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ABSTRACT
The ability to automatically identify a speaker’s accent would
be very useful for a speech recognition system as it would
enable the system to use both a pronunciation dictionary and
speech models specific to the accent, techniques which have
been shown to improve accuracy. Here, we describe some
experiments in unsupervised accent classification. Two tech-
niques have been investigated to classify British- and American-
accented speech: an acoustic approach, in which we analyse
the pattern of usage of the distributions in the recogniser by a
speaker to decide on his most probable accent, and a high-level
approach in which we use a phonotactic model for classification
of the accent. Results show that both techniques give excellent
performance on this task which is maintained when testing is
done on data from an independent dataset.

1. INTRODUCTION

Until recently, adaptation of speech recognisers to the voices
of new speakers has been viewed purely as a signal-processing
problem of compensating for differences in the acoustic signals
used to train the recogniser and the signals from the new speaker.
However, the variation in the speech signal caused by different
accents is fairly systematic and can be dealt with more pow-
erfully at a higher level than that of signal-processing. Differ-
ent accents give rise to several differences in the realisation of
a phrase, the most significant from the point of view of auto-
matic speech recognition being that non-native accents may use
a different subset of phonemes from those used by native speak-
ers and/or a given text may be realised as a different sequence
of phonemes in different accents. Since the pronunciation dic-
tionaries used by speech recognisers are usually based upon
pronunciations for a single accent group, differently-accented
speech is likely to have a higher error-rate.

It is impractical to address this problem by adding more
pronunciations to the dictionary, as the increase in the number
of alternatives increases decoding time and generates additional
confusions which may worsen performance [8]. However, some
recent studies ( [3], [6]) have shown that the use of an accent-
specific pronunciation dictionary can improve the performance
of a speech recogniser. Although it unlikely that accent-specific
pronunciation dictionaries will ever be available for every iden-
tifiable accent of a language, such dictionaries already exist for
the major accents of English and automatic techniques for con-
structing them are being researched [6].

In this paper, we compare two techniques to automatically
classify accent. Our aim has been to examine the robustness
of techniques which require as little as possible prior knowl-
edge of and pre-processing of the speech and which could be

fairly easily incorporated into current speaker-independent (SI)
recogniser architectures. Accordingly, both of the techniques
described here are unsupervised i.e. do not require a transcrip-
tion of the speech uttered and operate within the framework of a
single SI recogniser rather than using a separate recogniser for
each accent (as in e.g. [7]).

We have examined a “low-level” technique, which works on
the acoustic decoding level, and compared its performance with
a technique which uses higher-level knowledge of the phono-
tactics of the accent. The low-level technique attempts to clus-
ter speakers according to their accent. It bases the clustering
on the way in which a speaker “uses” the distributions within
the recogniser across the range of speech sounds. An attractive
feature of this technique is that it could be added immediately
to an SI recogniser with very little effort. We have compared
this technique with an established technique for language iden-
tification (which has also been used for accent identification) in
which a phonotactic model is constructed for each different ac-
cent and is used to classify the decoded phoneme string from the
recogniser.

2. CLASSIFICATION TECHNIQUES

2.1. Mixture-component usage (MCU)

This technique is based on the premise that, if we assume that
speech from all accents of interest has been used to train the
recogniser, speech spoken with one of these accents will oc-
cupy a distinct set of regions in the pattern-space. This assump-
tion will undoubtedly not hold for all speech from all speakers,
and for some sounds, different accents may well occupy many
of the same regions. However, if enough sounds are available,
these effects should cancel to make classification possible us-
ing regions where the assumption is good. By estimating and
recording at training-time the regions in the pattern space used
by speakers with known accents, we can then classify the accent
from a new speaker. It would be possible to identify the regions
in which speech with a certain accent lies by clustering directly
data from several speakers who use this accent, but such an ap-
proach would be difficult to apply within a recogniser. An alter-
native is to model the distributions of the speech sounds using
a Gaussian mixture-density and to then identify which compo-
nents of this mixture are most frequently used by speakers of a
certain accent. If a small number of components were used to
model the data within a state, this approach would be too coarse.
For this reason, we use a semi-continuous HMM (SCHMM) [5]
to model the speech. In an SCHMM, each state distribution is
modelled as a weighted sum of a large set of Gaussian compo-
nent densities (we used 256) which are shared between all the



states. This set of components covers the complete speech space
i.e. all accents used in the training data.

The technique uses a form of speaker clustering based on
usage of mixture components. At training time, we record for
each speaker, the index of the most likely mixture-component
associated with each speech input frame. We also record the
identity of the most likely state for each frame. When all the
speech from the speaker has been processed, we find the iden-
tity of the most frequently occurring mixture component associ-
ated with each state of each speech model. Hence when training
is complete, speaker Si has associated with him/her a vector Ui
of dimension 44 models × 3 states = 132. The components of
Ui,Ui(k),k = 1, . . . ,132, are the indices of the mixture compo-
nents most often used by the speaker in each state of each model.

The speaker clustering then proceeds as follows:
1. Construct a matrix D of distances between each mixture

component in the SCHMM, where D(k, l) is the distance
between components k and l;

2. Estimate the distance di j between each speaker pair Si,S j

in the training-set: di j =
k=132

∑
k=1

D(Ui(k),U j(k));

3. Cluster the speakers into N clusters, where N is the num-
ber of accents and record the centroids of the clusters.
Associate an accent with each cluster.

We found that this speaker clustering procedure separated the
accent groups reasonably well: one cluster contained 29 Ameri-
can speakers and 13 British speakers and the other no American
and 16 British speakers. At testing time, the procedure of esti-
mating a vector of the most-often used mixture components in
each state is applied to the speech from the speaker. The result-
ing vector is then classified as belonging to one of the N accent
clusters and hence the accent is classified.

2.2. Phonotactic model

Previous studies have shown that phonotactics (i.e. the syntax
of phonemes in a language) can be utilised to aid identification
of both language (e.g. [9]) and accent (e.g. [7]). These studies
have generally estimated language- or accent-specific diphone
probabilities using the phonetic output from the recogniser. The
phoneme recogniser used in our experiments had a phone ac-
curacy of about 45%, so that only about 20% of the diphones
available for use in the models are correct. There may be diffi-
culties in using the recogniser output to train diphone probabil-
ities if the recogniser errors are inconsistent (i.e. if a certain in-
put phoneme sequence is decoded differently on different occa-
sions) or if there are certain error patterns which are “preferred”
by the recogniser, regardless of the accent of the input speech.
Therefore, we have experimented with estimating these proba-
bilities directly from an accent-specific pronunciation directory
(which we assume would be available in a real system) and then
using only legal diphones (i.e. diphones observed in the pronun-
ciation directory) for classification. In this case, many diphones
output by the recogniser will not be legal diphones. Such di-
phones do not contribute to the classification of accent and are
effectively ignored in our algorithm. Incorrect diphones which
are legal contribute noise to the classification which should aver-
age out if enough diphones are used. We also experimented with
using measures of confidence [4] to identify correctly decoded
diphones but found that this gave only a very small improve-
ment. A single set of phoneme-level acoustic models was used
to provide output for both phonotactic models.

The phonotactic bigram models were constructed for both
American and British English by using the phonetic pronuncia-
tions supplied in the BEEP pronunciation dictionary [1] for the
British model and the pronunciations in the CMUDICT dictio-
nary [2] for the American model. The probabilities of occur-
rence of diphone di in American accented speech (Pr(di|A)) and
in British accented speech (Pr(di|B)) were estimated directly
from the entries in these dictionaries by counting. The amount
of information I(di) for discrimination of the accent supplied by
diphone di can be estimated as follows:

I(di) =
2

∑
j=1

Pr(A j,di) log2
Pr(A j,di)

Pr(A j)Pr(di)
bits, (1)

where A1 = A (American accent) and A2 = B (British accent).
A high value for I(di) implies that di supplies a high amount of
information about the identity of the accent, but does not tell us
which accent is more likely. Hence we define

J(di) = sgn(Pr(di|B)−Pr(di|A))I(di). (2)

J(di) is positive for any diphone that occurs more frequently in
British accented speech than in American and negative if the
situation is reversed. Any diphone not occurring in the pronun-
ciation directory has I(di) = 0.

The distribution of the diphones in the dictionaries is highly
skewed, some diphones occurring thousands of times and some
a handful. Hence the estimates of the probabilities of occurrence
for diphones which occur very infrequently are subject to large
uncertainty. Associated with each diphone probability estimate
Pr(di) is a variance Vi = Pr(di)(1−Pr(di))/Ni where Ni is the
number of times diphone di occurred in the dictionaries. In order
to alleviate the problem of poor estimates of Pr(di) caused by
infrequently occurring diphones (which could have spuriously
high information associated with them), we approximated the
variance of I(di) by Vi and normalised I(di) by dividing by

√
Vi.

To classify the accent, the input speech is decoded using
the phone recogniser and adjacent pairs of phones are concate-
nated into diphones. We use a sequential technique in which
classification is achieved when at time T a score JT is outside
one of two thresholds. JT is derived as follows: we propose a
null hypothesis H0 that the speaker is “mid-Atlantic” i.e. that
the frequency of his/her diphone usage is taken in equal pro-
portions from American and British accented speech. Define
Ik = I(d f (k)) where f (k) gives the index of the k’th diphone
in the sequence of diphones output by the recogniser. Under

H0, the expected value of JT =
T
∑

k=1
Ik is zero and the variance

Var(JT ) of JT = σ2
I /T where σ2

I is the variance of the set of
values of I(di). Hence if at time T , the value JT is outside
±2∗SD(JT ) (where SD(JT ) =

√
Var(JT )), then with 95% con-

fidence, the accent is British if JT is positive and American if JT
is negative.

Figure 1 shows the value of JT for a typical American-
accented sentence. The two 95% confidence thresholds (which
follow a 1/

√
T ) curve) are shown as dotted lines. It can be seen

that the lower threshold is exceeded after about 30 diphones
have been processed and the accent is then classified as Ameri-
can.
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Figure 1: Value of JT for an American-accented sentence

3. EXPERIMENTAL DETAILS AND
RESULTS

3.1. The data and the models

We used the WSJ database to provide American-accented
speech and the WSJCAM0 database to provide the British-
accented speech. Speech from 98 speakers from WSJ and 98
speakers from WSJCAM0 was used for training, a total of 8596
sentences. This speech was processed to give a 12-component
MFCC vector every 100 ms to which velocity, acceleration coef-
ficients and a log-energy coefficient were added. Cepstral mean
normalisation was applied to each sentence processed. The
WSJCAM0 utterances were provided with an (automatically
generated) phonetic segmentation of each utterance and the WSJ
data was segmented automatically using pronunciations in the
CMUDICT dictionary to force alignment. The speech-data was
pooled and used with the appropriate segmentations to train a
set of 44 monophone models and a silence model. Each model
consisted of three emitting states with no skips allowed between
states. For the MCU experiments, the models shared a com-
mon set of 256 mixture components in an SCHMM structure
(section 2.1). The speaker-clustering (section 2.1) was done
using a subset of 29 speakers from each of the American and
British databases. For the phonotactic experiments, “conven-
tional” HMMs using two-component mixture distributions for
each state were used. In both cases, a mixture component had a
separate diagonal covariance-matrix associated with it. For test-
ing, speech from a set of 40 speakers from WSJ and 19 speakers
from WSJCAM0 was used.

3.2. Results on original databases

For both methods, classification accuracy was tested after
1,2, . . . ,8 sentences were provided by each of the test-set speak-
ers. Results for the MCU technique are shown in figure 2. 10 of
the 59 speakers are mis-classified after 3 sentences are available
but this falls to 4 speakers after 4 sentences are available and 2
speakers after 6. Classification using the phonotactic technique
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Figure 2: Results using mixture component usage
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Figure 3: Results using phonotactic models

is done by noting the duration for which the score JT lies out-
side each of the two 95% confidence thresholds. The accent is
classified as the accent whose threshold was exceeded more of-
ten. In practice, very few speakers produced scores which lay
outside both thresholds and the most commonly-observed be-
haviour was for JT to exceed one of the thresholds and then
remain outside it (as shown in figure 1). However, if the score
remains within the thresholds after all the diphones have been
seen, the result is “unclassified”. The results in figure 3 show
that when there is only a small amount of data available, the
technique is liable to produce the result “unclassified”. How-
ever, after 4 sentences are available, there are no unclassified or
misclassified speakers.

3.3. Results on an independent database

The American and British accented speech was derived from
two separate databases recorded under different conditions.
Cepstral mean normalisation was used on the data in an attempt
to alleviate any overall spectrum differences between the two
datasets, but we were concerned that the “accent recognition”
demonstrated here might be no more than identification of two
sets of data which differed in their acoustic characteristics and
which were represented in both the training and the test data.
We therefore ran an experiment to verify the techniques on a
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Figure 4: Results using mixture component usage on TIMIT
data
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Figure 5: Results using phonotactic models on TIMIT data

third independent set of data. Sentences from twenty speak-
ers from the American-accented TIMIT database (dialect region
one) were tested using the same method as described in sec-
tion 3.2. Results are shown in figures 4 and 5. For both tech-
niques, the same pattern of fewer unclassified and misclassified
speakers as more data becomes available is shown and the fi-
nal classification performance is comparable to that achieved on
non-independent data. These results encourage us to believe that
both techniques are robust, at least for data recorded under lab-
oratory conditions. At time of writing, we are validating the
techniques on an independent British-accent database.

4. DISCUSSION

In this paper, we have investigated two approaches (low- and
high-level) to automatically identifying accent and reported re-
sults on the problem of discriminating American- and British-
accented speech. Both approaches used simple techniques
which did not require training multiple recognisers for each
accent and which could be easily integrated into a real recog-
niser. Both were effective and achieved high classification per-
formance. Moreover, when a completely independent dataset
was used, performance was maintained. We are encouraged by
these results and now intend to compare the techniques on a

more difficult problem in which there are several accents. We
aim to improve the MCU technique by associating with each
state, for each speaker, a distribution rather than a single mixture
component and by refining the classification technique to use a k
nearest-neighbour approach. The phonotactic technique will be
enhanced by improving the diphone probability estimates and
extending the information measure to multiple accent classes.
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