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ABSTRACT

In a research world where many human-hours are spent la-
belling, segmenting, checking, and rechecking various lev-
els of linguistic information, it is obvious that automatic
analysis can lower the costs (in time as well as funding) of
linguistic annotation. More importantly, automatic speech
analysis coupled with automatic speech generation allows
human-computer interaction to advance towards spoken di-
alogue. Automatic intonation analysis can aid this advance
in both the speaker and hearer roles of computational dia-
logue. Real-time intonation analysis can enable the use of
intonational cues in speech recognition and understanding
tasks. Auto-analysis of developmental speech databases al-
lows researchers to easily expand the range of data which
they model for intonation generation.

This paper presents a series of experiments which test the
use of acoustic data in the automatic detection of Tilt into-
nation events. A set of speaker-dependent HMMs is used
to detect accents, boundaries, connections and silences. A
base result is obtained, following Taylor [8], by training
the models using fundamental frequency and RMS energy.
These base figures are then compared to a number of ex-
periments which augment the F0 and energy data with cep-
stral coefficient data. In all cases, both the first and second
derivative of each feature are included. The best results
show a relative error reduction of 12% over the baseline.

1. INTRODUCTION

The body of research into manual and automatic intonation
analysis systems and techniques has been growing rapidly
in the last few years. It is notable that only two moder-
ately successful automatic intonation analysis systems re-
late to the current trends in intonation description. Osten-
dorf and Ross [5] use a system which works with sylla-
bles to determine pitch accent location and type. Taylor
[8] takes a waveform and determines pitch accent loca-
tion from acoustic information derived from the waveform.
Both of these systems are fully functional, but neither is
as successful as one might like for use in speech recogni-

tion/understanding systems or as a database labelling tool.

The goal of the intonation analysis research detailed in
this paper is to create a system which can automatically
label speech with intonation information. Spoken lan-
guage understanding systems can benefit from the struc-
tural and pragmatic information which intonation often
conveys. Current trends in speech processing have in-
creased the need for large corpora. Stochastic speech syn-
thesis methods, including those used for intonation mod-
elling, require a great deal of data to be effective. While
word recognition is seen to have reached a level suitable
for application, automatic intonation analysis is in its in-
fancy. Manually labelling speech databases for intonation
is recognized as difficult and time consuming. Automatic
labelling can decrease both time and funds spent on build-
ing the databases from which theoretical models and viable
applications can be built.

Automatic intonation analysis methods which require other
types of prior analysis have achieved some success in the
past, provided that the prior steps are highly successful.
However, error introduced by initial analyses of syllable,
segment, and prosodic phrase boundaries can render use-
less a model which requires them. In addition to the po-
tential problems from prior analyses, such systems are less
likely to assist in further speech recognition tasks, such as
text disambiguation, as the output of such systems is re-
quired prior to intonation analysis. Therefore, a model
which does not rely on any possibly inaccurate prior lin-
guistic interpretation of the speech signal should provide an
improvement in applicability and quality over other types
of models.

This paper discusses an extension of the idea behind Tay-
lor’s intonation analysis method. This extension is to ex-
pand the acoustic data used for intonation analysis to in-
clude information about cepstral coefficient data. To place
this research into a wider context, basic intonation analysis
problems are presented.



2. INTONATION ANALYSIS

Intonation analysis generally involves three basic tasks:
event detection, event identification, and event-syllable as-
sociation. Detection of intonation events involves deter-
mining where, in the speech signal, accent and boundary
events are located. Identification of intonation events con-
sists of giving names to each event. In the Tilt model, for
example, identification involves determining whether an
event is an accent, a boundary, or perhaps a combination of
both. Using the ToBI model, the process involves not only
determining whether the event is an accent or boundary, but
what the tones are that make up the event. The third task,
association, is the act of linking an event with a portion of
linguistic text (e.g. syllable nucleus, demi-syllable, sylla-
ble, word, or phrase). This paper is concerned with event
detection. However, the model-building process involves
first building models of individual event types, and then
using all of the smaller models to detect events in novel
speech. Therefore, the detection process utilizes models
of specific event types, but the detection evaluation counts
two different event types as being equivalent. Details of the
use of this evaluation technique are discussed below.

3. EVALUATION

The output of the various experiments is evaluated in terms
of three basic measures: percent of detected labels which
are correct, accuracy (correct minus percent of detected
labels which are incorrect), and error (100% minus accu-
racy). While seemingly simple, this evaluation scheme re-
quires a definition of correctness. With intonation, correct-
ness is, to some extent, in the ear of the listener. For the
purposes of this paper, a detected label is deemed correct
when it overlaps an original event by at least 50%. This
loose definition allows for the equivalent of two human la-
bellers disagreeing on the exact location of an accent within
a word, while agreeing that the word is accented.

As mentioned previously, the task being carried out in this
study is primarily one of event detection. However, there
is a degree of event identification involved as well. Each
event type has a Markov model built for it. Events are de-
tected on the basis of fitting any one of the event models.
Therefore, during evaluation, an accent in the original label
file and a detected falling boundary, if fulfilling the timing
requirement for correctness, result in a correct event detec-
tion.

The principle reason that this loose definition of correct
matching is acceptable is that, in the Tilt intonation model,
events of all types are described using the same parame-
ter set. Therefore, event types are really a convenience for
the human interpreter, and are not necessarily important for
computing applications. Additionally, studies have shown

that humans will agree to a greater extent on the location of
an intonation event than on its type [3], [6].

4. DATA

The research is primarily based on 45 minutes of radio
news broadcast from the Boston University Radio Corpus
[4], speaker F2B (over 5000 intonation events). Other cor-
pora examined are three databases spoken by the author
(male American English speaker). Of these three, one is a
TIMIT-style database (KDT - 2000+ events), one is a series
of weather-related sentences (KDW - 2400+ events), and
the third is a museum guide (KDS - 3200+ events). Each
corpus has been hand-labelled with Tilt intonation labels.
The intonation event inventory for this study is accents, ris-
ing boundaries, falling boundaries, and concatenated ac-
cents and rise/fall boundaries (this represents an extended
inventory of the Tilt model).

The acoustic information was extracted using the follow-
ing methods. In each case, the fundamental frequency was
derived using Taylor’s Intonation Contour Detection Al-
gorithm [9] which provides a smoothed, interpolated F0
trace. The smoothing algorithm uses windows of 105ms
(first pass) and 35ms (second pass) to remove outlying
points, but to leave behind as much contiguous data as
possible (thereby providing as much micro-intonation in-
formation as possible while removing isolated outlying F0
points). The Mel Frequency Cepstral Coefficients were
calculated using the HCopy function of the Entropic HTK
package. The energy information was extracted from En-
tropic’s get f0 output. The F0 and energy values were nor-
malized on a scale of -1 to 1 for each database individually,
based on the mean and standard deviation of the respective
values.

5. METHODOLOGY

The Hidden Markov Models used in these experiments are
created using Entropic’s Hidden Markov Model Toolkit
[10]. In each case, unless otherwise noted, five-state, left-
to-right HMMs are used. The states roughly represent the
beginning, rise, peak, fall, and end of a pitch event. Tran-
sitions exist from state to state serially, as well as from be-
ginning to peak and peak to end. By allowing the skipping
of states, the models match a conceptual model where a
pitch event is rise-fall, rise, or fall (e.g. the Tilt intonation
model). One experiment with a four-state model (conceptu-
ally leaving out the peak state) was undertaken. No notice-
able difference was found between the four- and five-state
models, with the relative error rates separated by less than
one hundredth of a percentage point.

The models were trained on 70% of the speech data, and
tested on 30%, except in the case of the F2B database,



where the test set contains 20% of the data and 10% was
held out for blind testing at the end of all experiments.

All of the tests were constrained by a bigram/unigram
grammar which was built from the corpus being tested.
Models were trained using odd-numbers of Gaussian com-
ponents from 1 to 29. Scores were obtained for each set
of models. Only the best results of each database are re-
ported here. For each database, initial evaluation of a gram-
mar scaling factor was undertaken to determine the gen-
eral range of productive grammar weighting values. The
weights tested ranged from 3 to 20 (where 0 is no reference
to the grammar at all).

A similar set of tests examined the use of an external transi-
tion weighting (to weight from the command line the tran-
sition probabilities). A negative value lowers the transi-
tion probability (which reduces insertions), while a posi-
tive value raises the transition probability (which increases
insertions). Values were tested from -60 to 30 at five-point
intervals.

Most of the scores which are reported in this paper were
achieved with constraints optimized on the test data, for
speed and efficiency. However, the HMMs and optimized
constraints which received the best scores were also used to
automatically label the blind (held-out) set once all other
experiments were complete. This score is comparable to
the score received for the test set, as is discussed below.

6. EXPERIMENTS

A portion of Taylor’s study examines event detection of
the F2B data, and is the basis of the baseline experi-
ment. Taylor built models of intonation event types us-
ing F0 and RMS energy in various forms. The portion
of his research which relates to this study used normal-
ized F0 and RMS energy, together with the first and sec-
ond derivatives of each feature. The results of the exper-
iments which are relevant to this chapter are 79% of de-
tected events correct, and 59% accurate (error of 41%).
Taylor’s use of normalized values stems from his desire
to create a speaker-independent analyzer. Both normalized
and non-normalized values were used in the research dis-
cussed here. First, non-normalized F0 and RMS energy
were modelled, with results (Base 1) in Table 1 of 78%
correct and 61% accuracy (error of 39%).

Correct Accuracy Error
Taylor 79% 59% 41%
Base 1 78% 61% 39%
Base 2 78% 59% 41%

Table 1: Comparison of baseline results

As these results were reasonably close to Taylor’s, normal-
ized F0 and RMS energy were modelled in order to pro-
vide a direct comparison to [8]. The results of this experi-
ment (Base 2) were 78% correct and 59% accuracy (error
of 41%). The close similarity of these results allows for a
reasonable comparison between any results in this chapter
and [8].

The use of cepstral coefficients reflects some of the ex-
perimental findings in the literature. Spectral tilt and gen-
eral formant information are represented in cepstra. Camp-
bell and Beckman [1], among others (e.g. [7] [2]) , have
provided support for links between spectral tilt and the
existence of pitch events. A variety of formant informa-
tion can provide useful information about the type of seg-
ments associated with a given pitch event. Such informa-
tion should be useful in lowering the number of pitch move-
ments which are incorrectly analysed as intonation events.

Table 2 shows results from experiments with non-
normalized F0 and all thirteen MFCC (all data for all ex-
periments includes first and second derivatives).

Accuracy Relative Error
67.5% -15%

Table 2: Accuracy and Relative Error Compared to Base-
line of experiments using Mel Frequency Cepstral Coeffi-
cients and F0

Instead of simple F0 information for the next series of ex-
periments, normalized F0 was used, in order to allow di-
rect comparison between this work and previous work [8].
Table 3 shows the results for the two best weightings for
the normalized F0 and MFCC experiments. The smaller
weighting produces similar, but slightly better error reduc-
tion.

Weight Weighted Relative Error
with F0 to Baseline

0.8 63% -10%
0.6 64% -12%

Table 3: Error of experiments using Mel Frequency Cep-
stral Coefficients to augment Normalized F0 and energy,
with relative error

The relative error reduction of the MFCC experiments is
encouraging, but it could also be misleading. The purpose
of this research is partly to remove insertion errors from au-
tomatic detection. The manner in which error is calculated
allows for an error reduction without a decrease in inser-
tions (by improving correct detection). While an increase
in correct analyses is beneficial, it is partially a by-product



of the drive for lower insertions. Therefore, an investiga-
tion of all three evaluation metrics is useful to determine
whether using MFCCs to reduce insertions has been a suc-
cess.

Correct Accuracy Error
Base 1 78% 61% 39%
Non-normalized
MFCC 84% 67% 33%

Taylor 79% 59% 41%
Base 2 78% 59% 41%
Normalized
MFCC 80% 64% 36%

Table 4: Comparison of results to baselines and Taylor
1998

Table 4 shows a comparison of the MFCC experiments
with the respective baselines and [8]. As accuracy is correct
minus the percentage of detections which are insertions (in-
correct), it is important not only that the correct score rises,
but also that the gap between correct and accuracy shrinks.
The non-normalized experiment shows a rise in both cor-
rect and accuracy scores, resulting in a reduction of error.
However, one may note that the relative percentage of in-
sertions has remained the same (17 points). This means
that the error reduction, while welcome, is not the result
of reduced insertions. The results of the normalized data,
in contrast, show both an improvement in correct identi-
fication and a reduction of insertions (from 19 points 16
points). While the normalized data does not show as large
an improvement over Base 2 as the non-normalized data
shows against Base 1, the improvement appears to be on
a wider scale. With the experiments on F2B finished, the
HMM set and constraints which produce the improvement
over Base 2 (the normalized data) were used to automati-
cally label the previously unseen 10% of the database. The
resulting scores of 85% correct and 66% accuracy (34%
error) show that the methodology was not overly biased to-
wards the data used in optimizing the constraints. Table 5
shows how the manual and automatically recognized labels
compare. These labels were taken from the unseen dataset.

7. DISCUSSION

The level of improvement which is achieved by adding cep-
stral information to the intonation analysis process indi-
cates that acoustic data which reflects the type of segmental
text associated with an intonation contour is useful for into-
nation analysis. In order to press this claim, three databases
were tested in addition to F2B. As discussed above, each
database is substantially smaller than F2B. Therefore, no
blind set was held out for further use, primarily because
it would consist of no more than a paragraph or two. In-

Manual Labels Recognized Labels

End Time Label End Time Label
0.027 sil 0.040 sil
0.150 c
0.358 a 0.510 a
0.618 c 0.590 c
0.863 a 0.850 a
1.020 c 0.980 c
1.270 a 1.240 afb
1.479 c 1.310 c

Table 5: Example manual and automatic label comparison

Correct Accuracy

Normalized Data

F0 + Energy 71.08 56.21
F0 + MFCC (weight 0.8) 77.82 60.28
F0 + MFCC (weight 0.6) 75.96 59.93

Non-Norm

F0 + Energy 71.31 56.44
F0 + MFCC (weight 0.8) 73.98 59.12
F0 + MFCC (weight 0.6) 74.1 59.7

Table 6: Analysis Results for Database KDS

stead, the tests rely on the assumption gained from F2B
that, given a reasonable sized database, the blind set will
score similarly to the general test set.

Table 6 shows how KDS, the largest of these databases
scored. The most notable aspect of these scores is that on
all counts, they are considerably lower than those for F2B.
The list of possible reasons for this difference is extensive.
The most likely reason is that the database is 60% the size
of F2B. This is born out by KDW giving no cohesive re-
sults. For this very small database, the process failed to
result in HMMs capable of producing sensible label files at
all.

This paper has shown that it is possible to improve upon
previous methods of automatic intonation analysis without
relying on interpretations of acoustic data (e.g. phone, syl-
lable, word annotation). The methods described in this pa-
per work exclusively with acoustic information which is
readily available from the speech signal. The most impor-
tant difference between this research and previous research
which uses only acoustic data is this work presents a way
of approaching the interaction between the supraglottal vo-
cal tract and intonation. This paper began expressing a de-
sire to increase the speed with which such data can become
available. To this end, a method which provides better au-
tomatic intonation annotation than other comparable tech-
niques was introduced. The limited success this method



achieved on a 45 minute speech database can be useful in
developing the type of bootstrapped database growth that
other areas of speech recognition encountered fifteen years
ago.
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