analysis is a novel application of general speech recognition methods.
Until such a time as many hours, as opposed to many minutes, of intonation-
ally annotated speech are available for model training, problems will hamper

continued research in this area. Difficulties such as generally nonsensical
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models being built, as occurred with KDW, or minimal progress, as was the
case with KDS, will remain in the short-term. However, the limited suc-
cess this method achieved on a 45 minute speech database shows how by
providing good labels which require manual correction, bootstrapping from
minimally labelled databases can lead to greater data availability, similar to
the growth in other areas of speech recognition fifteen years ago. As intona-
tionally labelled data becomes more widely available, real-time applications
which utilize intonation information will be able to incorporate the type of

intonation analysis described in this chapter.



Chapter 5

Synthesizing Intonation

This chapter describes original work in predicting intonation from data la-
belled for textual and intonation information. Each chapter up to this point
has acted as a building block for some part of the work described below. As
discussed in Chapter 3, the research uses the Tilt intonation model [Tay00].
This model is a parameterized description of fundamental frequency contours.
The intonation synthesis models described below are designed to predict the
parameters which form Tilt descriptions of FO contours. Chapter 2 discusses
ways that segments interact with intonation. Part of the research discussed
in this chapter investigates some effects that exploiting these interactions can
have on the intonation synthesis models. As we saw in Chapter 4, stochastic
modelling techniques can be data-intensive. Section 5.4 shows how the syn-
thesis techniques described in this chapter can be used to build models from

the automatically labelled data from Chapter 4.

Some FO prediction methods ([Ros94], [BH96]) predict the fundamental
frequency on each syllable. The work described here is based on the view
that intonation forms a separate level from the text, and should be treated

accordingly. Rather than predicting FO values for each syllable, the shape of
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each accent is predicted and anchored in the time and frequency domains,
in accordance with the Tilt intonation model. Therefore, generating F0O con-
tours is a two-step process. First, the Tilt description parameters must be
predicted. Then the parameters are translated into FO contours. The re-
search described in this chapter is only concerned with the first step of this

translation.

The intonation synthesis models which are described below predict the pa-
rameters which describe intonation contours under the Tilt intonation model.
This chapter presents experiments which examine whether intonation con-
tours generated using these models are adequately similar to natural into-
nation contours from the same utterances. Along the way, the analyses of
the models provide insights into more detailed aspects of intonation synthe-
sis. We examine whether, as Chapter 4 suggests, some interactions between
segments and fundamental frequency can be used to improve intonation syn-
thesis. We also look at how different types of input to the models affect the
prediction of the Tilt parameters. The input types range from segmental
categorization (e.g. sonorant/obstruent), prosodic phrasing, and intonation
context. The methodology described in this chapter is designed to provide
transparent results, so that we can understand which types of input are useful
in modelling different aspects of intonation. Unlike the work in the previous
chapter, there is no constraint on using only acoustic data to train models.
Primarily, this is because the synthesizer is creating the acoustics, rather
than analyzing them. The bias towards acoustics in this chapter is that the
end product of the synthesis models is a low-level description of the timing
and frequency of the intonation events, which can be directly translated into
a fundamental frequency contour. The only constraint on the type of input

to the models is that it be readily and sensibly available at FO generation
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time in a speech synthesis system. “Sensibly available” is a weak constraint,
but in the context of this discussion it means that the synthesizer need not

suffer any re-ordering of processes in order to use the models.

All of the original research presented in this chapter was undertaken us-
ing the Festival Speech Synthesis System [BTC98] and the Edinburgh Speech
Tools speech processing package [TCB98|, which are widely accessible. While
I have had some part to play in the development of these packages for in-
tonation processing, the vast majority of the infrastructure they provide is
the work of staff at the Centre for Speech Technology Research, University
of Edinburgh.

5.1 Methodology

The intonation prediction experiments consist of a basic four step process, as
shown in detail in Figure 5.1. First, information about each utterance in a
database is extracted. In the figure, this step encompasses the top three rows.
As discussed in 5.2.2, the Tilt descriptions form a part of the context feature
set, as the features being modelled. Therefore, these descriptions must be

made available from a Tilt analysis step, (see section 3.5.1 and [Tay00]).

Regression trees are built for each Tilt parameter of each Tilt event type,
shown in Figure 5.1 as the Wagon step (for details of the Tilt model, see
section 3.5.1). As discussed above (3.2.3) and below (5.2.1), regression trees
are a type of decision tree. In this case, the regression trees are binary
decision trees which predict a value for each Tilt parameter for each Tilt
event given its context in the utterance to by synthesized. These models
are then used to generate Tilt descriptions of the fundamental frequency for

each utterance. The F0 contours that result from these descriptions are then
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scored against the original contours (see section 4.2.5).

Page 120 shows a regression tree for the “accent/falling boundary” class,
to illustrate the process of modelling the Tilt parameters and then using
these models to generate an FO contour. Figure 5.2 shows an accent/falling
boundary (“afb”) event spoken by FHL (see the next section for database
information). The top of Table 5.1 shows the original peak position value for
the pictured event, together with values for those extracted features (section
5.2.2) which are relevant to the peak position prediction tree for “afb” events.
Below this list is the regression tree which is used to predict the peak position
values for “afb” events. Each branching leaf of the tree (those with feature
names) contains a feature name and a query about that feature. The non-
branching leaves of the tree (those with two numbers) give the standard
deviation and mean values for all examples of “afb” in the database which

are described by the conditions leading to a given leaf.

The first question in the tree in Table 5.1 (line 1) asks how many syllable
have passed since the previous accent. If less than 3.5 syllables have passed
(effectively three or fewer syllables), then the second question is asked (line
2). If four or more syllables have passed, then the leaf on line 13 of the tree
is selected for the prediction. The second question asks how many syllables
remain before the next major phrase boundary. If there are five or fewer
syllables, then question three is asked (line 3). If six or more syllables remain,
then the leaf shown on line 12 is selected. Question three asks if there are
fewer than three syllables remaining before the next major phrase boundary.
If so, then question four is asked (line 4). If not, then the leaf on line 11 is
selected. Question four asks if the syllable associated with the “afb” event is
word final in a multisyllabic word. If so, then the leaf on line 5 is selected. If

not, then question five (line 6) is asked. The fifth question asks if the onset
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Original Peak Position -0.108
Syllable.last_accent 1
Syllable.ssyl_out 8
Syllable.position_type final
Syllable.lisp_get_onset_length 0.28

1 ((Syllable.last_accent < 3.5)
((Syllable.ssyl_out < 5.5)
((Syllable.ssyl_out < 2.5)
((Syllable.position_type is final)
((0.0772446 -0.111))
((Syllable.lisp_get_onset_length < 0.16)
((0.0692528 0.028619))
((Syllable.lisp_get_onset_length < 0.208)
((0.070402 -0.0154167))
10 ((0.101499 -0.0567143)))))
11 ((0.0673618 -0.00727273)))
12 ((0.0585719 -0.055)))
13 ((0.0646414 -0.00821053)))
Predicted Leaf ((0.0585719 -0.055)))
Synthetic Peak Position -0.055

© R D A o

Table 5.1: Relevant extracted features, afb peak position regression tree, and
peak position value predicted for this afb using the regression tree
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of the syllable associated with the event is less than 160ms. If the answer is
yes, then the leaf on line 7 is selected. If not, then question six asks if the
onset is shorter than 208ms. A yes answer to this question results in the leaf
on line 9 being selected for the prediction. If the answer is no, then the leaf

on line 10 is selected.
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Figure 5.2: Original FO contour
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Figure 5.3: Synthetic FO contour

The bottom of the table shows the leaf which is selected from the tree if
the feature values at the top are plugged into the tree. This leaf is selected
because the answer to question one is yes, and the answer to question two
is no. Therefore, the leaf shown on line 12 is selected for the predicted
value. The second number in this leaf is the mean of all “afb” peak position
values in the training data for the database which fit the criteria for the leaf.

This mean is the predicted peak position value which forms part of the Tilt
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description, as shown in Figure 5.1. As shown in the figure, and discussed in
section 5.2.3, when processed with the other predicted parameter values, is

used to generate the FO contour shown in Figure 5.3.

5.2 Data

The data used in the intonation synthesis experiments covers three distinct
speech types: news commentary, isolated sentences, and instructional text.
The same experiments were carried out on each of the databases described

below.

The news commentary database is a portion of the Boston University Ra-
dio News Corpus [OPSH95], speaker F2B. This database is the same database
used in the previous chapter. The database consists of 114 paragraphs of news
commentary (approximately 45 minutes) as delivered by a female speaker of
American English. The database is labelled with segment, syllable, and word
boundaries, and includes lexical stress markings. It is also labelled with into-
nation labels based on the Tilt intonation model [Tay00]. The labellers not
only provide intonation labels, but also provide an association between each
event and a syllable. This association is determined on the basis of both vi-
sual evidence (where the peaks and troughs occur) and audio evidence (which
syllable sounds accented). The F2B database is used for a more examinations

than the other databases, due principally to its size and availability.!

The isolated sentence database (KDT) is a set of 450 (TIMIT-style) pho-
netically balanced sentences, of which ten percent are questions. These sen-
tences are spoken by a male American English speaker, and are annotated

in the same manner as the F2B database.

! Tests were run on F2B a year before any of the other databases were available.
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The instructional text database consists of forty-three paragraphs of
computer-generated text which describes exhibits in a museum. This
database has one set of the paragraphs spoken by a female Scottish English
speaker and one set spoken by the same speaker as the isolated sentence
database. This database is labelled with word boundaries and intonation
labels. Syllable boundaries are estimated, and segmental boundaries are not
used. Lexical stress is taken from dictionary entries, and is therefore approx-

imate.

Each of the databases is tested in isolation. Cross-data training was
avoided so that each individual speaker and style could be modelled without

the difficulties caused by the different data types.

5.2.1 Building Regression Trees

As mentioned above, regression trees are decision trees which can be used
to divide data according to a series of questions. The result of dividing the
data is to arrive at a subset of the data whose mean value can, in the best
case, be used in place of the original value if the tree is used in reverse,
to generate values. The trees consist of questions about features which are
used to predict a particular parameter. Each node of the tree consists of a

[4

question, a sub-tree for “yes” answers, and a sub-tree for “no” answers. The
Y i viation v.
leaves of the trees contain mean and standard deviation values for the data

points which are classified by the answer path required to reach a given leaf.

For each tree needed (one for each parameter for each accent type), a
tree is begun by finding the feature that partitions the data such that the
standard deviation is lowest within the two partitions. The tree is then used

to generate values for the parameter for each instance of the relevant event
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type in a held out set. The tree is grown by continuing such question selection
until a specified minimum number of data points is reached. The algorithm is
greedy, in that it selects the best partition and question at a given time, rather
than testing all possible combinations, which is computationally prohibitive.
The tree receives a “score” which consists of the Root Mean Squared Error
and a Pearson’s Correlation Coefficient, relating the generated and actual

values on this held out set.

As noted above, the data is divided by both accent and parameter type.
For example, the tree for the peak position parameter for accents is separate
from the peak position tree for rising boundaries. The parameter separation
is possible because the Tilt parameters have been shown to be statistically
independent [Tay00]. Thus, each parameter can be predicted in isolation, as
it should not be statistically tied to the other parameters. The separation is
also useful in minimizing the database size requirements, as with the HMM
modelling discussed in Chapter 4 Separately modelling the different event
types also allows one to examine how different features affect the various

aspects of each event type.

Previous experiments which have used this technique ([DB97] [BDTss])
have included minor hand-optimising of the feature set for noise reduction.
However, as discussed in section 5.5, it is unclear whether the resulting,
nominal improvement in correlation (2 percentage points) over a large corpus
has any real effect on any particular intonation contour. Therefore, the
results of experiments below, unless otherwise noted, do not include any

hand-optimisation of the feature set.

The regression trees used for the experiments were built using the Wagon

classification and regression tree tool [TCB98| which uses standard cart tech-
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niques [BFO84].

5.2.2 Feature Extraction

The most difficult portion of this procedure is the first step, which is as much
intuitive as computational. For each utterance, a variety of information is
extracted which may assist in modelling FO. The difficulty of this step is not
in extracting the feature information, but in determining which features to
use. A list of the features extracted for these experiments is below. Most
of the features are directly related to the literature which is reviewed in
earlier chapters. Some features were developed specifically to address specific
questions. A discussion of the which features were useful in particular trees
follows the results of the experiments. Figure 5.4 illustrates the two different
ways in which the data is approached. For any given intonation event (e.g.
the circled a in the figure), features are extracted in terms of a syllable
window and an intonation window. It is important to note that, regardless
of which window is being used, connections between the syllables and the
intonation labels are preserved. For example, one feature looks two syllables
ahead of the circled syllable in order to find out if there is an intonation label
associated with it. For the purposes of analysis, the features are described

in terms of five classes, which are presented below.

The lexical stress (0 or 1) of a given syllable and the two syllables on
either side make up the first feature class. The second class concerns the
position of a given syllable within a phrase. The features extracted in the
first two classes follow [BH96], who generate FO values for each syllable in a

synthetic utterance (see section 3.2.3). The second set of features are:

e The distance in syllables from the previous event (i.e. accent or bound-
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sl a fb b sl Intonation Window
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Figure 5.4: An illustration of the feature extraction windows

ary) and to the next.

The distance in syllables from the previous major phrase break and to

the next.

The distance in lexically stressed syllables from the previous major

phrase break and to the next.

The distance in accented syllables from the previous major phrase break

and to the next.

The phrase break index (0-4) of the syllable in a window of two before

and two after.

The third feature class contains information about the composition of
the syllable and its place in a word (referred to in this thesis as sub-syllable
features). The composition-related features are the length of the syllable
onset and rhyme and a classification of syllable onset and coda, following

[vSH94] and [PvSH95] (see section 2.3.

The fourth class is similar to the lexical stress category, but relates to into-

nation events. Two features are used here, one each for accent and boundary.
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A value is extracted (0 or 1) if the syllable is associated with an accent or a

boundary.

The final class is more suprasegmental in nature than the other classes.
Rather than being based on syllables, the features in this class are the types of
event associated with a syllable, and the two events on either side, regardless
of their location in terms of syllables. This class uses the intonation window
shown in Figure 5.4. This view of the data was necessary because intonation
events do not occur on every syllable, and a syllable-based window will not
always contain information about any events. If only a syllable window is
used, some intonation events are viewed in isolation from other events, as

the previous and next events may be three or more syllables away.

5.2.3 Generating FO Contours

As noted at the outset of this chapter, the shape of each accent is predicted
and anchored in the time and frequency domains. Generating F0 contours
is a two-step process. First, the regression trees just described are used to
predict the Tilt description parameters. Then the parameters are translated
into FO contours. The research described in this chapter is only concerned
with the first step of this translation. However, a brief look at the way the
Tilt descriptions are translated into FO contours is included so that the reader

is aware of the whole process whereby the FO contours are generated.

The translation process uses software available in the Edinburgh Speech
Tools package [TCB98|. The Tilt synthesis tool takes the parameterized de-
scription, and in accordance with the equations detailed in section 3.5.1, gives
a shape to each intonation event. Each event is described by the fundamental

frequency at its beginning, the time at which the peak in F0 occurs, and the
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gross amplitude of the FO movement over the accent. It is mathematically
trivial to plug the values into the equations and arrive at an event shape
anchored in both time (by the peak position value) and frequency (by the
starting FO value) domains. The spaces in between events are then filled by

straight lines.

It is important to note that the straight line connections make an exact
replica of an intonation contour impossible to achieve. However, it has been
argued repeatedly that such a stylization of non-event material has no au-
dible effect on an utterance’s intonation pattern ([dP83], [tHCC90], [tH91],
[Tay00]). Therefore, as the next section discusses further, the target for F0O
generation cannot be 100% correlation with the original, but between 85 and
95% correlation. This range reflects the success that would be acheived over
the various databases if the Tilt descriptions were exactly reproduced by the
decision trees. As section 3.5.1 mentions, the best results for FO regener-
ation from Tilt descriptions fall within this range. As such success is yet
to be reached by this or any other research, it is reasonable to assume that

approaching such a target would constitute a considerable achievement.

5.3 Results

Because generating fundamental frequency contours using the methods de-
scribed in this section requires two steps, two levels of evaluation are avail-
able. As section 5.3.1 discusses, each regression tree is given a score (RMSE
and correlation) based on its ability to produce the correct values in a held-
out validation set. These scores are used to determine whether individual
Tilt parameters are being modelled as expected. The second level of evalua-

tion gives an idea of how well entire intonation contours relate to the original
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data, again using RMSE and correlation. As noted in section 5.5, the evalu-
ation of fundamental frequency differences does not easily lend itself to fine
judgements about important questions such as whether the duration of ac-
cents is being modelled well. The results discussed in the remainder of the
chapter should be viewed with this two-tiered assessment system in mind.
Each database is evaluated primarily by the individual tree scores, with the
gross measurements over whole contours playing a support role. This depar-
ture from discussing intonation synthesis in terms of intonation contours is
a result of both the difficulty in objectively evaluating FO and the lack of

useful information which such an evaluation can provide.

5.3.1 Decision Tree Assessment

The basic measure of success in all of the intonation synthesis experiments
is the scores of the Tilt parameter prediction decision trees. These scores
provide an insight into which aspects of intonation are modelled well, and
which are modelled poorly. They also provide and instant assessment of

whether a new feature or feature set results in better models.

The minimal success requirement is obtained by comparing the RMSE
value for a tree to the standard deviation of the same parameter’s values in
the training set. While the RMSE and standard deviation are not completely
comparable, it is logical to presume that, if the dataset which is being tested
has the same distribution as the training set, then predicting the mean on
the validation set would result in an RMSE similar to the standard deviation
of the training set. This presumption results in the weak test that, if the
RMSE score for the tree is not near or lower than the standard deviation
of the training set, the tree is ineffectual - producing values which are no

better than chance, and one would be better off just predicting the mean
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throughout. For example, Table 5.2 shows that the standard deviation of
accent peak position is 101 milliseconds. If the mean value were generated
for each accent peak, the peak would occur 70ms after the start of each
vowel associated with an accent event. The resulting RMS error would be
101ms. If the tree which is trained to predict accent peak position results
in predictions with an RMSE of 100 milliseconds against the correct values
of the validation set, then it is likely that using the tree will not result in
better intonation than predicting the mean peak position. As section 5.3.3

will show, such trees produce wholely inadequate intonation.

The trees’ correlation scores have a somewhat different function. As with
the FO contour comparison, they show whether the relationship between the
actual and predicted values is holding (e.g. are amplitude values consistently
in the right range). An example of where this is useful is in predicting the
tilt parameter. As Section 3.5.1 discusses, the tilt parameter has a trimodal
distribution for accents, with a small number of instances in the ranges be-
tween the value concentrations. A high correlation for the #ilt tree would
suggest that this distribution is being accurately modelled, regardless of the
RMSE scores. Tilt values are roughly divided into three ranges: high (full
rises), low (full falls), and middle (rise-falls). If the inter-relationship among
these three accent types is maintained, for example, by predicting values of
-0.8, 0, and 0.8, then the predicted values are within the same range as the

correct values, and correlation will remain high.

While Appendix B contains detailed tables of results for various databases
and experiments, this section gives a more digestible account in the context of
modelling the intonation of the KDT database. A number of different exper-
iments were undertaken on each database, but those discussed here for KDT

were performed on all of the databases. The baseline scores came not from



5.3. RESULTS 131

parameter prediction trees, but from replacing the trees with the mean and
standard deviation for the parameters. This baseline is used for the following
reasons. First, it is relatively straight-forward to calculate these values for
each parameter. If these values result in adequate output, then there is no
need for the use of regression trees or training algorithms. Secondly, a pair of
numbers is substantially easier to store and is faster to use than a long deci-
sion tree. As mentioned above, there is also a loose relationship between the
standard deviation and RMSE values, for a parameter and tree respectively,

which is a useful point of departure for process development.

Table 5.2 shows the mean and standard deviation values for each param-
eter of some intonation event types (accents: a, rising boundaries: rb, and
falling boundaries: fb). As mentioned above, the five parameters of the tilt
description are start F0, the F0O value at the beginning of the event; ampli-
tude, the measure of how much the FO rises and falls; duration, the length
of the event (given in seconds); tilt, a description of overall event shape; and
peak position, the time, relative to the start of the vowel of the associated

syllable, at which the event peak occurs.

start FO amplitude duration tilt peak position
a | 218.23/22.02 | 32.96/23.38 | 0.26/0.08 | 0.16/0.53 | 0.07/0.10
b | 129.16/28.2 | 27.18/22.85 | 0.18/0.04 | 0.28/0.88 | 0.09/0.12
fb | 200.00/23.05 | 37.84/32.75 | 0.20/0.07 | -0.26/0.45 | -0.03/0.12

Table 5.2: Database KDT: Mean Values and Standard Deviation for Tilt
Parameters of some Intonation Event Types (Mean in bold)

As is mentioned above, the initial goal of using decision trees is to achieve
better results than those given by the mean and standard deviation. There-
fore, Table 5.2 provides a useful reference point when viewing the tables

below.
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Table 5.3 shows the tree scores for the accent and falling boundary event
types using all of the features discussed above. There were very few rising
boundary events in this dataset, which results in use of the mean value instead
of a predicted value. The accent and falling RMSE values shown are certainly
lower than their respective standard deviation values, which loosely suggests
that the values which are predicted using these trees resemble the original

values against which they are tested.

start FO | amplitude | duration tilt peak position
a || 9.89/0.61 | 11.28/0.40 | 0.05/0.40 | 0.49/0.33 | 0.06/0.42
fb || 6.65/0.55 | 11.01/0.40 | 0.06/0.63 | 0.37/0.43 | 0.07/0.5

Table 5.3: Database KDT:RMSE/Correlation scores for accent and falling
boundary trees

A tree-by-tree analysis of these two event types provides the sort of in-
sights which are useful for intonation generation research. It is immediately
obvious from Table 5.3 that the start FO parameter is the best predicted
parameter for accents. The correlation score suggests that the distribution
of parameter values follows the correct pattern (in this case, higher values at
the beginning of phrases, lower values as the phrases continue). The RMSE
score for start FO shows that in addition to the correct pattern, the pre-
dicted values are also similar to their targets. The amplitude scores show
that the magnitude of accents which will be generated is somewhat large,
averaging 10Hz. In a rise fall accent (¢ilt around 0.0), this amplitude average
error would correspond to a 5Hz error in each of the rise and fall portions
of the generated accent. In a pure rise or fall accent, the error would be the
full 10Hz. In this speaker’s range (mean 127Hz, sd 42Hz) such magnitude
differences are minor. At the top of the range, a 10Hz difference would be

nearly imperceptible. At the bottom of the range, the difference might be
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noticeable, but it is difficult to determine whether any difference in meaning
would result. Further research which links these objective measures with

perception would be very useful in assisting in such a determination.

The most interesting poor result for the accent trees is in the tilt predic-
tion. The correlation score suggests that the typical trimodal distribution
for tilt values (to give basic rise, fall, and rise-fall shapes) is not being re-
tained in the predicted data. The RMSE value corroborates this conclusion,
as an error of 0.5 on the tilt continuum could mean the difference between a
fall and a rise-fall shape (see Figure 3.4, page 78). These scores for the tilt
parameter suggest that the tree is not partitioning the data in a way that
follows the typical tilt distribution. A survey of ¢ilt prediction trees built in
different conditions shows that the predicted values fall in the range of 0.3
to -0.6, which essentially negates the pure rise and pure fall types of accents.
Only a continuum of rise-fall accents is predicted. While the features used
to predict tilt values are successful in many cases (in that a range of values
along the continuum is predicted), they are not asking the right questions to
capture the full distribution. The #:lt values at the ends of the scale are not
being modelled adequately. One probable reason for the difficulty in mod-
elling the ends of the tri-modal distribution is that, as Figure 5.5 shows there
are considerably more accents in the middle of the range than on the ends.
However, the figure also shows that the ends of the range are distinct from
the middle range values. One possible reason for the inability of the decision
tree to successfully capture the value distribution is that more data is needed.
The uneven representation in the data could mean that much more data is

required for all parts of the tri-modal distribution to be accurately modelled.

Another strong possibility for the failure to capture the full distribution

is that the choice of rise-only or fall-only accents is related to some construct
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which is not part of the extracted feature set. The choice could be related to
the wider discourse or semantics. Alternatively, the ends of the range could
represent purposeful variation in intonation for minimizing monotony. As
these areas are not covered by the feature set used for the experiments, it is
impossible to say whether their addition would result in a better distribution

of the predicted values.

The falling boundary trees also provide some interesting results. The
duration prediction tree shows an RMSE of about 50ms, or one quarter the
mean falling boundary length. Another way to look at this value is that it
is similar to the mean syllable onset length for KDT (50ms) and less than
the mean coda and syllable durations (143ms, 193ms). Thus, the duration
prediction both follows the desired value distribution and keeps the average
error to within a small portion of a syllable length. Also interesting in the
timing of falling boundaries is the peak position prediction. Here, as with
accents, the correlation is not particularly good (0.5). The error in peak
timing is larger than that for duration. This is not surprising, as a falling
boundary need not preclude the option of a short rise in FO before the fall
takes place. The interest in this tree is that a 70ms error in peak timing could,
in a categorical framework like ToBI, change the category of the event. Thus,

while the error is only a fraction of syllable length, it is potentially audible.

It is easy to suppose, given the above examples, that when one score is
good, both are good (or equally one bad score means two bad scores). An
example of where this is not the case is in the prediction of start FO for
silences (the final FO value for a section of speech). The correlation score
for this tree is 0.97, suggesting that the distribution is being very effectively
modelled. Thus, the predicted value is low for speech ending in a falling

boundary, high for speech ending in a rising boundary, and in the middle of
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the possible FO range where no intonational boundary occurs at the end of
speech (a mid-phrase pause, for example). However, the RMSE score for this
tree is 10.97. Therefore, while the basic range is correct, the error is still in
the region of 10Hz. Thus, while generally RMSE and correlation reflect the
success of the trees in the same manner (both are good or both are bad), the
relationship does not always hold. Therefore, for the rest of this section, the
correlation score is only presented where RMSE is not providing an adequate

picture.

The previous examples highlight once again the benefits of evaluating
individual aspects of intonation generation. As the tables and relevant dis-
cussion below will show, this individual assessment allows one to examine
the effects of particular features and feature sets on different aspects of into-

nation.

5.3.2 The Contribution of Sub-Syllable Features

In order to determine what effect, if any, the sub-syllable features have on Tilt
parameter prediction, the decision trees were built using the same methods
listed above, but excluding all sub-syllable features from the tree-growing

algorithm. Table 5.4 shows the scores for these trees for the KDT database.

start FO | amplitude | duration | tilt | peak position
a 10.22Hz | 11.79Hz 0.05sec | 0.50 0.07sec
fb || 6.85Hz 11.36Hz 0.06sec | 0.38 0.07sec

Table 5.4: RMSE scores for trees with no sub-syllable information

In comparison with Table 5.3, the RMSE values are the same or slightly
higher than those which resulted from the full feature-set being available.

The obvious conclusion to draw from this comparison is that the sub-syllable
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features are only helping the prediction in some cases. To test this conclusion,
a similar comparison was made for speaker FHL, as shown in Table 5.5. The
FHL RMSE values support the conclusion that the sub-syllable features are

being used, but do not greatly improve the trees.

start FO | amplitude | duration | tilt | peak position
with 18.41Hz | 23.65Hz 0.07sec | 0.54 0.09sec
without || 19.26Hz | 24.45Hz 0.08sec | 0.54 0.1sec

Table 5.5: RMSE scores for FHL accent (a) trees with sub-syllable and
without sub-syllable information

The small RMSE changes tend to occur more in the FO domain (start
F0 and amplitude) than in the time domain (duration and peak position)
parameters. Interestingly, the correlation values tell a different story. In the
case of FHL, the correlation for the peak position parameter is 0.46 with
sub-syllable information, and 0.33 without. KDT shows similar results with
values of 0.42 and 0.29 (with and without sub-syllable features). It is also
worth noting that these changes in accent peak position correlation scores
go against the tendency of most other trees for little or no effect by the
sub-syllable features (see Appendix B for full result tables). However, as
can be seen in the tables above, it is clear that these higher correlations are
not likely to result in audibly different peak locations (a 10ms difference in
RMSE of peak position). Therefore, it may be that the timing is already
so bad that the higher correlation will not significantly affect the outcome.
Or, more kindly, the improvements brought about by including sub-syllable
features are still overshadowed by the many difficulties faced in modelling
peak timing in general. The only real way to tell if these small differences
can result in noticeable improvements in the FO contour is to compare the

generated FO contours with those which they are meant to reproduce.
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5.3.3 Fundamental Frequency Comparisons

Tables 5.7 through 5.10 show how the results of the intonation generation
method described in the previous sections compare with the original into-
nation of the databases. Each of the results shows a target and at least
one experimental result. The targets result from comparing the smoothed
FO contours from which the original Tilt parameters are extracted with the
FO contours generated by the original Tilt parameters. In other words, this
error would be given if the Tilt parameter prediction were 100% correct on
all counts. Because the databases represent different voice types, dialects,
and genders, it has been useful to consider the the correlation, as well as the
RMSE results in terms of their relation to the standard deviation of FO in
order to compare them with each other. Thus, a 34Hz RMSE may look like
a large error, but if it is achieved on a voice with a large standard deviation
(e.g. 53Hz), the error is relatively low. For the female speakers, the target
RMSE score is roughly one-third of the standard deviation of FO. For the
male speaker, the target RMSE is approximately one-seventh of the standard
deviation (see table 5.6).

Speaker | Mean FO | o FO | Target RMSE | Target Correlation
F2B 163.5 42.2 14.5 0.93
KDT 126.9 27.9 3.9 0.94
FHL 210.5 31.8 12.5 0.87

Table 5.6: FO and Target Value Information for Three Speakers

As table 5.6 shows, the three voices modelled cover a wide range of mean
FO0 as well as pitch ranges. For any single method to be successful in a useful
application, it must work adequately on a variety of speaker types. These

three speakers offer a fair test of that ability.
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Table 5.7 shows comparison results for the F2B database. Intonation con-
tours were generated for F2B under three different conditions: 1) using mean
and standard deviation parameter values, rather than predicting parameter
values using a decision tree, 2) training the decision trees using the meth-
ods described above, and 3) manually optimizing the decision trees. The
manual optimization process involved examining the features which were au-
tomatically chosen in the training process, and attempting to re-build the
tree without each feature in turn. This optimization process aims to reduce
one possible disadvantage of the greedy algorithm being used: in some cases,
a single feature could perform well in dividing the data, but prevent other
potentially relevant features from playing a part. As Table 5.7 shows, the
manual optimization did give some improvement, but not enough to warrant

such optimization for all databases.

The target figures for F2B are somewhat daunting. A correlation of 93%
results in an audibly identical FO contour for most utterances. As discussed
above, mean F0 and standard deviation are relatively simple to acquire for
numerical data. A lower acceptability limit for FO contour comparison was
determined by replacing each tree for the Tilt parameters with a single leaf
containing the mean and standard deviation for all data points which would
be used to build that tree. An unexpected problem with the use of the mean
values for each parameter to generate FO contours was uncovered in deter-
mining this lower limit. The parameter-to-F(0 process shows that the Tilt
parameters are not all independent of the text associated with an event. Re-
membering the 201ms duration mean value from Table 5.2, it is conceivable
that an anomoly would occur if this peak location were assigned to an utter-
ance final syllable of short duration. In fact, such over-shoot of event timing

causes a failure in the translation which results in an error message, rather
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than a contour, being produced. As table 5.7 shows, the result is a RMS error
of 39Hz and a correlation of 0.36 for the roughly 50% of paragraphs which
did not fail to process. These failures are most attributable to poor timing
prediction, which resulted in intonation events being predicted outside the
bounds of the utterance upon which the contour was imposed. Errors of this
kind caused a failure within the synthesis process. In other words, half of
the Tilt descriptions generated by predicting mean values were so bad that
they resulted in nonsense and failed to result in an F0O, while the other half
were only moving in the right direction a third of the time, albeit with an

F0 value that was likely to be within the right pitch range.

Target FO | M/STD FO0 | Base FO | Hand-tuned FO
RMSE 14.5 39.0 34.7 34.3
Correlation 0.93 0.36 0.58 0.6
% failed 0 20 <10 <10

Table 5.7: FO Comparison Results for F2B

Now that a suitable range of results is delimited, the discussion of the
rest of the results is possible. A base result, arrived at using the methods
described in section 5.1 approximates the results already shown in table 3.4.
After hand-optimizing the feature set, the results improve slightly to approx-
imate Dusterhoff and Black’s results even more closely. While these results
are not very close to the target values, they are considerably better than the

lower limit.

As table 5.8 shows, it is easier to predict the intonation of a database
when it is for mostly declarative, isolated sentences that are spoken by a
male speaker with little FO movement. The KDT results are interesting in a
number of areas. First, the target for KDT is similar to the target for F2B,

in terms of correlation. Therefore, we know that the Tilt descriptions and
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the related tools handle the male and female voices equally well.

Target FO | M/STD FO | Predicted FO
RMSE 3.9 11.6 9.1
Correlation 0.94 0.45 0.74

Table 5.8: FO Comparison results for KDT (isolated sentences)

The difference in RMSE targets reflects the difference in the speakers’
pitch ranges. For KDT, who has less natural variation in FO, it is necessary
to prevent large variations in the generated contours, as they will likely sound
out of place. This restriction was not true of F2B, who had a naturally larger
range of possible F0 values. Therefore, one might assume that using the mean
values instead of full trees would provide a better result for KDT than it did
for F2B. The lower limit does appear to be higher for KDT, in terms of
correlation, than it was for F2B. However, when the RMSE portion of the
evaluation is taken into account, one sees that, while the mean may provide
the correct range and basic shape of contour more readily for KDT than for
F2B (generally declining F0), the contour itself is nowhere near the correct
FO values. In fact, reviewing table 5.6 reveals that the maximum RMSE
is over twice the standard deviation of KDT’s FO values. Thus, while the
contour generated using mean, rather than predicted parameter values, may
look similar to the original, the FO scaling is unlikely to be correct. One
would certainly expect that a better result could be achieved with a more
complex model. Table 5.8 reveals that the more complex model does in fact

perform much better than than the simple mean value model.

Two other comparisons were performed on the KDT database which pro-
vide insight into the use of sub-syllabic features in intonation generation. As

mentioned above, small differences in individual tree performance should be
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Avg. RMSE | Avg. Correlation
No Sub-syllabic features 9.2 0.72
Only Sub-syllabic features 11.3 0.55
All Features 9.1 0.74

Table 5.9: FO Comparison of based on trees built 1) with no sub-syllabic
features, 2) with only sub-syllabic features, and 3) with all features allowed

examined within the context of the FO contour as a whole. Trees were built
for the KDT database which included only sub-syllabic features or excluded
all sub-syllabic features. These trees resulted in intonation contours which

compared with the originals as shown in Table 5.9.

As Table 5.9 shows, the small improvements in the tree scores which
resulted from the inclusion of sub-syllabic features is reflected in small im-
provements in the overall FO comparisons. Interestingly, the trees which
include only sub-syllabic features produce moderate results, suggesting that
some of these features may be accounting for the same data as some of the

other features.

Table 5.10 shows that some databases are more difficult than others to
model. The target correlation is noticeably lower than that of the other two
speakers. This suggests that perhaps the labels are not of as high a qual-
ity, or perhaps that there is more movement in the non-event (connection)
portions of the original F0O, lowering the correlation score even if the events
are accurately regenerated. Regardless of the cause for the lower target, it is
important to recognize that a lower target will likely correspond to a lower
FO comparison. Therefore, the results for FHL, while lower than for F2B
and KDT, are comparable to F2B’s results. The resulting RMSE is less
than twice the target (as compared with almost 2.5 times for F2B) and only

slightly more than one-third o FO. While these comparisons do not have any
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inherent meaning in themselves, they show that the FHL results are in the
same range of success as the F2B results, while remaining lower than the

KDT results.

Target FO | Predicted FO
RMSE 12.5 21.1
Correlation 0.87 0.53

Table 5.10: FO Comparison results for FHL

Finally, in order to place this work in the context of recent, similar re-
search, Table 5.11 shows three previous studies, all using F2B?, and the three

studies discussed in this section.

Study RMSE | Correlation
Dusterhoff & Black | 32.5 0.60
Ross & Ostendorf 33 Not Given
Black & Hunt 34.8 0.62
F2B 34.3 0.60
KDT 9.1 0.74
FHL 21.1 0.53

Table 5.11: Comparison of FO generation research

While the RMSE results are only comparable across the studies using
F2B, research in F0 evaluation suggests that correlation can be used to com-
pare all of these studies [Her98]. The F2B results are all similar, suggesting
that the methods used in this thesis result in valid and reasonably successful
intonation generation. The difference between Dusterhoff and Black and the

F2B research carried out in this thesis is attributable to a different set of FO

2Many changes to the required systems and feature architecture occurred between the
work with F2B found in Dusterhoff and Black and the availability of KDT and FHL. It
was necessary to re-build the F2B models so that the same system was used for F2B, KDT,
and FHL. Therefore, Dusterhoff and Black’s results are comparable to the F2B results in
this chapter, but are one step removed from a valid comparison with KDT and FHL.
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contours. In order to better understand the role of sub-syllabic features, the
research in this thesis used smaller contour smoothing windows than were
used in Dusterhoff and Black (see section 4.2.3 for window details). Oth-
erwise, the only difference in method is that in Dusterhoff and Black, the
feature selection was entirely by hand, which explains the use of the manu-
ally optimized results for comparison. Because the level of smoothing of the
F0 contours can explain a difference in RMSE of almost 2Hz, it would be un-
wise to rank the four F2B results, given their similarity. The results, viewed
as a whole, suggest that a small body of very consistent data (KDT) is easier
to model than a large body of data with more variation. As is expected, a

small database with a lot of variation (FHL) is the most difficult to model.

5.3.4 Context Features

An analysis of how the features and feature classes are used to achieve these
results shows how this research can be used to advance the field. The pa-
rameter prediction trees for F2B provide the clearest picture of the three
databases, as it has the most varied content both phonetically (important
when using segmental information) and intonationally (there are enough in-
tonation events of each type for a clear picture). Therefore, this analysis is

restricted to the F2B database.

As discussed in section 5.2.2, the features used for parameter prediction
are divided into five broad classes. The first class is local lexical stress.
The second class describes the phrasal position of a given syllable. The
third category contains syllabic constituency information. The fourth class
is intonation information on local syllables. The fifth class is intonation
information along an intonation tier. These classes are included based on

expectations from experimental linguistics literature, as reviewed in chapters
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3 and 2.

The lexical stress information is included in the feature set to help model
“stress clash” (basically, where an accent peak is moved left in the presence
of a following stressed syllable). This phenomenon is widely reported and
accepted, leading to the inclusion of similar features by Ross ([Ros94]) and
Black and Hunt ([BH96]). The features in this class which should play the
largest role are the right-hand context features. I expect that the accent peak
position tree would make use of these features, and that perhaps the “afb”
and “fb” trees will use one of the left-hand context features where syllable

lengthening and tonal crowding occur (introduced in section 2.4).

The prosodic phrasing class is likely to contain the most used features.
This class should contribute to modelling tonal crowding, phrase boundary
effects (e.g. lengthening, pitch resets). One important area where this class
is expected to be important is in modelling the frequency of events (start
F0). As Clark [Cla99] shows, the phrase initial events start consistently
higher than phrase medial events. He also shows that initial events in F2B
have a greater magnitude, which is represented by the amplitude parame-
ter. Amplitude parameter trees should include members of this feature class.
Minimally, the accent amplitude tree should incorporate information about

where in a phrase an accent is.

The sub-syllable features, as discussed in section 5.3.2 and Chapter 2
should be useful in predicting peak position parameter values. They may
also help in amplitude prediction, provided that vowel-intrinsic pitch is per-
ceptible in this database. Because the sub-syllable features relate to the
content and duration of sub-syllable constituents, it is also likely that these

features will appear in duration trees.
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The fourth class, which views intonation events through a five-syllable
window, is expected to contribute to modelling of tonal crowding, event
magnitude, and downstep. For example, an accent which contains an accent
within the right and left context for this feature class is probably within a
downstepped sequence, and will consequently have a lower amplitude than it

would have if there were no accent events within the window.

The final class, which represents intonation events in sequence without
reference to any other context, is expected to play a very important role
in start F0O prediction for all events. This feature set provides information
about the surrounding events, regardless of their distance from the event
whose parameters are being predicted. If, for example, an accent is preceded
by a falling boundary, it will probably start higher than if preceded by an
accent (given Clark’s findings).

The features are expected to contribute to some, but not all trees. All of
the features are included in the model building process, for completeness. As
discussed above, each class was included in the process for a specific reason.
In some cases, the features had less of a role than was expected. Some features
were more useful than expected. Because of the potential for inter-feature
noise, as showed by the necessity for a feature-reduction algorithm, it is
unwise to state that any single feature accounts for any specific phenomenon.
Additionally, it is probable that the features will contribute differently given a
different database. The claims and discussion below are therefore approached

as generalizations of the effects seen on the F2B database.

The lexical stress information has played a very small role in accent pa-
rameter prediction and a slightly larger role in boundary parameter predic-

tion. For accents, the lexical stress of the syllable following the accented
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syllable is used for peak position prediction. This is presumably to account
for “stress-clash” conditions. For the boundaries (falling, rising, with, or
without accents), the local stress features played a role in the duration and
tilt trees. The preceding stress information was important here, where it may
be related to syllable lengthening phenomena. Support for this supposition
comes from the syllable and sub-syllable features which play an important
role in all of the timing domain parameters of the various boundary types,

as is discussed below.

Predictably, the phrasal positioning features were important in almost all
of the trees. In the F2B database, the location of a pitch event within a phrase
is very closely related to the pitch range of that event. These features can
also provide an approximation of whether an event is in “nuclear” position,
and whether it is likely to be near the end of a major or minor phrase.
Such information would be helpful in an event’s magnitude and basic shape.
Interestingly, only one of these features is used to predict peak position, and
that only in the falling boundary tree. This feature appears to be used to
determine whether the falling boundary is internal or final, in the context of

a larger prosodic constituent.

The reason the third class, containing information about the syllable con-
stituents, was included in this research at all is that claims in the literature
(see Chapter 3) suggest that peak position prediction would be improved.
While the improvement is not great there is no doubt that the features are
being used, as they are present in several of the decision trees. The accent
tree includes vowel height classification and onset classification information.
Each of the boundary trees include at least two of the nine available features
in this class. In addition to the peak position trees, the duration and tilt

trees also use the onset and rhyme features (categorization and duration).
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The use of these features in the duration and tilt trees supports the sugges-
tion above that the sub-syllable features may be related to final lengthening

phenomena.

The fourth category, which provides information about intonation events
within the five-syllable window, proved useful in most trees. For example, the
accent start F0 tree relies on information about whether there is an accent
or boundary associated with the prior syllable. This feature use may relate
to the lowering of fundamental frequency through an utterance. It could
also relate to downstep, where a succession of closely placed accents may
be a sign of the sort of environments where downstep occurs. Alternatively,
the lack of space between two accents may prevent the starting frequency of
the accent from having lowered excessively. In another example, the falling
boundary peak position tree looks for accents on earlier syllables and the
syllable associated with the boundary. Such feature use is not surprising,

but does not follow a specific enough pattern to make any strong claims.

The final feature class, which views intonation labels on their own tier
without reference to the syllable tier, is generally the most important class.
Only two trees (accent peak position and amplitude) do not select a feature
from this class. In the other trees, at least one feature from this class is
included in the first three features selected. These features are especially
important at the edges of phrases. For example, an accent preceded by a
falling boundary will be involved in a pitch reset, where an accent preceded
by silence will fall into that class of higher scaled events discussed by Clark
[Cla99]. Similarly, there is an expectation that falling boundaries which are
followed by accents (and are therefore medial in a larger intonational unit)

will fall less than those followed by silence.
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The distribution of features in the prediction trees does not throw up any
surprises. In general, they follow the expectations which the experimental
linguistic literature predicts. The importance of the fifth class, as shown
by the location of the features used in the top three features selected, is
predictable given most intonation literature written in the last twenty years.
One surprise, though, is the number of modelling and synthesis techniques

described in Chapter 3 which neglect this approach to intonation.

It is important to remember that certain features being used for certain
predictions does not mean that the resulting values are particularly good.
The results discussed above show that while the features used in this study
are providing important improvements, there are many improvements yet to
be made. Future research into new features and methods of presenting the
feature data could prove useful in getting more out of the advances made by

this work.

5.4 Building Models from Auto-labelled
Data

Because the F2B database is also large enough to be useful for the auto-
labelling work discussed in Chapter 4, one experiment was undertaken to
build intonation synthesis models using the methods described in this chapter
using automatic intonation labels for F2B. In order to examine the potential
for future work in this area, the best of all possible HMM sets and exter-
nal constraints was used to automatically label the database for intonation.

These conditions are discussed in Chapter 4.

In addition to the problems with intonation parameter modelling already

discussed, this experiment also required a step which associates the automat-
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ically derived labels with the syllable labels. The method used for manually
labelled data requires the human labeller to decide which syllable each in-
tonation event should be associated with (i.e. the perceptually accented
syllable). Rather than emulate this process, which is an extremely difficult
task, it is possible to achieve an adequate simulation of this process by asso-
ciating each intonation event to the syllable during which the peak occurs.

This type of linking is systematic, if not theoretically motivated.

Another difficulty faced by using the automatic labels is that the quality
is not easy to judge. Therefore, two initial tests were undertaken to de-
termine whether using the auto-labels was feasible. As Chapter 4 shows,
a quantitative comparison of event types shows whether the distribution of
auto-labelled events is similar to the manually labelled events. Table 4.8
shows that, for the F2B database, with the best labeller, the distribution
of event types is similar. The second test examines the means and stan-
dard deviations of the Tilt parameter values of the auto-labels. This test is
designed to show whether the properties of the auto-labelled events which
will be modelled for synthesis are similar to the properties of the manually

labelled events.

Table 5.12 shows the means and standard deviations of the Tilt parame-
ters in the manual and automatic labels. This table shows that the two label

sets are reasonably similar, but there are some interesting differences.

The auto-label start FO values are very similar to those for the manual
labels. This suggests that the events for the two label sets fall in the same
basic places from utterance to utterance. However, the amplitude, duration,
and tilt values show some very large differences. The mean values for am-

plitude show that the auto-labelled events fall more in a “categorical” range
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start FO amplitude duration tilt
a 164.5/42.1/ | 71.9/49.5 | 0.307/0.069 | 0.040/0.480
a 166.9/40.5 | 80.8/53.9 | 0.347/0.084 | -0.040/0.466
arb | 134.6/32.0 | 55.1/28.3 | 0.380/0.073 | 0.377/0.579
arb || 184.6/30.3 | 58.5/29.9 | 0.413/0.061 | 0.266/0.616
afb || 144.4/31.8 | 84.4/46.5 | 0.362/0.057 | -0.206/0.342
afb || 146.2/80.1 | 77.7/41.1 | 0.8396/0.062 | -0.292/0.380
rb 145.7/39.1 | 45.9/31.5 | 0.243/0.084 | 0.302/0.563
rb 158.8/42.5 | 49.2/30.4 | 0.343/0.084 | 0.020/0.724
fb 145.9/34.2 | 63.3/52.5 | 0.204/0.073 | -0.088/0.544
fb 157.0/34.8 | 52.2/36.1 | 0.323/0.091 | -0.631/0.651

Table 5.12: Comparison of Mean and Standard Deviation of event parameters
(automatic event details in italics)

(higher for accents and rising boundaries, lower for the falling boundaries).
The duration means are longer in each case for the auto-labels. Again, for all
event types, the tilt means are lower for the auto-labels, and in most cases
the standard deviations are larger. These comparisons lead to the conclusion
that the automatic labelled events are examples of typical instances of each
event type. Certain variations of each event type are picked up (e.g. falling
boundaries with minimal early rise). One event type need not be restricted
to a single typical representation (e.g. the rb values suggest that the auto-
labeller is picking flattish continuation rises and sharp final rises, but not

those in between).

The expectation for the synthetic models developed from this data is that
there will be less natural variation accounted for by the parameter prediction
trees, but much of the variation which is retained in the automatic labels will
be accounted for. In terms of the evaluation techniques used on the intonation
generation research already discussed, this means that the assessment of the

trees will show that the trees successfully model the appropriate parameter
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values, while the resulting FO contour will be less like the smoothed original

than the contours generated from manual label models.

Tables 5.13 and 5.14 show the tree scores for the two label sets. The
automatic label trees consistently have higher correlations and generally have
lower RMSE scores, as was predicted. Table 5.15 shows how these tree scores
translate into FO contours. The average scores for the contours generated
from the manual label models, using the exact same validation, training, and
blind test sets (held out for very occasional use), are 37.09 (RMSE) and 0.564
(correlation). These scores are better than those achieved by the models
derived from automatic labels, but they are in the same range, suggesting

that this process is worthy of future research.

5.5 Perception of Synthetic FO

This section places the assessment methods which have been used in the
previous sections into the wider context of intonation evaluation. So far,
only objective methods of evaluating the synthetic intonation contours have
been discussed. This section reviews two experiments in which the contours
generated using the methods described in this chapter have been subjectively
evaluated. First, we re-visit some basic concepts of intonation evaluation, as
introduced in section 3.1. Following this review, we discuss an experiment
which subjectively assessed synthetic intonation developed using the basic
methodology described above. Finally, an experiment which attempts to

link objective and subjective assessment methods is presented.

Subjective tests require human subjects, who judge the synthetic into-
nation in relation to some standard. Synthetic intonation for an utterance

may also be compared against natural intonation for the same utterance us-
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start FO

amplitude

duration

tilt

a

31.59/0.62

49.89/0.326

0.074/0.429

0.413/0.406

arb

26.75/0.567

18.23/0.359

0.08,/0.609

0.527/0.360

afb

19.32/0.695

32.75/0.528

0.053/0.488

0.266/0.776

rb

27.09/0.76

26.75/0.387

0.084/0.379

0.476/0.774

fb

25.34/0.59

29.99/0.447

0.081/0.418

0.459,/0.760

Table 5.13:

Decision tree evaluation for automatic intonation labels

(RMSE/Correlation)

start FO

amplitude

duration

tilt

a

33.04/0.618

46.58/0.25

0.057/0.519

0.427/0.354

arb

30.03/0.540

22.76/0.397

0.118/0.113

0.531,/0.502

afb

28.63/0.471

39.82/0.484

0.06/0.461

0.278/0.447

rb

26.18/0.499

28.42/0.485

0.057/0.733

0.489/0.380

fb

25.66/0.494

43.59/0.345

0.06/0.524

0.486,/0.400

Table 5.14:

Decision tree evaluation for manual

(RMSE/Correlation)

intonation labels

Files
All Auto-labels
Blind Auto-labels
Validation Auto-labels
Train Auto-labels

‘ All Manual Labels ‘

Average RMSE
39.23
40.32
38.16
39.57

37.09 |

Average Correlation | No. of files
0.5271 108
0.4807 9
0.5545 30
0.5212 69

0.564 | 108 |

Table 5.15: Comparison of FO contours generated from models developed
from automatically derived intonation labels and the smoothed original F0
contour for the same utterance. (Manual label figures in italics for compari-
son)
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ing objective measurement techniques. Two common subjective assessment
techniques used with synthesized intonation are pairwise comparison and ac-
ceptability ranking. Pairwise comparison tests, such as those used by de
Pijper [dP83], present subjects with paired synthetic utterances. The sub-
jects are asked to judge which utterance sounds more natural, or which one
sounds like natural speech, as opposed to synthetic speech. The basic suc-
cess criterion is when synthetic and natural intonation are often judged as
equally natural. A second common method for subjectively assessing syn-
thetic intonation is acceptability ranking ([vBP90]). Subjects are presented
with synthesized utterances, which have either synthetic or natural intona-
tion, and are asked to rank the utterance on a scale of how natural, or
acceptable the utterance sounds. An example of such a test, described in

detail in [SMD™98], is discussed in section 5.5.1.

Objective evaluations do not require human subjects, but attempt to as-
sess intonation in a way that relates to what subjects would perceive. As
mentioned above, the current objective evaluation of synthetic intonation
involves use of Root Mean Squared Error and Correlation. These two mea-
surement techniques have been used for a number of intonation evaluation
(e.g. [Ros94], [DBT99]), and were shown by Hermes [Her98] to be better re-
flections of perceived intonation differences than other available metrics. The
standard RMSE provides a measure of how close two contours are to each
other. The correlation coefficient measures the degree to which the variables
are linearly related. Thus, a high correlation coefficient shows a close linear
relation (which should be the case with two similar FO contours from the
same utterance), while a low coefficient shows that the linear relationship is

not close: that the two lines are diverging regularly.
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5.5.1 Acceptability Judgements

As mentioned above, a common way of evaluating synthetic intonation is to
solicit opinions from subjects about the naturalness of a piece of speech gener-
ated with a synthetic intonation contour. One such test has been used which
includes intonation models built as described in this chapter. Syrdal et al
[SMD*98] assesses three different intonation modelling techniques by asking
subjects to rate 144 test utterances (12 texts by 12 synthesis conditions) on
a five-point scale (5=excellent, 1=bad). The synthesis conditions varied syn-
thesizer (two options) and intonation model (six options, including natural
intonation). Forty-three subjects were used in the test. All were adult native
speakers of American English (the test language). The test lasted approxi-
mately one hour, including instructions and time to practice using the scale
and touch screen with which the rating was recorded. The six intonation
conditions were: 1) natural intonation, 2) a rule-based model [JMD], 3) an
implementation of the Tilt model which is based on the methods described in
this chapter, and more specifically follows [DB97], and 4) three variations of
the PalntE model (Parametric Intonation Event, [MC98]) a vector quantized
intonation model similar to Tilt, which predicts its parameters as a vector,

rather than individually.

Unsurprisingly, the natural prosody model received the highest ratings
(3.6260) of the six models. A variation of PaIntE scored second best (3.3430),
with two other variations on PalntE and the rule-based model scoring in the
3.22 to 3.24 range. The Tilt condition scored lowest, (3.143). However, while
there is clearly a difference of ratings, and natural intonation is obviously
better than any of the other models, Syrdal et al do not provide any evidence

of significance between models. Therefore, while there is significance among
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the models as a group, it is unclear if any synthetic intonation model is

significantly better than any other.

This evaluation method has provided some interesting results, but noth-
ing exceptionally useful. It is obvious to the researchers involved that the
synthetic intonation is less natural than natural intonation. However, a use-
ful result is not one which states that natural speech is significantly more
natural than synthetic speech, but one which is able to highlight specific
failings and successes of the synthetic speech. If the test could have shown
how the intonation produced by the best PalntE variation is better than
the other models, then researchers would be able target specific areas of de-
ficiency. Ideally, one wishes to understand what aspects of each model are
successful and what aspects require further work. For example, had this eval-
uation shown that the alignment of the peak in the Tilt-synthesized contours
causes unnatural sounding intonation, then this experiment would have been
developmentally useful. The objective evaluations of the individual decision
trees, as discussed in section 5.3.1, provide the type of specific quality ass-
esment that researchers can use. Subjective experiments which mirror this
lower-level evaluation could be quite useful. Experiments such as this, which
give only gross results, without specific comparisons of different aspects of
intonation, provide a reasonable overview of completed systems, but do very

little for ongoing research.

5.5.2 Linking Subjective and Objective Assessment

Because it can be very difficult to obtain the specific comparisons one may
need for research, it is desirable to have an objective measure which is closely
related to subjective evaluation. Sections 5.3.3 and 5.4 discuss currently

used objective methods for evaluating whole intonation contours: RMSE
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and Pearson’s Correlation. These sections show how different experimental

conditions result in improvements in the comparisons which use these metrics.

However, it is unclear how large an improvement in either metric must
be before it is reflected in perceptual improvement. It is also unclear how
detailed an analysis these metrics provide. Therefore, two other metrics are
presented here, both of which are similar to a basic RMSE measurement.
These metrics were developed with Clark [CD99], and measure F0O using
the Hertz scale. All four metrics are compared to a perceptual examination
in order to relate the objective measures to perceived differences between
contours. An introduction to the new metrics as they compare with RMSE

is followed by a discussion of the perceptual experiment.

The basic RMSE measures the distance between two contours on the time
axis, such that the distance being measured (the dotted line) at regular (e.g.
10ms) points is perpendicular to the time axis, regardless of the FO shape

(Figure 5.6a).

e The Tangential Estimation Method

The tangential estimation method computes an RMSE measurement between
contours at regular intervals. The difference between this method and the
basic RMSE method is that the measurement takes place on a line normal
to the tangent of the contour at each interval on the reference contour. The
assumption underlying this new approach is that a similar rate of FO change
between contours will be reflected by including an aspect of the time domain
with the frequency domain. By removing the restriction of measuring dis-
tances perpendicular to the time axis, time and frequency can be measured

using a single metric.
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Reference Contour

Test Contour

Measured Distance

158

Figure 5.6: Three Objective Evaluation Metrics: A) RMSE, B) Tangential

Method, C) Warping Method
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The basic RMSE typically takes measurements on a frame-by-frame basis,
(e.g. calculating distances every 10ms). The tangential method also works
on a frame-by-frame basis. The difference between the two is not limited
to the angle of the measurement line (dotted on Figure 5.6). The reference
points on the two contours which make up the ends of the measurement line
are also different, which is a result of the different angle of measurement. On
the reference contour (dashed on Figure 5.6), the midpoint between frames is
the point from which the measurement line begins. On the test contour (solid
on Figure 5.6), the intersection between the contour and the measurement
line forms the end point of the measurement line. The measured distances

are then combined in the same way as the basic RMSE metric.

Figure 5.7 shows the process for a single measurement between contours.
If fi(t) is the reference line, and fy(¢) the test line, taken in the frame from

times ¢ to ¢t + 1, then the squared distance (d?) is calculated as shown in
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Figure 5.7: Computing the tangental metric

Equation 5.1 (by translating the time axis to the origin).?

One difficulty with this metric is that if the reference and test contours
are swapped, the measurement value will also change. There are two ways to
combat this difficulty. One is to take a measurement, swap the two contours
(so that the reference from the first measurement becomes the test in the
second), and average the scores. Another way is to always make sure that
one type of contour (e.g. the natural contour) is the reference. The second

method was used in the tests carried out here.

e The Warping Method

The warping method is an attempt to measure the area between two contours.
This area is the difference between the contours. As shown in Figure 5.6,
the tangential method can leave some areas unmeasured, when there is no
intersection between the test contour and the line normal to the reference
contour. Basic RMSE has the same problem if there is no FO at a point in
one contour where there is in the other. Rather than be constrained in any
way by the time axis, the warping method begins with the assumption that
equivalent contours will begin and end at the same times. If they do not, it

is likely that the overshoot will not be caught by either of the other methods.

3Figure 5.7 and related equations taken from [CD99].
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The warping method ensures that such FO mis-alignments are punished in

the evaluation.

Unlike the other metrics, the warping method is designed for use on small
sections of contours. Label files can be supplied which allow the evaluation to
take place on pre-defined contour sections (e.g. falling boundaries or rise-fall
accents), or the algorithm may be used on arbitrary or successive contour

sections, as the user prefers.

Once a contour section is isolated, the length of the section is calculated
as a sum of the distances between frames (taking both time and frequency
into account). This effectively measures the contour section as if it were a
road on a map, following the line of the curve, rather than only one axis
or the other. The sum of the section distances is then divided into a fixed
number of segments (10% of the distance of the reference contour segment).

The RMSE distance calculation is computed at the segment boundaries.

5.5.3 Perception of FO Difference

The subjective evaluation of intonation difference consisted of asking novice
subjects (first and second year undergraduate students) to rate twenty-four
utterance pairs on a five-point scale (0-4). Appendix D contains the list of
utterances used for this experiment. The pairs, bar a control set, consisted of
one stimulus synthesized with the FO which was extracted from the original
utterance (and smoothed) and one synthesized from an F0 generated using
the method described above. The control set of four pairs contained only one
or the other for both stimuli. The stimuli were generated using LPC resyn-
thesis of the original waveform and the imposed FO. The utterances were

presented to the subjects via a web interface over Sennheiser headphones
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using standard audio software on Sun Ultra workstations. The subjects par-

ticipated in the experiment in a quiet, closed computing laboratory.

The data was designed, for lack of a better continuum, to cover a range
of RMSE scores. This design assumed that, even if RMSE is not the best
measure of perceived difference, it is available and should reflect some sort
of difference. Therefore, pairs ranging from 35Hz RMSE to 50Hz RMSE
were chosen, with the ends of the scale less represented than the middle.
The uneven distribution resulted from a desire to find out how much of a
difference subjects could hear in contours on the middle of the RMSE scale,

as this is where most generated contours rest.

Nineteen native speakers of British English took part in the test. The
subjects had a general understanding of intonation when questioned, were
provided with written instructions, and were able to practice using the in-
terface and ask questions prior to beginning the test. The subjects were
instructed to listen to each utterance of a pair as many times as they liked,
and then rank the pair according to how different the intonation of two ut-
terances in the pair sounded to them. As noted above, the ranks ranged from

0 (no difference) to 4 (completely different).

The web-style interface consisted of four pages, each with six stimulus
pairs and written details about how to use the rating scale and an introduc-
tion page with full instructions on their task and seven example pairs. The
example pairs also included example scores to illustrate a rough guide to the
audible differences which the subjects might hear and as an example of how

the web interface worked.

For each stimulus pair, two buttons could be clicked by the subjects - one

to play each stimulus. Five ranking buttons were lined up to the right of the
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stimulus buttons, with the ranking value heading each column. The subjects
could listen to each stimulus as many times as they wanted before choosing
a ranking on the scale. Having made the decision, the ranking was selected

by clicking on the appropriate ranking button. Figure 5.8 shows a sample

page.

Subjects who were able to accurately place the control pairs in the 0
or 1 ratings and used at least four of the five possible rating choices were
included in the correlation with the objective measures. Those who did not
consistently place the control pairs in the 'most similar’ range, or who placed
all utterances in the 0-3 range were not included, as they did not show a
potential to make the sort of fine distinctions that the objective measures

are being tested for.

After the subjects who were unable to meet the criteria mentioned
above were omitted, a Friedman test [GD82| was carried out to determine
whether the subjects were making distinctions between of different FO shapes
(x? = 170.32, df = 23, and p < 0.0001). The test refutes the null hypothesis
(that subjects randomly scored stimulus pairs). This result suggests that the
subjects do make some sort of distinction between FO differences, and that
the subjective results can be compared to the objective measures. Below, this
comparison is presented in order to determine whether the distinctions the

subjects make are the same distinctions that the objective metrics measure.

In order to ensure that the inter-subject scoring was consistent, the raw
scores for each subject were rescaled onto the original 0-4 scale. This allows
the use of scores from subjects who used only four of the possible five ranks
to be included with the other subjects. The scores for each participant were

rescaled by mapping the maximum and minimum scores to the ends of the
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Intonation Evaluation Test

Femember, vou are only listening for intonation similarities and differences.

The range covers pairs which are completely the same ((0); pairs that are mostly the
same, with some small differences (1); pairs which are about half the same and half
different.{2}; pairs which have more differences than similarities {3); and pairs that
hawve few or no similarities at all {4},
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Figure 5.8: Sample page of perceptual experiment interface
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scale (4 and 0) and linearly rescaling the intermediate scores. With all of
the subjects’ scores now on the same scale, it is possible to calculate an
average score for each stimulus pair. This score can then be compared with

the objective metrics.

Table 5.16 shows the Pearson correlation coefficients between the averaged
perceptual scores and the objective metrics. While the segmentation of the
contours into intonation events for objective scoring was originally intended
only for use with the warping method, the segmentation was carried out on
all of the RMSE methods in order to provide an accurate comparison. These

scores are shown in the “Events Only” portion of the table.

Whole Contour | RMSE ~ corr.  tangent warping
perceptual score | .6441  -.5497 .6150 .6003
p=.000 p=.005 p=.001 p=.002

Events Only | RMSE  corr.  tangent  warp
perceptual score | .6534 - .b878 .6499
p=.001 - p=.003 p=.001

Table 5.16: Correlation of perceptual scores and FO contour distance metrics.

One important aspect of the comparison between subjective and objective
scores is that all of the objective scoring methods are significantly correlated
to the perceptual scores. Over entire contours, RMSE clearly provides the
best correlation. Pearson Correlation, though, gives the lowest correlation.
When only the intonation events are evaluated, the difference between RMSE
and the warping method is negligible, but the difference between RMSE and

the tangential estimation method is noticeably larger.

The comparison between objective and subjective scores results in fairly
low scores in all cases. The highest correlation, R = 0.6534, results in ac-

counting for only 42% of the variation among subjective scores (R? = .4269).
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Figure 5.9: Scatter plot of subjective score and RMSE

Clark and Dusterhoff [CD99] offer one possible explanation for this low cov-
erage: the data does not relate to perceived differences. A second possibility
for the low correlation between subjective and objective scores is that the
objective scores are not measuring on the correct scale. It is possible that

measuring the contours on a logarithmic scale would turn up different results.

As Figure 5.9 shows, the consistency of judgements across listeners in
the lower end of the RMSE scale was almost non-existent. Each point in
the graph represents one of the stimulus pairs. The y-axis shows the RMSE
of the pair. The x-axis shows the average ranking which the pair received.
The subjective scores (0-4) were translated into a ranking for each subject.
Ideally, this results in those pairs with an RMSE of 0 being ranked 0-4. Those

pairs scored as 1 would get ranked as 5-8, for example. At the bottom of the

4Graph by R. Clark from the research leading up to Clark and Dusterhoff, 1999
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RMSE scale (RMSE=0), the four pairs which were equivalent were all ranked
in the ten most similar utterances. However, also in that top ten list are five
pairs near the top of the similarity scale (RMSE > 30). If RMSE were a
clear indicator of perceived difference, a regression line from the origin to the
upper right would be evident in this graph. As the graph shows, there is no
grouping of any kind which shows a regression line from the origin to the
upper right. As RMSE correlates most highly with the subjective rankings,
it seems clear that none of the objective measures capture the variation that

the subjects are hearing.

5.6 Conclusions

Perhaps the most important aspect of intonation synthesis to note is the in-
herent difficulty in measuring success. An evaluation of synthetic intonation
which relies on subjective judgements must also account for the basis of those
judgements. Simply determining that an utterance’s intonation sounds nat-
ural, or sounds just like another utterance’s intonation, is only so useful as
its ability to be translated into improvements in an application. Similarly, an
objective metric which shows that the current synthetic FO contour is 15%
more like the original than last week’s synthetic contour is only useful if one

knows whether that 15% results in an audible improvement.

The experiments discussed in this chapter show that it is possible to model
intonation using the Tilt model and regression trees. These experiments
have also shown that the synthetic intonation which results from these trees
is similar to the natural intonation. Measured objectively, the synthetic
intonation approximates the similarity to natural intonation which has been

shown by other studies (e.g. [Ros94], [BH96]).
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The main benefit of generating intonation using the methods described
in this chapter is that individual aspects of intonation modelling may be in-
vestigated. Thus, it is possible to discover both which aspects of intonation
events are being modelled, and what types of features are useful for modelling
each event and parameter type. In the most common event types (accents
and falling boundaries), the RMS error is generally small for each tree. The
distribution of predicted paramenter values, which correlation reflects, is also
acceptable in most cases. The overall comparison of natural and synthetic
intonation contours shows that the research discussed in this chapter results
in intonation which is comparable to previous work using different methods.
Finally, the methodology described in this chapter has been applied to both
manually and automatically annotated databases, and has resulted in rea-
sonably natural sounding intonation contours in both contexts. As the final

section of this chapter shows, assessing synthetic intonation in finer terms is

difficult.

Small improvements in individual tree evaluations are shown to carry
through to the overall comparison between natural and synthetic intonation
contours. One conclusion that can be drawn from the individual tree as-
sessment is that using sub-syllabic feature data to predict Tilt parameter
values improves synthetic intonation. The level of improvement over into-
nation which was generated from trees which did not include sub-syllabic
features was small. Given that the intonation contours from which the trees
were trained were smoothed, a large change in results due to sub-syllabic
features would have been unusual. The fact that these features still play
a part in modelling smoothed FO contours shows that sub-syllabic feature
data are useful in intonation models. The research in this chapter attempts

to determine the utility of feature classes in intonation modelling, so that
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the methodology is applicable to other feature classes as well. If features
describing focus, contrast, or topic structure were to be included in a sim-
ilar investigation, the methodology described above would provide a basis
for determining how each feature type affects timing and scaling factors in
intonation modelling. The limits which were reached in the models discussed
above, especially those involving the tilt parameter, may be overcome if such

higher-level information were included in the model.



Chapter 6

Conclusions

This thesis has discussed a methodology with which fundamental frequency
can be synthesized using statistical models that have been automatically
trained from annotated speech data. The thesis began with an introduction
to the research contained in this volume. This introduction was followed by
a discussion of segmental interactions with intonation. This discussion pro-
vided the background for an important area of investigation within the auto-
matic intonation labelling work which was presented in Chapter 4. Chapter
3 completed the background in intonation theory and experimentation that

is necessary to place the research in chapters 4 and 5 in context.

The research in Chapter 4 addressed basic problems of how to acquire
database annotations. The goal of the research in this chapter was to improve
on previous attempts at modelling FO using acoustic information. Based on
the literature presented in Chapter 2, experiments were performed which
examined acoustic information which is related to both segmental classifi-
cation and FO movement. These experiments showed that including Mel
Frequency Cepstral Coeflicients improved the performance of an HMM mod-

elling methodology which had previously used only FO and RMS Energy data.
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The addition of MFCC information increased the number of correctly iden-
tified intonation events, and in some cases reduced the number of inserted
event labels. The experiments also showed that the accuracy and reliability
of the system suffered with smaller databases. Therefore, this methodology,
while sound, is more useful as an aid to manual annotation until a database
is large enough to create reliable models than as an initial database labelling

technique.

The main body of research in this thesis concerned generating param-
eterized descriptions of FO contours using decision trees which have been
automatically trained from annotated speech data. These descriptions were
then automatically converted into FO contours. Chapter 5 discussed the ex-
periments which were used in the composition of a methodology to produce
such models. This methodology consists of providing information about the
text being synthesized to a regression tree building system and using the
resulting trees to predict parameterized descriptions of the fundamental fre-
quency contour for the synthesized utterance. The use of a single regression
tree for each parameter of each intonation event type allowed an analysis of
how the data features affect the prediction of each parameter. This aspect
of the modelling technique is an improvement on previous research, which
does not present the contribution of different information types within a sys-
tem. Chapter 5 also presents evaluations of FO contours which have been
generated from the parameters predicted by the decision trees. Evaluations
of these contours were shown to compare favourably with similar evaluations
of previous research using the same database. Two different perceptual tests
involving intonation contours generated using systems based on the method-
ology described in section 5.5 were reviewed. These tests showed that 1)

the synthetic contours are not sufficiently good to be adjudged as sound-
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ing natural as often as the natural contours for the same utterances, and
2) perception of intonation does not necessarily agree with commonly used

objective metrics in fine grain comparisons.

The research in Chapter 5 showed that 1) position within a phrase is
important in most aspects of parameter prediction, 2) sub-syllable features
are useful in predicting event timing, both the peak and the duration, and 3)
viewing intonation events in relation to an intonation tier is much more use-
ful in parameter prediction than viewing the events in relation to a syllable
tier. All of these findings are supported by the theoretical and experimental
literature. The fundamental frequency contours generated from the param-
eters predicted by the regression trees are comparable to those produced by
previous research, and sound reasonably natural. The synthesis process was
also carried out using automatic intonation labels which were acquired using
the methods described in Chapter 4. The trees and contours produced in
this experiment were similar to those produced using the manually derived

labels, although slightly less successful.

6.1 Limitations of the Research

The research discussed in this thesis is faced with large obstacles, some of
which have only been partially overcome. The greatest limitation on this re-
search has been the availability of appropriately annotated data. A wide vari-
ety of data was available for this research, but individual speakers’ databases
tended to be quite small. This limitation hampered the ability to train both
the synthesis and analysis models to work with the different speech styles
and voices. This limitation, though, can be overcome with the provision of

a great deal more data and time to ensure its proper preparation.
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A number of related limitations of this research involve the data features
used in model building. Within the intonation analysis task, only a small
number of features were tested. It is quite possible that more features, or
different combinations of the existing features would yield better results.

However, it is difficult to say what other features should be tested.

On the intonation synthesis front, over fifty individual data items are
used in the tree building process. These data items cover more than twenty
features and the extensions of those features to adjacent constituents (e.g.
lexical stress is applied to five syllables for each intonation event, giving five
data items). With such wide coverage, it is difficult to imagine that there are
not enough features being used. In this case, the problem is that each of the
features is used for at least one tree, and therefore should not be removed
from the feature set. Therefore, the obstacle is not that there are too few
features, but that there may be too many features which can be used in the
same way. This problem is compounded by the lack of high-level features.
While, in many ways, this thesis is concerned only with phonetic aspects of
fundamental frequency and low-level, sub-syllabic influences thereon, into-
nation is related to structures on a range of levels. Features which relate to
focus, reference, contrast, and discourse structure do not play a role in the
model training. Partially, this omission is due to the lack of such annotation
in the data. The availability of a proven experimental model which would

lend itself to such annotation would help alleviate the problem.

Perhaps the most perplexing obstacle that this research faces is a way of
objectively evaluating the fundamental frequency contours which are created
by the synthesis system. Within this thesis, the task was taken as one of
determining how closely the model output matches the model training input.

To a degree, this is a successful way of judging the success of the model. This



6.2. FUTURE WORK 174

method was chosen in order to evaluate the overall methodology, the feature
set, and individual aspects of intonation prediction. Evaluating these pieces
of the intonation synthesis system in a way that provides feedback for the
researcher is of more use to research than deciding that thirty of forty-five
listeners prefer model X. Although it may be difficult to determine if the
methods used in this thesis produce intonation which 67% of listeners prefer
over some other method, it is at least clear what causes improvements and

where the methodology could be improved.

6.2 Future Work

Each of the areas researched in this thesis could be enhanced by future ex-
perimentation. Obviously, use of the same methodology on different and
larger databases would prove useful in supporting or amending the current
findings. Within the intonation analysis work, continued investigations of
different types and combinations of acoustic information would be interest-
ing. As mentioned in the discussion above of the limitations of the synthesis
research, including high-level information in the feature set could improve the
system further. Future work which replicates the research in this thesis us-
ing a perception-based pitch scale (in logarithmic domain, rather than linear)
would prove interesting. Often such scales are supported in the literature,
but they are not always supported in system infrastructure. A compari-
son where only the intonation measurement scale differed would provide an
idea of precisely what differences the two methods produce, and how those
differences affect the intonation models. Section 5.5 discusses some recent
collaborative research into the correlation between objective and subjective

evaluation of intonation. Future work in this area would be very beneficial,
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either in developing new metrics or performing more detailed and controlled
experiments. The benefit of objective measurements is that researchers can
easily determine the limitations and future directions of their work. The dif-
ficulty at present is that such measurements are not always reflected in what

people hear when the intonation is part of synthesized speech.



Appendix A

Autolabelling Results

Tables contain results with information as follows:

e Type: One or two stream, number of mixture components in parenthe-

Ses.

Correct: Percent of autolabels which are correct. (see Chapter 4 for

scoring method)

Accuracy: Correct minus the percent of autolabels which are insertions.

e S: Grammar scaling factor

P: Transition penalty (only noted where not 0)

As noted in the main text, each experiment uses a bigram/unigram gram-

mar which has been trained on the database.

In cases where there are two streams, there are stream weights of 1.0 and
0.8 on all states, unless otherwise noted. In the two stream experiments, the
FO0 and energy data are in the first stream, and other accoustic data is in the

second stream.
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SPEAKER F2B

A.1 Speaker F2B

A.1.1 Unnormalized Data

The tables in this section relate to unnormalized F0 and Energy data.

Type Correct Accuracy S
1 Stream (3 components) 77.15 56.37 8
1 Stream (5 components) 73.19 57.03 10
1 Stream (7 components) 74.12 60.06 12
1 Stream (9 components) 75.80 60.12 10
1 Stream (11 components) 77.10 60.33 8
1 Stream (13 components) 78.35 61.04 6
1 Stream (15 components) 77.59 59.63 6
1 Stream (17 components) 77.54 59.85 6
1 Stream (19 components) 74.39 60.17 12
1 Stream (21 components) 77.97 60.44 6

Table A.1: FO and energy + delta 4+ acceleration

Type Correct Accuracy S
1 Stream (3 components) 69.45 44.81 11
1 Stream (5 components) 77.54 53.61 7
1 Stream (7 components) 78.19 54.96 6
1 Stream (9 components) 79.71 58.17 6
1 Stream (11 components) 78.19 57.56 7
1 Stream (13 components) 78.3 58.06 7
1 Stream (15 components) 73.36 56.59 12
1 Stream (17 components) 72.98 57.95 14
1 Stream (19 components) 75.15 52.63 10
1 Stream (21 components) 78.13 5817 7

Table A.2: FO, energy, and zero-crossing (with delta & acceleration)
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Type Correct Accuracy S
1 Stream (3 components) 76.56 52.74 15
1 Stream (5 components) 79.16 58.54 10
1 Stream (7 components) 78.46 60.61 11
1 Stream (9 components) 79.81 59.41 8
1 Stream (11 components) 77.16 61.47 14
1 Stream (13 components) 80.68 61.1 6
1 Stream (15 components) 76.72 60.99 14
1 Stream (17 components) 79.22 53.06 3.0
1 Stream (19 components) 72.98 49.10 11
1 Stream (21 components) 76.23 57.82 13
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Table A.3: F0, energy, and auto-correlation peak (with delta & acceleration)

Type Correct Accuracy S
1 Stream (3 components) 47.42 2230 6
1 Stream (5 components) 49.97 20.13 3
1 Stream (7 components) 49.86 2149 4
1 Stream (9 components) 60.61 21.59 1
1 Stream (11 components) 56.05 24.25 2
1 Stream (13 components) 52.63 2431 3
1 Stream (15 components) 50.89 24.09 4
1 Stream (17 components) 52.85 25.66 3
1 Stream (19 components) 49.81 25.18 5
1 Stream (21 components) 48.72 22.03 4

Table A.4: Auto-correlation peak only (with delta & acceleration)
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Type Correct Accuracy S
2 Stream (3 components) 76.45 57.95 13
2 Stream (5 components) 77.37 58.65 12
2 Stream (7 components) 77.59 58.49 11
2 Stream (9 components) 82.29 60.22 6
2 Stream (11 components) 77.26 61.20 13
2 Stream (13 components) 76.88 59.95 13
2 Stream (15 components) 76.72 61.20 13
2 Stream (17 components) 79.16 6153 9
2 Stream (19 components) 77.86 62.13 12
2 Stream (21 components) 77.21 62.07 13
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Table A.5: F0, energy, and auto-correlation peak (with delta & acceleration)

Type Correct Accuracy S
2 Stream (3 components) 77.26 56.58 11
2 Stream (5 components) 76.83 58.54 12
2 Stream (7 components) 76.02 58.22 13
2 Stream (9 components) 77.16 60.28 12
2 Stream (11 components) 76.23 60.82 14
2 Stream (13 components) 79.11 59.90 8
2 Stream (15 components) 77.54 60.23 10
2 Stream (17 components) 76.94 61.20 12
2 Stream (19 components) 77.48 62.13 12
2 Stream (21 components) 78.35 62.4 10
2 Stream (23 components) 76.83 62.89 13

Table A.6: FO, energy, and auto-correlation peak (with delta & acceleration),
stream weights of 1.0 and 0.6
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Type Correctt Accuracy S
1 Stream (3 components) 80.25 57.24 7
1 Stream (5 components) 80.47 6131 9
1 Stream (7 components) 77.97 60.22 12
1 Stream (9 components) 82.31 61.04 6
1 Stream (11 components) 80.68 61.04 8
1 Stream (13 components) 80.47 61.85 8
1 Stream (15 components) 81.39 60.44 6
1 Stream (17 components) 82.04 60.88 6
1 Stream (19 components) 79.00 64.02 13
1 Stream (21 components) 78.97 64.08 13
1 Stream (23 components) 77.75 63.86 14
1 Stream (25 components) 78.35 64.3 13
1 Stream (27 components) 81.61 64.51 8

Table A.7: FO, energy, and MFCCJ[0-3] (with delta & acceleration)

Type Correctt Accuracy S
2 Stream (3 components) 77.97 59.08 11
2 Stream (5 components) 81.71 60.66 6
2 Stream (7 components) 80.41 62.13 7
2 Stream (9 components) 79.16 61.96 8
2 Stream (11 components) 79.76 62.07 8
2 Stream (13 components) 80.85 63.10 7
2 Stream (15 components) 78.51 61.80 10
2 Stream (17 components) 80.47 63.48 8
2 Stream (19 components) 81.06 61.96 6
2 Stream (21 components) 80.57 624 7

Table A.8: FO0, energy, and MFCC[0-3] (with delta & acceleration)
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Type Correct,  Accuracy S
2 Stream (3 components) 92.91 59.90 11
2 Stream (5 components) 83.99 64.51 13
2 Stream (7 components) 83.78 65.98 14
2 Stream (9 components) 84.21 67.55 15
2 Stream (11 components) 84.48 67.39 15
2 Stream (13 components) 83.99 66.84 15
2 Stream (15 components) 86.92 65.87 10
2 Stream (17 components) 85.89 65.11 11
2 Stream (19 components) 86.20 66.93 12.0
2 Stream (21 components) 85.13 61.01 13

Table A.9: FO and MFCCJall 13] (with delta & acceleration)
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A.1.2 Normalized Data

182

This section relates to experiments which use normalized FO and Energy

data.

Type Correct,  Accuracy S
1 Stream (3 components) 70.7 51.06 12.0
1 Stream (5 components) 72.00 53.87 11.0
1 Stream (7 components) 70.59 51.11 11.0
1 Stream (9 components) 74.55 54.53 7.0
1 Stream (11 components) 75.64 55.34 5.0
1 Stream (13 components) 71.89 54.80 10.0
1 Stream (15 components) 75.42 56.37 7.0
1 Stream (17 components) 75.69 56.70 8.0
1 Stream (19 components) 76.07 57.51 6.0
1 Stream (21 components) 78.19 59.09 6.0
1 Stream (23 components) 73.57 58.06 7.0
1 Stream (25 components) 74.61 57.19 6.0
1 Stream (27 components) 74.33 57.35 6.0
1 Stream (29 components) 74.28 56.92 6.0
1 Stream (31 components) 76.02 58.17 6.0

Table A.10: F0O and energy (with delta & acceleration)
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Type Correct Accuracy S
2 Stream (3 components) 79.65 54.64 12
2 Stream (5 components) 77.43 97.35 17
2 Stream (7 components) 77.10 59.62 18
)

(

(

(
2 Stream (9 components 80.90 60.5 12
2 Stream (11 components) 82.96 60.93 9
2 Stream (13 components) 79.87 59.36 14
2 Stream (15 components) 78.40 59.30 19
2 Stream (17 components) 81.82 62.50 14
2 Stream (19 components) 83.4 63.54 11
2 Stream (21 components) 81.66 63.37 9

Table A.11: F0 and MFCCJall 13] (with delta & acceleration)

Type Correct Accuracy S
2 Stream (3 components) 74.88 51.65 9
2 Stream (5 components) 79.33 57.46 7
2 Stream (7 components) 78.62 58.82 8
2 Stream (9 components) 77.32 60.82 14
2 Stream (11 components) 82.20 60.28 6
2 Stream (13 components) 77.64 58.87 13
2 Stream (15 components) 76.50 60.12 17
2 Stream (17 components) 80.14 62.50 12
2 Stream (19 components) 81.77 63.81 10
2 Stream (21 components) 79.38 63.48 15
2 Stream (23 components) 80.24 64.29 15
2 Stream (25 components) 79.27 63.70 16
2 Stream (27 components) 82.64 63.64 19
2 Stream (29 components) 79.87 63.70 14

Table A.12: FO and MFCC]all 13] (with delta & acceleration), stream weights
of 1.0 and 0.6
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Type Correct Accuracy S
2 Stream (3 components) 71.49 52.82 20
2 Stream (5 components) 77.23 55.46 14
2 Stream (7 components) 78.43 61.00 13
2 Stream (9 components) 80.08 62.14 11
2 Stream (11 components) 78.61 62.63 14
2 Stream (13 components) 80.71 63.46 13
2 Stream (15 components) 82.82 63.9 11
2 Stream (17 components) 83.10 65.34 12
2 Stream (19 components) 81.94 65.26 13
2 Stream (21 components) 80.56 65.67 16
2 Stream (23 components) 82.37 66.48 13
2 Stream (25 components) 83.64 67.73 12
2 Stream (27 components) 84.22 68.01 11
2 Stream (29 components) 81.91 67.53 14
2 Stream (31 components) 83.82 67.89 10

Table A.13: FO and MFCC]Jall 13] (with delta, no acceleration)
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A.1.3 Blind Results
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There are nine news story paragraphs in the blind set. Table A.14 shows

three conditions, as discussed in Chapter 4.

Condition Correct | Accuracy
Best FO/MFCC Combination 85.51 65.89
Best FO/MFCC (without acceleration) | 79.96 59.69
Best FO/MFCC-AC Combination 79.30 62.31

Table A.14: Three test conditions using the blind data set
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A.2 Speaker KDS

In the KDS database, the Correct and Accuracy scores are divided into

All/Major scores (e.g. 53.77/53.59).

A.2.1 Normalized Data

This section relates to experiments which use normalized FO and Energy

data.

Type Corr/Maj Acc/Maj S P
2 Stream (1 component) 53.77/53.59 31.94/35.77 10 0
2 Stream (3 components)  64.81/65.50 44.95/45.64 15 0
9 Stream (5 components)  71.66/71.89 50.98/51.33 6 0
2 Stream (7 components) 74.45/74.8 50.17/52.15 4 0
2 Stream (9 components)  72.82/73.17 52.26/52.73 7 0
2 Stream (11 components) 71.78/72.12 53.66/54.12 8 0
2 Stream (13 components) 68.41/68.76 54.70/55.05 20 0
2 Stream (15 components) 71.08/71.43 54.82/55.17 12 0
2 Stream (17 components) 71.31/71.66 55.86/56.21 12 0
2 Stream (19 components) 71.43/71.78 55.52/55.86 11 0
2 Stream (21 components) 72.24/72.59 55.05/55.40 8 0
2 Stream (23 components) 71.54/71.89  55.75/56.1 10 0
2 Stream (25 components) 70.73/71.08 55.86/56.21 13 0
2 Stream (27 components) 69.45/69.80 54.94/55.28 14 0
2 Stream (29 components)

Table A.15: F0O and energy (with delta & acceleration)
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Type Corr/Maj Acc/Maj S P
2 Stream (1 component) 73.05/73.86 45.53/50.17 9 10
2 Stream (3 components) 77.82/78.4 59.35/60.16 17 10
2 Stream (5 components)  80.49/80.95 54.24/56.79 5 15
2 Stream (7 components)  75.49/76.07 55.86/56.79 10 15
2 Stream (9 components)  76.19/76.77 53.77/54.59 7 15
2 Stream (11 components) 73.64/74.22 54.70/55.40 11 15
2 Stream (13 components) 76.19/76.89 55.52/56.21 16 10
2 Stream (15 components) 75.61/76.19 57.61/58.19 19 10
2 Stream (17 components) 76.77/77.49 55.86/56.56 8 15
2 Stream (19 components) 82.23/82.69 56.91/57.49 6 10
2 Stream (21 components) 73.63/74.22 57.61/58.19 16 15
2 Stream (23 components) 77.82/78.51 57.37/58.07 6 15
2 Stream (25 components) 73.98/74.68 57.72/58.42 7 20
2 Stream (27 components) 77.23/77.82 57.61/58.19 7 15
2 Stream (29 components) 77.23/77.82 59.7/60.28 9 15

Table A.16: FO and 13 MFCC (with delta & acceleration)
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Type Corr/Maj Acc/Maj S P
2 Stream (1 component)  72.47/73.29 45.53/50.06 9 0
2 Stream (3 components)  79.09/79.67 55.98/60.16 5 10
2 Stream (5 components)  78.63/79.21 54.70/56.91 5 10
2 Stream (7 components) 73.52/74.1 56.91/57.84 5 15
2 Stream (9 components)  77.58/78.16 56.1/56.79 5 10
2 Stream (11 components) 72.71/73.29  55.52/56.1 18 5
2 Stream (13 components) 71.66/72.36 55.52/56.33 6 15
2 Stream (15 components)  74.1/74.68 57.03/57.61 10 10
2 Stream (17 components) 73.75/74.45 57.26/57.95 6 15
2 Stream (19 components)  74.22/74.8 59.00/59.58 5 15
2 Stream (21 components) 75.03/75.72 58.42/59.12 10 10
2 Stream (23 components) 77.92/78.51 58.65/59.35 4 10
2 Stream (25 components) 75.38/76.07 58.30/59.00 3 15
2 Stream (27 components) 72.12/72.82 57.14/57.84 7 15
2 Stream (29 components) 75.26/75.96 59.23/59.93 10 10
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Table A.17: FO and 13 MFCC (with delta & acceleration) stream weights of
1.0 and 0.6
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A.2.2 Unnormalized Data
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This section relates to experiments which use unnormalized FO and Energy

data.

Type Corr/Maj Acc/Maj S P
2 Stream (1 component) 53.77/54.59 31.93/35.77 10 0
2 Stream (3 components)  64.81/65.50 44.95/45.64 15 0
2 Stream (5 components)  69.22/69.69 51.22/51.68 11 0
2 Stream (7 components)  69.57/69.92 52.03/52.38 13 0
2 Stream (9 components)  69.69/70.03 53.31/53.66 17 0
2 Stream (11 components) 71.43/71.78 53.77/54.12 11 0
2 Stream (13 components) 68.99/69.34 54.70/55.05 18 0
2 Stream (15 components) 70.61/70.96 54.82/55.17 13 0
2 Stream (17 components) 70.96/71.31  56.1/56.44 12 0
2 Stream (19 components) 69.57/69.92 55.28/55.63 14 0
2 Stream (21 components) 72.82/73.17 55.63/55.98 8 0
2 Stream (23 components) 72.47/72.94  55.63/56.1 9 0
2 Stream (25 components)  70.5/70.96  55.63/56.1 13 0
2 Stream (27 components)  70.03/70.5 54.82/55.28 13 0
2 Stream (29 components) 68.52/68.87 54.70/55.05 17 0

Table A.18: F0 and energy (with delta & acceleration)
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Type Corr/Maj Acc/Maj S P
2 Stream (1 component)  73.05/73.87 45.53/50.17 9 10
2 Stream (3 components)  78.98/79.56 57.03/60.63 7 15
2 Stream (5 components)  79.56/80.02 54.82/56.91 6 15
2 Stream (7 components)  75.49/76.07 55.86/56.79 10 15
2 Stream (9 components)  73.40/73.98 54.24/55.05 6 20
2 Stream (11 components) 75.26/75.82 54.12/54.82 8 15
2 Stream (13 components) 76.19/76.65 56.1/56.56 17 10
2 Stream (15 components) 75.03/75.61 56.56/57.26 12 15
2 Stream (17 components) 72.24/72.94 55.52/56.21 16 15
2 Stream (19 components) 74.33/75.03 55.75/56.45 20 10
2 Stream (21 components) 72.94/73.63 56.91/57.61 18 15
2 Stream (23 components) 72.59/73.29  55.40/56.1 18 15
2 Stream (25 components) 75.03/75.61 57.72/58.30 14 15
2 Stream (27 components) 73.29/73.98 57.42/59.12 11 20
2 Stream (29 components) 77.82/78.51 57.49/58.19 4 15

Table A.19: FO and 13 MFCC (with delta & acceleration)
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A.2. SPEAKER KDS

Type Corr/Maj Acc/Maj S P
2 Stream (1 component)  72.47/73.29 45.53/50.06 9 0
2 Stream (3 components)  78.98/79.56 55.86/60.05 5 10
2 Stream (5 components)  78.74/79.33 54.82/57.14 5 10
2 Stream (7 components)  73.29/73.75 54.59/55.86 4 10
2 Stream (9 components)  76.77/77.35 56.79/57.49 5 10
2 Stream (11 components)  74.1/74.68 56.21/56.91 8 10
2 Stream (13 components) 78.16/78.74 55.98/56.68 10 5
2 Stream (15 components) 75.26/75.84 56.68/57.37 8 10
2 Stream (17 components) 71.89/72.59 56.79/57.49 7 15
2 Stream (19 components) 73.98/74.68 57.49/58.19 5 15
2 Stream (21 components) 74.68/75.37 57.37/58.07 4 15
2 Stream (23 components)  73.40/74.1 57.72/58.42 6 15
2 Stream (25 components) 73.52/74.22 58.19/58.88 7 15
2 Stream (27 components) 79.63/79.33 58.88/59.58 4 10
2 Stream (29 components)  73.40/74.1  59.00/59.7 6 15
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Table A.20: FO and 13 MFCC (with delta & acceleration) stream weights of
1.0 and 0.6
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A.3 Speaker KDW

Like KDS, KDW uses All/Major scores for Correct and Accuracy. Some ex-
periments using the KDW database used a bigram /unigram grammar trained
on the F2B database. Unlike the other databases, this database gave the best
results with stream weights of 1.0 and 0.6. All of the tables below assume
these stream weights. As was noted in the main text, some experiments used
4-state HMMs, rather than the typical 5-state. This is noted in the table

caption where applicable.

A.3.1 Normalized Data

This section relates to experiments which use normalized FO and Energy

data.



A.3. SPEAKER KDW

Type Corr/Maj Acc/Maj S P
2 Stream (1 component)  72.77/74.26 34.90/38.12 5 10
2 Stream (3 components)  71.29/73.27 42.57/45.05 11 10
2 Stream (5 components)  75.74/77.72 48.02/51.73 6 10
2 Stream (7 components)  77.23/78.96 46.78/48.76 12 5
2 Stream (9 components)  75.25/77.23 48.76/52.23 6 10
2 Stream (11 components)  80.2/82.53 49.75/53.46 8 5
2 Stream (13 components) 75.99/77.97 49.75/52.23 7 10
2 Stream (15 components) 75.99/77.72 51.73/53.46 9 10
2 Stream (17 components) 77.47/78.96 51.49/53.21 6 10
2 Stream (19 components) 83.17/84.16 54.70/56.19 10 5
2 Stream (21 components) 80.45/81.93 53.96/55.45 13 5
9 Stream (23 components) 75.49/76.98  53.46/55.2 10 10
2 Stream (25 components) 75.25/76.98 54.45/56.44 11 10
2 Stream (27 components) 75.74/77.47 54.70/56.68 10 10
2 Stream (29 components) 77.72/79.45 51.73/55.45 6 10
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Table A.21: FO and MFCCJall 13] (with delta & acceleration) 4-state hmm
F2B Grammar
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Type Corr/Maj Acc/Maj S P
2 Stream (1 component)  72.77/74.26 35.15/38.37 5 10
2 Stream (3 components)  71.78/73.76  42.57/45.3 10 10
2 Stream (5 components)  75.74/77.72 48.12/51.73 6 10
2 Stream (7 components)  77.23/78.96 46.78/48.76 12 5
2 Stream (9 components)  75.25/77.23 48.76/52.23 6 10
2 Stream (11 components)  80.2/72.43 49.75/53.46 8 5
2 Stream (13 components) 75.99/77.97 49.75/52.23 7 10
2 Stream (15 components) 76.24/77.97 52.48/54.21 9 10
2 Stream (17 components) 80.69/81.68 52.48/53.46 13 5
2 Stream (19 components) 83.17/84.16 54.70/56.19 10 5
2 Stream (21 components) 80.45/81.83 53.96/55.45 13 5
2 Stream (23 components)  75.5/76.98 53.47/55.2 10 10
2 Stream (25 components) 75.25/76.98 54.46/56.43 11 10
2 Stream (27 components) 75.74/77.48 54.70/56.68 10 10
9 Stream (29 components) 78.96/80.45 51.73/53.22 14 5
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Table A.22: FO and MFCCJall 13] (with delta & acceleration) 5-state hmm
F2B Grammar
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Type Corr/Maj Acc/Maj S P
2 Stream (1 component) 83.91/84.65 32.92/35.64 6 0
2 Stream (3 components)  72.77/74.75 40.59/45.54 7 10
2 Stream (5 components)  75.49/77.72 46.53/51.24 6 10
2 Stream (7 components)  82.92/84.41 46.53/53.46 5 5
2 Stream (9 components)  76.73/78.71 47.52/50.25 9 5
2 Stream (11 components) 79.21/81.43 49.01/52.72 8 5
2 Stream (13 components) 76.48/78.46 48.76/52.23 6 10
2 Stream (15 components) 74.75/76.73 51.73/53.71 11 10
2 Stream (17 components) 81.93/82.92 51.98/53.71 9 5
2 Stream (19 components) 79.95/81.43  53.22/55.2 12 5
2 Stream (21 components) 74.50/76.48  52.72/55.2 11 10
2 Stream (23 components) 80.44/82.42 52.23/54.70 10 5
2 Stream (25 components) 73.76/75.49 51.73/53.71 11 10
2 Stream (27 components) 80.94/82.67 52.72/55.94 10 5
2 Stream (29 components) 80.69/82.18 51.73/54.21 10 5
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Table A.23: FO and MFCCJall 13] (with delta & acceleration) 5-state hmm
KDW Grammar
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A.3.2 Unnormalised Data

196

This section relates to experiments which use unnormalized FO and Energy

data.

Type Corr/Maj Acc/Maj S P
2 Stream (1 component)

2 Stream (3 components)  73.02/75.25 36.88/39.12 13 0
2 Stream (5 components)  86.39/86.88 45.54/46.04 9 0
2 Stream (7 components)  81.93/83.66 44.55/46.29 11 0
2 Stream (9 components)  86.14/87.38 44.31/46.53 7 0
2 Stream (11 components) 76.49/77.97 45.05/46.53 16 0
2 Stream (13 components) 77.48/79.70 48.76/50.99 19 0
2 Stream (15 components) 78.71/80.69 44.06/46.04 14 0
2 Stream (17 components) 74.26/76.24 44.06/48.02 6 5
2 Stream (19 components) 75.99/78.47 47.03/51.23 5 5
2 Stream (21 components) 78.71/81.93 44.55/47.77 17 0
2 Stream (23 components) 79.95/82.18 48.02/50.25 16 0
2 Stream (25 components) 81.44/83.17 49.01/50.74 12 0
2 Stream (27 components)  80.2/82.43 50/52.23 13 0
2 Stream (29 components) 77.48/79.95 50/52.48 16 0

Table A.24: FO and MFCCJall 13] (with delta & acceleration) 4-state hmm
F2B Grammar



Appendix B

Synthesis Decision Tree Tables

start_f0 amplitude duration tilt peak_pos
a 164.52/42.08 | 71.94/49.46 | 0.307/0.07 | 0.040/0.48 | 0.052/0.73
arb || 134.59/32.01 | 55.07/28.28 | 0.380/0.07 | 0.377/0.57 | 0.163/0.11
afb || 144.42/31.82 | 84.36/46.53 | 0.362/0.05 | -0.206/0.34 | 0.025/0.06
rb || 145.72/39.06 | 45.92/31.54 | 0.243/0.08 | 0.302/0.56 | 0.119/0.10
b 145.96/34.22 | 63.27/52.52 | 0.204/0.07 | -0.088/0.54 | 0.086/0.86
¢ || 155.48/43.17
sil || 113.53/50.53

Table B.1: Individual Event/Parameter Results for F2B Mean and Standard
Deviation Values (Entries are MEAN/STD)

start _f0 amplitude | duration tilt peak_pos
a 33.04/0.61 | 46.58/0.25 | 0.057/0.51 | 0.427/0.35 | 0.08/0.50
arb || 30.03/0.54 | 22.76/0.39 | 0.118/0.11 | 0.531/0.50 | 0.073/0.53
afb || 28.63/0.47 | 39.82/0.48 | 0.06/0.46 | 0.278/0.44 | 0.597/0.33
rb || 26.18/0.49 | 28.42/0.48 | 0.057/0.73 | 0.489/0.38 | 0.074/0.67
fb || 25.66/0.49 | 43.59/0.34 | 0.06/0.52 | 0.486/0.40 | 0.073/0.67
c 34.17/0.60
sil || 28.96/0.80
Table B.2: Individual Event/Parameter Results for F2B (Entries are
RMSE/Correlation)
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start_f0 | amplitude | duration tilt peak_pos
a 33.79/0.59 | 46.58/0.24 | 0.058/0.49 | 0.424/0.36 | 0.072/0.31
arb || 27.15/0.65 | 20.43/0.50 | 0.119/0.15 | 0.467/0.58 | 0.062/0.57
afb || 28.14/0.47 | 42.84/0.34 | 0.058/0.48 | 0.281/0.41 | 0.056/0.43
rb 26.34/0.50 | 28.03/0.49 | 0.057/0.71 | 0.491/0.37 | 0.073/0.67
fb || 25.57/0.50 | 43.78/0.32 | 0.060/0.50 | 0.480/0.44 | 0.075/0.64
c 34.18/0.60
sil || 28.97/0.79

Table B.3: Individual Event/Parameter Results for F2B - Hand Tuned (En-
tries are RMSE/Correlation)

start_f0 amplitude | duration tilt peak_pos
a 32.82/0.62 | 45.92/0.29 | 0.057/0.50 | 0.425/0.36 | 0.072/0.33
arb || 27.15/0.65 | 20.43/0.50 | 0.123/0.33 | 0.444/0.67 | 0.061/0.57
afb || 28.11/0.45 | 41.68/0.43 | 0.056/0.54 | 0.281/0.41 | 0.056/0.43
rb || 26.34/0.50 | 28.13/0.49 | 0.057/0.72 | 0.491/0.37 | 0.073/0.67
b 25.52/0.50 | 43.74/0.32 | 0.060/0.50 | 0.480/0.44 | 0.075/0.64
c 34.18/0.60
sil || 28.97/0.79

Table B.4: Individual Event/Parameter Results for F2B Further Hand Tuned
(Entries are RMSE/Correlation)

start_f0

amplitude

duration

tilt

peak_pos

a

33.54/0.58

51.03/0.22

0.085/0.26

0.421/0.36

9.668/0.60

afb

24.33/0.39

35.82/0.44

0.067/0.51

0.243/0.51

10.177/0.59

rb

19.97/0.72

22.90/0.46

0.095/0.37

0.407/0.60

10.583/0.60

tb

25.52/0.48

42.19/0.27

0.088/0.30

0.537/0.32

9.691/0.60

C

29.39/0.68

sil

27.43/0.82

Table B.5: Individual Event/Parameter Results for F2B Auto-labels (Entries
are RMSE/Correlation)



start_f0 | amplitude | duration tilt peak_pos
a 18.41/0.52 | 23.65/0.42 | 0.07/0.55 | 0.54/0.36 | 0.09/0.46
afb || 12.26/0.32 | 23.56/0.50 | 0.06/0.52 | 0.21/0.44 | 0.05/0.68
rb || 18.44/0.78 | 25.67/0.44 | 0.06/0.59 | 0.53/0.77 | 0.16/0.64
fb || 15.98/0.74 | 30.38/0.59 | 0.07/0.6 | 0.48/0.27 | 0.09/0.56
m || 21.10/0.57 | 12.90/0.58 | 0.07/0.57 | 0.64/0.37 | 0.07/0.52
c 22.5/0.59
sil || 14.89/0.96
Table B.6: Individual Event/Parameter Results for FHL (Entries are
RMSE/Correlation)
start_f0 amplitude | duration tilt peak_pos
a 19.26/0.46 | 24.45/0.34 | 0.08/0.29 | 0.54/0.35 | 0.1/0.33
afb || 12.26/0.32 | 23.56/0.50 | 0.06/0.54 | 0.21/0.45 | 0.06/0.53
rb || 18.44/0.78 | 25.67/0.44 | 0.06/0.59 | 0.53/0.77 | 0.16/0.64
fb || 16.20/0.74 | 28.32/0.64 | 0.07/0.61 | 0.49/0.26 | 0.09/0.60
m || 21.10/0.57 | 11.86/0.60 | 0.07/0.57 | 0.64/0.37 | 0.07/0.52
¢ 22.5/0.59
sil || 14.89/0.96

Table B.7: Individual Event/Parameter Results for FHL without sub-syllable

features (Entries are RMSE/Correlation)

ev_f0 amplitude | duration tilt peak_pos
a 9.49/0.64 | 11.44/0.39 | 0.05/0.55 | 0.44/0.49 | 0.08/0.45
afb | 3.73/0.77 | 6.85/0.81 | .04/0.76 | 0.17/0.78 | 0.02/0.91
fb | 6.32/0.65 | 9.95/0.72 | 0.04/0.77 | 0.49/0.59 | 0.06/0.44
m 3.55/0.9 | 14.94/0.83 | 0.03/0.88 | 0.84/0.43 | 0.06/0.87
c 11.57/0.61
sil || 10.31/0.98
Table B.8: Individual Event/Parameter Results for KDT (Entries are

RMSE/Correlation)
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start_f0 amplitude duration tilt peak_pos

a 218.23/22.02 | 32.96/23.38 | 0.263/0.084 | 0.160/0.53 | 0.070/0.10
rb 129.16/28.2 | 27.18/22.85 | 0.180/0.040 | 0.284/0.88 | 0.094/0.12
m || 211.26/17.73 | 17.56/14.09 | 0.229/0.073 | -0.039/0.52 | 0.049/0.08
afb || 209.76/17.55 | 56.62/29.76 | 0.346/0.080 | -0.374/0.28 | -0.034/0.08
fb 200.00/23.05 | 37.84/32.75 | 0.201/0.077 | -0.267/0.45 | -0.031/0.12
c 109.81/14.12

sil 48.73/49.24

Table B.9: Individual Event/Parameter Results for KDT Mean and Standard
Deviation Values (Entries are MEAN/STD)

start_f0 amplitude | duration tilt peak_pos
a 11.87/0.32 | 11.93/0.24 | 0.06/0.28 | 0.50/0.30 | 0.07/0.17
afb || 4.94/0.38 | 7.70/0.45 | 0.05/0.25 | 0.23/0.36 | 0.05/0.43
b 7.69/0.22 | 11.51/0.26 | 0.06/0.52 | 0.41/0.08 | 0.07/0.39
m 8.77/0.53 | 7.20/0.19 | 0.05/0.21 | 0.60/0.1 | 0.08/0.23
¢ No Tree
sil No Tree

Table B.10: Individual Event/Parameter Results for KDT without sub-
syllable features (Entries are RMSE/Correlation)



Appendix C

Tilt Parameter Prediction
Trees (see disk)

The trees which are associated with experiments and tables within this the-
sis are located on the accompanying computer disk. Each database is rep-
resented by a directory (“f2b,” “fhl,” and “kdt”). Within those directories,

the trees are named according to the following convention:

accents.txt Prediction trees for all accent parameters
fb.txt Prediction trees for all falling boundary parameters
rb.txt Prediction trees for all rising boundary parameters
afb.txt Accent/falling boundary trees

arb.txt Accent/rising boundary trees

minora.txt Minor accent trees

sil_c.txt Silence and connection trees.
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C.1. F2B TREES 202

C.1 F2B Trees

The trees in this section correspond to Table B.2 from Appendix B. These

trees are found on the accompanying disk, in directory “f2b.”

C.2 FHL Trees

This section contains two sets of decision trees. The first set corresponds
to the standard feature set, as shown in Table B.6, Appendix B. The sec-
ond set of trees was trained without the subsyllable features, as shown in
Table B. The standard feature trees are located in directory “fhl,” subdirec-
tory “standard.” The trees trained without subsyllable features are in “fhl,”

subdirectory “nosubsyl.”

C.3 KDT Trees

This section contains KDT parameter prediction trees which corresponds

with Table B.8 in Appendix B. These trees are found in directory “kdt.”



Appendix D

Stimuli for Synthesis
Perception Experiment

All stimuli for this experiment come from the Boston University Radio News
Corpus [OPSH95]. A label precedes the transcript of each utterance. This la-

bel notes the story number (f2bst##), paragraph number (p#), and section
number (s#).

Introduction Page Utterances:

f2st03pbsl : Boston is already divided, says Boscan, in terms of class, race

and ethnicity.
f2bst06p2s2 : But by the time the drug shows up in Boston...
f2bst09p4s4 : ... should the state have to buy out some land owners.

f2bst32p4sl : Several prominent Democrats in the environmental move-

ment...
f2bst14p3sl : Attorney General James Shannon.

f2bst07p4s2 : ... but not at Barney Frank, who paid for sex when he was

still in the closet.
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Test Stimuli:

f2bst29p4s4 : For WBUR, I'm Margo Melnicove.
f2bst05p3s2 : ... while they await a state sanitarian who may never show.
f2bst12p6s2 : ... Joseph lerna, is another longtime Ballaga observer.

f2bst29p4s3 : The same amount, says UNICEF, that the worlds nations

spend on weapons each day.

f2bst05p3s3 : Director of the Division of Healthcare Quality, Priscilla Plato

f2bst09phs2 : ... it will take at least a year to finalize regulations ...

f2bst09pbsl : If the measure wins the legislature’s final approval before this

session ends ...
f2bst34pls7 : The operation would also be good for Marshall’s profit margin

f2bst34pls2 : Marshall says it would take about ten million dollars to equip
the building for glass making ...

f2bst29p4s1l : Meyere says every chief of state will profess his or her love for

children ...

f2bst29p4s2 : ... but their budgets primarily reflect a love affair with the

arms race.

f2bst32p4s2 : ... including former U.S. Senator Paul Tsongas who are back-

ing Silber, agree.

f2bst03pHs2 : And in a fragmented city he says, one finds a great deal of

violence.
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f2bst34pls4 : Marshall says the venture would be good for Grafton ...
f2bst32p4s3 : Attorney Douglas McDonald, a specialist in environmental law

f2bst06p2s6 : The hospital, the Mayor’s Office, the school system, police and

others ...
f2bst14p2s2 : the criminal justice system’s state of total crisis.
f2bst18p2s1 : Jonie says the old ways are also important.
f2bst32p4s6 : ... and says the quote beaver thing was unfortunate.
f2bst09p4s6 : ... and the state may be hit with a series of costly lawsuits.
f2bst32p4s4 : ... says Silber’s got his vote because of his anti-C.L.T. stance.
f2bst34p1s6 : And Marshall says, it would be good for the environment ...

f2bst29p4s7 : The same amount, says UNICEF, that the worlds nations

spend on weapons each day.

f2bst07p4sl : Boston city counselor David Scondras who’s gay is plenty an-

gry ...
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