
SABLE: A STANDARD FOR TTS MARKUP

R. Sproat
�
, A. Hunt

�
, M. Ostendorf

�
, P. Taylor

�
, A. Black

�
, K. Lenzo

�
, M. Edgington

�

�
Bell Labs – Lucent Technologies,

�
Sun Microsystems,

�
Boston University,�

CSTR – University of Edingburgh,
�
Carnegie-Mellon University,

�
BT Labs

ABSTRACT

Currently, speech synthesizers are controlled by a multitude of
proprietary tag sets. These tag sets vary substantially across syn-
thesizers and are an inhibitor to the adoption of speech synthe-
sis technology by developers. SABLE is an XML/SGML-based
markup scheme for text-to-speech synthesis, developed to ad-
dress the need for a common TTS control paradigm. This pa-
per presents an overview of the SABLE specification, and pro-
vides links to sites where further information on SABLE can be
accessed.

1. INTRODUCTION

There is an ever increasing demand for speech synthesis (TTS)
technology in various applications including e-mail reading, in-
formation access over the web, tutorial and language-teaching ap-
plications, and aids for the handicapped. Invariably, an applica-
tion that was developed with a particular TTS system A cannot be
ported, without a fair amount of additional work, to a new TTS
system B, for the simple reason that the tag set used to control
system A is completely different from those used to control sys-
tem B. The large variety of tagsets used by TTS systems are thus a
problem for the expanded use of this technology since developers
are often unwilling to expend effort porting their applications to a
new TTS system, even if the new system in question is of demon-
strably higher quality than the one they are currently using.1

SABLE is an XML/SGML-based [2, 1] markup scheme for text-
to-speech synthesis, developed to address the need for a common
TTS control paradigm. SABLE is based in part on two previous
proposals by a subset of the present authors: the Spoken Text
Markup Language (STML – [5]) and the Java Speech Markup
Language (JSML — [4]).

The SABLE markup language is being developed with the follow-
ing goals in mind:

� Synthesizer control: enables markup of TTS text input, for
improving the quality and appropriateness of speech output.

� Multilinguality: the tagset should be appropriate for any lan-
guage.

� Ease of use: SABLE should not require specialized knowl-
edge of TTS or linguistics, though users with such experi-
ence should be able to apply their knowledge.

1One might imagine that the industry “standard”, Microsoft’s SAPI,
has solved this portability problem, but this is in fact not the case: only
minimal requirements of compliance are required for a system to be able
to claim that it is SAPI compliant, and thus there is no guarantee that
the same set of tag specifications will yield comparable results when used
with two distinct “SAPI-compliant” systems.

� Portability: provides application developers with a consis-
tent mechanism for controlling synthesizers from different
companies and on different platforms.

� Extensibility: SABLE should be able to evolve to support
new features in future releases. Furthermore, to encourage
research, SABLE should allow individual synthesizers to
support enhanced features without compromising the porta-
bility of SABLE text.

SABLE, like its predecessors, supports two kinds of markup: the
first – termed text description in STML, and structural elements in
JSML – marks properties of the text structure that are relevant for
rendering a document in speech. In the current version of SABLE,
text description are handled by the DIV tag, whose attribute TYPE
may be set to such values as sentence, paragraph or even stanza;
and by SAYAS, which marks the function of the contained region
(e.g. as a date, an e-mail address, a mathematical expression, etc.),
and thereby gives hints on how to pronounce the contained re-
gion. The second kind of markup – STML’s speaker directives or
JSML’s production elements – control various aspects of how the
speech is to be produced. Falling into this latter category are tags
such as: EMPH (marks levels of emphasis); PITCH (sets into-
national properties); RATE (sets speech rate); and PRON, which
provides pronunciations as phonemic strings.

In both its generality and its coverage, SABLE is superior to ex-
isting markups such as Microsoft’s SAPI [3], or Apple’s Speech
Manager control set. Whereas the syntax of other schemes is
typically ad hoc, SABLE’s is based on XML/SGML, a widely-
used standard. Secondly SAPI and other markup schemes provide
tags only for speaker directives, not for text description. Text-
description information, for example, that a particular boundary
in a text corresponds to the end of a line in a table (e.g., � DIV
TYPE=x-tl � ), can in principle be used by a TTS system to advan-
tage to produce reasonable speech output that marks auditorily the
presence of that boundary. One does not necessarily want to have
to instruct the synthesizer to use a particular intonation pattern, or
to implement the break in a particular fashion: one might prefer
simply to mark the presence of the boundary in a fairly abstract
way, and assume that the system will do something reasonable
with that information. Text-description is explicitly designed to
allow that kind of abstract specification.

2. TAGS AND ATTRIBUTES

The draft specification of SABLE V0.2 contains the following
tags and attributes; in many cases the meaning of the attribute
is fairly obvious and we dispense with a description in such cases.
Full descriptions of these, and other details, can be found at the
URLs listed in Section 4.. Note that the terms container element
and empty element are standard technical terms in SGML/XML:



they denote, respectively, tags that consist of both a beginning and
end tag, and thus contain enclosed text; versus tags that consist
only of an end tag, and which are thus empty since they contain
no enclosed text.

In addition to the attributes listed, every tag allows the MARK
attribute, which sets an arbitrary mark. This can be used by spe-
cific SABLE-compliant TTS engines to report back to the calling
application that it has reached the given location.

2.1. Speaker Directives
� EMPH (container element): set the emphasis of the con-

tained text.

– LEVEL (numeric, descriptive)
� BREAK (empty element): sets an intrasentential, prosodic

break at current position.

– LEVEL (numeric, descriptive)

– MSEC (numeric)

– TYPE (descriptive): a punctuation symbol that repre-
sents (roughly) the kind of intonation contour to be
associated with the material preceding the break (e.g.
‘?’ to mark “question” intonation).

� PITCH (container element): sets properties associated with
pitch of the enclosed region.

– BASE (numeric, descriptive)

– MIDDLE (numeric, descriptive)

– RANGE (numeric, descriptive)
� RATE (container element): sets the average speech rate of

the enclosed region.

– SPEED (numeric, descriptive)
� VOLUME (container element): sets the amplitude of the en-

closed region in terms of the available range of the engine.

– LEVEL (numeric, descriptive)
� AUDIO (empty): load and play an audio URL starting at the

given point.

– SRC: URL of audio document

– MODE: specifies whether to play in background or
not

– LEVEL: level of audio document relative to synthetic
speech

� ENGINE (container): substitute the DATA for the contained
text if the system happens to be using the engine specified
by ID.

– ID: id for the TTS engine

– DATA: character string to be substituted for the con-
tained text

� MARKER (empty): anchor point for MARK attribute (see
below) not otherwise associated with a tag.

� SABLE (container): specifies the document as a SABLE
document.

� PRON (container): substitute the specified pronunciation for
what would normally correspond to the contained text.

– IPA: character string in Unicode IPA

– SUB: attempt at “phonetic” spelling in the language
of the enclosing text

– ORIGIN: iso639 identifier for the language of origin
of the enclosed text

� LANGUAGE (container): specifies the language of the con-
tained text.

– ID: iso639 identifier for the language

� SPEAKER (container): defines properties of the speaker
speaking the contained text

– GENDER

– AGE (descriptive)

– NAME: “name” of a speaker if a particular engine is
being used

As an example of the use of some of these tags, consider the
following example from a hypothetical e-mail reader that uses
SABLE markup. Since e-mail readers have access to information
about at least some structural aspects of the input — e.g. header
information about the sender, subject and date, this information
can be used to control the synthesizer’s behavior in useful ways.
For example consider the following marked-up example derived
from the e-mail’s header:

<DIV TYPE="paragraph">New e-mail from
<EMPH>Tom Jones</EMPH>
regarding <PITCH BASE=high RANGE=large>
<RATE SPEED="-20%">latest album</RATE>
</PITCH>.</DIV>
<AUDIO SRC="beep.aiff">

The subject information (“latest album”) is highlighted auditorily
by setting a higher base pitch and larger pitch range, and by slow-
ing down the speech by 20%. Finally, the header is terminated by
an audible beep (“beep.aiff”).

2.2. Text Description
� SAYAS (container): define mode in which contained text is

to be said.

– MODE: description of mode (e.g. date, time, phone,
currency . . . ) in which contained text is to be read

– MODETYPE: secondary specification further quali-
fying MODE (e.g., date is to read in order day-month-
year)

� DIV (container): classifies the contained region as a struc-
tural text type of type TYPE

– TYPE: type of the division (e.g. sentence, paragraph
. . . )



As an instance of the SAYAS tag, consider the rendering of the
date “4/5/98” via the U.S. versus non-U.S. methods. These two
ways of expanding the string can be specified as:

<SAYAS MODE=date MODETYPE=MDY>4/5/98</SAYAS>

and

<SAYAS MODE=date MODETYPE=DMY>4/5/98</SAYAS>

respectively. Specifications of this kind are unavailable in other
inline markup schemes (e.g. SAPI), but they are useful to have
since they have the potential to reduce cross-synthesizer incon-
sistencies. That is, without SAYAS specifications of the kind
specified above, one cannot control whether a new system will
pronounce “4/5/98” as “April 5, 1998” or “May 4, 1998”. The
behavior for SABLE-compliant engines is, however, guaranteed.

2.3. Non-Standard Extensions to SABLE

SABLE is designed to function as a well-defined standard in
which the same text will be handled consistently by multiple syn-
thesizers. SABLE is also intended to function as a tool for re-
search on speech synthesis and as a tool for innovation. As such,
it is expected that research systems will support tags, attributes
and attribute values not defined in the SABLE specification, and
that SABLE text will be generated for specific systems which in-
cludes those tags and attributes. Where such extensions prove
useful and become generally supported they can be proposed as
an addition to the standard specification.

To clearly distinguish tags, attributes and attribute values that are
non-standard they should include an “X-” prefix and optionally
an engine identifier. A non-standard tag for providing an engine-
specific pronunciation string would look like:

<X-ME-PRON PHON="i" DUR="120"/>

where ME is “My Engine” and the X-ME-PRON element in-
serts an /i/ phoneme with a duration of 120 msec understood by
“My Engine”. Here, because the PHON and DUR attributes are
embedded in a non-standard element, they are implicitly non-
standard attributes. A non-standard attribute of a standard tag
would look as follows:

<PRON X-ME-PHONES="ka:t">cat</X-ME-PRON>

or

<EMPH LEVEL="strong"
X-PITCHACCENT="H*+L">word</EMPH>

The first example provides the pronunciation for cat in a format
that is understood by “My Engine”. Other synthesizers will ignore
the attribute.

The second example includes both a standard attribute — LEVEL
— and a non-standard attribute — X-PITCHACCENT. A system
that understands the non-standard attribute will apply the “H*+L”
accent when producing string emphasis on ”word”.

Finally, a non-standard attribute value might look like:

<DIV TYPE="x-dialog-close">...</DIV>

The “x-dialog-close” is a non-standard value of the standard
TYPE attribute which is currently specified as being either “sen-
tence” or “paragraph”. This non-standard value could indicate
that the contents of the element are the end of a dialog turn.

If an engine gets a non-standard tag, attribute or attribute value
in its input text that it does not know, it simply ignores it. For
example, in the X-ME-PHONES example, a synthesizer that ig-
nores the tag will try to say the word cat. Wherever possible,
non-standard tags and elements should be designed so that output
is not substantially impacted if ignored.

3. FURTHER ISSUES

This section addresses two issues: adding support for new TTS
engines in SABLE, and generating SABLE markup for multiple
TTS engines.

3.1. Adding support for a new TTS engine

SABLE may be implemented as either an SGML-based language
or as an XML-based language. XML is a subset of SGML of-
fering a simpler definition of markup languages that are easier to
implement.

As most synthesizers already have their own idiosyncratic markup
language, the simplest method for implementing a SABLE inter-
preter is by translating the SABLE tags directly into the particular
synthesizer’s own markup escape sequences. There a number of
free XML parsers and such translations can even be done directly
in languages such as PERL. A complete translation of the file in
a pre-processing stage will be sufficient for many cases, though
when the input files are very big, a more integrated approach may
be required.

When a particular engine does not support a tag it can (mostly)
ignore the tag and simply synthesize the text contained within it.
The tags are designed such that this is a reasonable fallback po-
sition as it is well known that different TTS engines may support
quite different functionality. Where ignoring tags becomes prob-
lematic is in the SPEAKER and LANGUAGE tags.

We have allowed an engine-independant mechanism for specify-
ing speakers but when a desired GENDER/AGE does not exist,
the implementation should make a reasonable decision. Often a
document may simply require one voice, plus an alternate voice
the gender/age of which is not crucial. Although the NAME at-
tribute may be used to specify a speaker by name, that is usu-
ally not going to work across engines: one possible solution —
one which has not yet been agreed upon — is to allow a few
standard names that an implementation should normally define,



e.g. MALE1, MALE2, FEMALE1, FEMALE2, and VOICE1,
VOICE2 when gender is not relevant. Such a mechanism is more
likely to work across engines.

Dealing with the LANGUAGE tag when an engine does not sup-
port that language is a more difficult task. In the Festival im-
plementation of SABLE, for example, the system simply says
“Something in X” when a section of text is within marked as be-
ing of language X, where Festival does not support that language;
there is of course some question about which language this com-
ment should be said in.

3.2. Generating SABLE markup for multi-
ple TTS engines

By using the ENGINE tag it is possible to make use of engine-
specific functionality but our perceived use of SABLE is where
the markup text is generated quite independantly of the engine
used to render it as speech. In fact, one can imagine the synthesis
engine running on a local machine while the text is generated by
some web-based application elsewhere on the net: the advantage
of this is that relatively low bandwith will be required between the
machines and high quality audio can be generated locally.

When writing applications that generate SABLE markup it is
fairly easy to write in a TTS-engine-independant way. Using rel-
ative and descriptive values for attributes such as the PITCH and
RATE tags is much more likely to work across synthesizers than
absolute values. Also given that engines may potentially ignore
tags when they do not support the functionality, the text can be
arranged such that this will still sound reasonable.

As we primarily see SABLE markup being generated by appli-
cations rather than written by hand, using an existing standard-
ized markup paradigm makes this much easier. We also envis-
age stand-alone applications which can translate existing docu-
ments into SABLE markup. For example, e-mail messages are
structured, and a convertion program could be written that marks
headers, quoted sections etc. using SABLE tags that would allow
any SABLE-compliant TTS engine to render it reasonably. Con-
verters for existing document formats such as LATEXand MS Word
could also be written.

In the case where the document format is already an XML/SGML
type language, such as HTML, existing document translation sys-
tems can be exploited. HTML may be augmented with cascading
style sheets (CSS) (http://www.w3c.org/css/) which would make
translation to SABLE very simple.

4. FURTHER INFORMATION

A number of SABLE-related resources are publicly available. The
latest draft of SABLE, along with the latest SABLE XML DTD,
can always be found at the following web addresses:

� http://www.bell-labs.com/project/tts/sable.html
� http://www.cstr.ac.uk/sable.html

One can also find on-line demos of subsets of SABLE at those
sites.

Experimental tools for SABLE are also available at the Edinburgh
site: XML-based parsers/interpreters are available to interface be-
tween SABLE and Festival, and between SABLE and the Bell
Labs/Lucent Technologies TTS system. The tools can be down-
loaded and adapted for one’s own favorite TTS system, or else
they can be used as the basis for developing one’s own SABLE
application.

Finally, there is an e-mail discussion group for SABLE. To join
this, send a message to sable-subscribe@east.sun.com. To suc-
ceed as a standard that benefits both commercial and academic
users, it is important for SABLE to be designed with input from
many sources. In addition to informing the speech community of
the status of the SABLE initiative, it is our hope that this paper
will increase participation and interest in its development.

5. REFERENCES

1. Consortium, W. W. W. Working draft: Extensi-
ble markup language (xml)version 1.0 part 1: Syntax.
http://www.w3.org/TR/REC-xml, 1998.

2. Goldfarb, C. The SGML Handbook. Oxford, Clarendon Press,
1990.

3. Microsoft. Microsoft Speech Software Development Kit Devel-
oper’s Guide, version 2.0 ed. Microsoft, Redmond, WA, 1996.
Version 2.0.

4. Microsystems, S. Java Speech Markup Language specifi-
cation. http://java.sun.com/products/java-media/speech/,
1997.

5. Sproat, R., Taylor, P., Tanenblatt, M., and Isard, A. A markup
language for text-to-speech synthesis. In Proceedings of the
Fifth European Conference on Speech Communication and
Technology (Rhodes, 1997), ESCA.


