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ABSTRACT

In this paper a method of integrating a model of suprasegmen-
tal duration with a HMM-based recogniser at the post-processing
level is presented. The N-Best utterance output is rescored using
a suitable linear combination of acoustic log-likelihood (provided
by a set of tied-state triphone HMMs) and duration log-likelihood
(provided by a set of durational models). The durational model
used in the post-processing imposes syllable-level elastic con-
straints on the durational behaviour of speech segments.

Results are presented for word accuracy on the Resource Man-
agement database after rescoring, using two different syllable-like
constraint units, a fixed-size N-phone window and simple (no con-
straint) phone duration probability scoring.

1. INTRODUCTION

Although traditional Hidden Markov Models (HMMs) have
proven to be highly successful at acoustic classification they in-
herit an implausible durational model through the mathematical
behaviour of their state transition probabilities. Hidden Semi-
Markov Models [7] have partly overcome this problem by replac-
ing the discrete probability associated with a state’s self-transition
with a continuous duration probability distribution. However, the
utility of this treatment of duration is constrained by its assump-
tion of the Markovian principle of independence at the supraseg-
mental level. This assumption seems to be at odds with previous
theoretical studies on segmental duration ([6], [11], [10]) which
focus on suprasegmental effects.

More recently, research in the field of speech recognition has fo-
cussed on modelling durational behaviour at the suprasegmental
level to account for individual theoretical phenomena (e.g. post-
vocalic context [4] and speech rate [5]). A more complete ac-
count of the full spectrum of theoretically accepted suprasegmen-
tal durational effects has also been presented in [9], with a view to
improving HMM-based recognition through re-scoring of N-Best
sentence output.

In this paper a method of integrating a model of suprasegmen-
tal duration with a HMM-based recogniser at the post-processing
level is presented. The N-Best utterance output is rescored using
a suitable linear combination of acoustic log-likelihood (provided
by a set of tied-state triphone HMMs) and duration log-likelihood
(provided by a set of durational models). The database used in this
task (Resource Management) and the baseline HMM architecture
used to obtain the N-Best Lists and acoustic log-likelihood scores
are described in section 2.

Post-processing of HMM N-Best lists is not a new technique.
However, the durational model used in the post-processing is dif-
ferent in that it imposes syllable-level elastic constraints on the
durational behaviour of speech segments. The elastic constraint
durational model proposed in this paper is based upon previous
work in the field of speech synthesis [3]. The model definition and
how it is integrated with the HMM at the post-processing level are
discussed in detail in sections 3 and 4.

The proposed model of duration is tested, using a variety of con-
straint units including two different syllable-like units, a fixed-
size window of 3 phones and individual phone units. All the above
treatments are repeated for phone sets derived using a number of
levels of prosodic subcategorisation. The prosodic contexts for
which the phoneme data is subcategorised are chosen according to
a stepwise CART tree correlation analysis. The experimental de-
sign and the choice of prosodic subcategorisations are discussed
in more detail in section 5.

2. MATERIALS

The utility of the proposed elastic constraint model is tested on the
Resource Management (RM) database. The database is first sep-
arated into 3 speaker-independent sets of utterances for training
(3990 utterances), cross-validation (1110 utterances) and testing
(900 utterances). A set of multiple mixture, cross-word, (tree-
based) clustered state, tied triphones with back-off biphones and
monophones is then trained on the training set.

The phonetic segmentation required for the durational model is
obtained from the training set using the fully trained HMMs in
forced alignment mode and the dictionary used for training and
recognition is a most likely pronunciation dictionary with a single,
fixed phonetic transcription for each word.

In recognition mode, the HMMs are required to produce a list of
the 30 best-scoring hypotheses for each test and cross-validation
utterance, using a word-pair grammar. The best performance
achieved on the test set of utterances is 94.19% word accuracy
on the top-scoring hypothesis and 98.73% word accuracy on the
most accurate hypothesis out of the top 30.

The latter figure quoted is the maximum accuracy achievable,
given only the top 30 hypotheses to choose from. Thus, in re-
lying on an N-Best list as our input for rescoring, we have sacri-
ficed 1.27% word accuracy. In assessing the utility of the duration
model proposed in this paper, 98.73% is considered to be a perfect
score.



3. THE ELASTIC CONSTRAINT MODEL

The concept of elastic constraints is based upon previous work in
the field of speech synthesis. The elasticity hypothesis [3] sug-
gests that, within a syllable, phonemes behave like springs of dif-
ferent lengths (mean durations) and elasticities (standard devia-
tions). That is to say that if the syllable lengthens it is hypothe-
sised that all its constituent phonemes should lengthen in propor-
tion to their elasticities. i.e. the ratio of a phoneme’s lengthening
to its elasticity remains constant throughout the syllable.

In [3], Campbell and Isard state that “All segments in a given syl-
lable fall at the same place in their respective [duration] distribu-
tions” i.e For any given syllable, there exists a number,

�
, such

that, for all segments within that syllable
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For a given speech segment, its Z-score is defined as its nor-
malised distance, in units of standard deviation, from its mean
duration.

 !���"���$# ���%�����'&(��)+*-,.���)+*-,.� (2)

For a given syllable, its K-Score is then defined as the average Z
score of the phonemes within the syllable.
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Strict adherence to Campbell and Isard’s elasticity hypothesis
would imply that all phones within a syllable have the same Z-
score, and hence the syllable K-score is exactly equal to all phone
Z-scores within the syllable.

A measure of a syllable’s deviation from this hypothesis is known
as K-Deviation. This is defined as the root mean square Z-score
deviation from the syllable K-score, calculated over all phones
within the syllable. A zero K-Deviation thus corresponds to a
syllable’s perfect fit to the Elasticity Hypothesis.
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In reality, syllables don’t exactly fit the elasticity hypothesis.
However, this paper tests the hypothesis that strict elasticity is
simply an underlying norm, from which any variance is deter-
mined systematically as a result of prosodic contexts. Identifying
the main causes of such systematic variance and factoring these
effects out of the data may lead to a useful model of duration,
based on underlying elastic constraints.

3.1. Methodology

In order to assign a likelihood score to an utterance’s durational
pattern, a probability has to be assigned to every syllable’s K-
deviation. It was found in [8] that, for a small database of pho-
netically rich sentences, syllable K-Deviation was well modelled
by a set of gamma distributions, defined solely by the number
of phones contained in the syllable. Thus, K-Deviations are cal-
culated for all syllables in the training set, from which a set of
gamma distributions are derived.

However, monophonic syllables always exhibit zero K-Deviation.
Therefore, an alternative method of scoring is required for these
syllables in order that hypotheses aren’t favoured purely because
of the number of monophonic syllables they contain. To this
end, gamma distributions for individual phonemes which occur
in monophonic syllables are computed from the training data and
all phonemes that constitute monophonic syllables within a given
hypothesis are scored against these gamma distributions.

4. POST-PROCESSING

To rescore an utterance, its acoustic log-probability is first lin-
early combined with the total N-phone syllable K-Deviation log-
probability for the utterance.G � AIH9JLK C � A�M &(N C G � AIH J C �ON�P Q )+) G � AIH 3 C (5)

whereR H J = probability of acoustic event for an utterance
R H 3 = probability of a durational K-Deviation for an N-

phone syllable

The resulting log-probability is then linearly combined with the
monophonic syllable durational log-probabilities to arrive at a fi-
nal combined acoustic and durational score.G � AIH )7S-)7T>/ C � A�M &VU C G � AIH9JLK C �2U P Q )7) G � AIH 8WC (6)

whereR H 8 = probability of a given duration for a phoneme occurring
as a monophonic syllable

In the above calculations, the optimal linear sum weights
N

andU
are defined to be those weights which maximise the word accu-

racy score on a separate cross-validation set of 1110 utterances.

5. EXPERIMENTAL DESIGN

5.1. Testing the Constraints

In order to test the Elastic Constraint model of duration, the per-
formance of a number of alternative versions was measured



A baseline durational model is constructed, using only phone du-
ration distributions in isolation. The word accuracy of this model
allows us to see whether the elastic constraint model has actually
achieved anything.

Furthermore, it is possible that elastic constraints exist, but that
the syllable as a unit of constraint doesn’t buy us any more per-
formance than a non-linguistically motivated fixed-size window
of phones would. To test for this possibility, we have tried replac-
ing the syllable in the model with a sliding window of 3 phones.

In both of the above alternative duration models, even though
we are moving away from a syllable-like unit of constraint, the
prosodic contexts of the phonemes are still largely dependent on
our choice of syllable-like unit. We chose to perform all the
rescoring in these cases using the maximal onset definition (as
defined in section 5.2).

5.2. Syllabification

We have chosen two syllable-like units for inclusion in our model
largely because their operational definitions are simple to imple-
ment.

Maximal Onset: Each syllable contains a single vowel and the
syllable onset length is maximised subject to a set of phonatactic
constraints.

Vowel Initial: Each unit begins with a vowel and includes all
consonants within the same word up to the next vowel. Word
initial consonants are grouped with the unit containing the first
vowel in the word.

5.3. Context Dependency

Initially rescoring is performed using models based on context-
independent phone duration distributions. However, factors other
than the phone identity itself are known to affect phone duration.
In order to normalise for these factors, we split the phoneme data
pools according to a number of prosodic contexts.

To determine which prosodic factors are important, and in which
order they should be applied in this task, for each definition of the
syllable-level unit we trained a CART tree [2] on the training set
of 146700 phones. Table 1 is a stepwise correlation analysis of
prosodic factors which determine phone duration in the training
set, using a greedy algorithm, as produced by the resulting CART
tree.

Rescoring is repeated using context-dependent phone duration
distributions by incrementally splitting the data according to the
above factors, in the order specified in the the table 1. In this
paper, we only consider the first 4 factors.

6. DEALING WITH SPARSE DATA

One of the major limiting factors inherent in such an exhaustive
classification of phonemes is that of data sparsity. In some cases,
the gaps in the data may be accidental rather than systematic. It is
these accidental gaps which need to be filled in order to score the

cumulative correlation (%)
Factor Classes Onset Vowel
phonemic identity 39 51.75 51.75
syll position in utt 4 60.06 60.73
this syll stress 2 64.63 64.48
syll position in word 4 67.34 67.18
subsyllabic position 3 69.67 70.91 �
next syll stress 3 70.98 69.15 �
clustered C? 2 71.98 71.99
prev syll stress 3 72.65 72.64
ambisyllabic C? 2 72.74 N/A ���
in stressed word? 2 72.76 72.68

Table 1: Cumulative correlation (using a greedy algorithm) for
prosodic factors using 2 different syllable-like unit definitions:
(maximal) Onset and Vowel (initial) units. � next syll stress and
subsyllabic position have swapped relative importance for vowel-
initial units. ��� ambisyllabic C? is defined for maximal onset units
only.

test data using the durational model.

A method of synthesising the durational parameters for such gaps
has been devised which borrows from Dennis Klatt’s work on du-
ration. In the MITalk system [1], actual duration is calculated us-
ing a linear transformation of an inherent duration, according to
a number of prosodic rules. In this paper, for all possible pairs of
prosodic contexts, a linear transformation for the durational mean
of the form ��, � � � ���W��,��

(7)

where
� , � is the mean duration of phone � in context



, is es-

timated by linear regression. This transformation represents the
average effect that going from context 	 to context



has on the

durational mean of any given phone duration distribution. In ap-
plying transformations from seen to unseen contexts, only reliable
linear transformations (correlation 
 0.5) are considered.

However, the behaviour of the distribution standard deviation un-
der such a transformation is less easy to model reliably. In the
majority of cases, linear regression of context pairs produces min-
imal correlation with the actual data. Thus, for any given phone,
an average standard deviation is computed using all examples of
that phone present in the database.

7. RESULTS

Table 2 presents word accuracy and error correction for all rescor-
ing models tested. All models have improved the performance
of the baseline HMMs, demonstrating that durational information
can be used to correct mistakes made by a HMM in the post-
processing stage.

It is encouraging that our best result was achieved using the elas-
tic constraint model with phonetic data partitioned according to
utterance finality, with 20% of all possible error corrections be-
ing made. The fact that adding extra constraints C & D did not



A A+B A+B+C A+B+C+D
Phoneme 94.58 94.98

8.59% 17.40%
3 Phone 94.94 94.99
Window 16.52% 17.62%
Vowel-Initial 94.88 94.98 94.97 95.04
Syllable 15.20% 17.40% 17.18% 18.72%
Max-Onset 94.77 95.10 95.06 94.93
Syllable 12.78% 20.04% 19.16% 16.30%

Table 2: word accuracy results for RM test set using differ-
ent constraint units in the durational model and different levels
of syllable-level prosodic context for the phone-set: context-free
phoneme identity (A), utterance finality (B), lexical stress (C) and
word finality (D). The figures in bold are percentage of possible
error corrections made.

further improve the results may implicate the simplistic averag-
ing method proposed for modelling unseen standard deviations.
The elastic constraint model makes important use of means and
standard deviations.

An improved operational syllable definition might also yield bet-
ter results.
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