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ABSTRACT

A method is introduced for using hidden Markov mod-
els (HMMs) to model intonational structure. HMMs are
probabilistic and can capture the variability in structure
which previous finite state network models lack. We
show how intonational tunes can be modelled by sepa-
rate HMMs and how HMMs can be used in a recognition
system to automatically determine the tune type of an ut-
terance.

1. INTRODUCTION

An intonational tune can be thought of as a distinctive
contour type: utterances with the same tune sound the
same intonationally, independent of the text of the utter-
ance. Tunes have often been described in terms of ide-
alised sequences of more atomic intonational units. For
example, O’Connor and Arnold’s [6] high drop consists
of a low pre-head, high head and low fall, while Liber-
man’s surprise/redundancy tune is L* H* L-L% [5].

Two approaches can be employed when producing a
comprehensive inventory of tune types. Tunes can be
classified in a bottom-up manner whereby similar pat-
terns are grouped together and given abstract names re-
lating only to their intonational properties. This is the
basic approach of O’Connor and Arnold who describe
ten canonical tunes, all with names such as low bounce
and high drop. This paper examines the converse ap-
proach of top-down classification, whereby speech acts
(or some other classification of utterance types) are as-
signed prototypical intonation patterns. This notion is of-
ten employed in speech synthesis systems where appro-
priate intonation must be assigned to yes/no questions,
interjections and so on.

Top down approaches can be problematic because the
variability associated with each type can make it difficult
to specify contour types. While yes/no questions often
rise at the end, we have to admit that a large number of
examples don’t, which makes a definitive statement on
the behaviour of yes/no question intonation difficult.

Here we present a framework for intonational structure
which explicitly takes into account the notion of vari-
ability, by using a likelihood model to describe tunes.
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Figure 1. Intonational structure represented by finite
state networks

Specifically, we use a hidden Markov model (HMM)
to model each tune type. HMMs are probabilistic fi-
nite state networks (FSNs) and are the most commonly
used technique in acoustic/phonetic modelling in auto-
matic speech recognition and part-of-speech tagging.

Non-probabilistic finite state networks have previously
been used to model intonational structure (and hence
tune type) by specifying legal sequences of basic intona-
tional elements, such as pitch accents or boundary tones.
Figure 1a shows the familiar form of Pierrehumbert’s in-
tonational grammar giving all the legal tone sequences
for English [7]. Figure 1b shows the same informa-
tion but with discriptive variables associated with states
which emit tones of the particular type (e.g. the pitch ac-
cent state emits all the pitch accent types). Figure 1c
shows Ladd’s [4] amended version where nuclear accents
are treated differently from pre-nuclear accents. Figure
1d shows the British School system of pre-head, head,
nucleus and tail. These FSNs represent deterministic
structural descriptions of the tunes of English. A HMM
is formed from these by adding probabilities. Transi-
tion probabilities are associated with arcs between states
which give, for example, the likelihood of a contour hav-



ing or not having a pre-head. Observation probabilities
are associated with states and specify the likelihood of
that state emitting one of the types associated with it. For
example the pitch accent state in figure 1b might have a
high chance of emitting a common accent such as H*
and a much lower chance of emitting a rare accent such
as H+L*. Each tune type is modelled by one HMM.

HMMs are both generators and acceptors of sequences
of intonational elements. In generator mode they can
be used to specify the distribution of elements for the
HMM’s tune type. In acceptor mode they can be used
to give the probability that an observed sequence of into-
national elements has been produced by that model. By
comparing the probabilities of several models it is possi-
ble to determine which model was the most likely to have
produced the observation sequence. The probabilities of
an HMM can be automatically estimated by running the
Baum-Welch training procedure on multiple training ex-
amples [2]. The remainder of our paper reports work
which uses these aspects of the HMM for the task of as-
signing an appropriate tune type to an utterance whose
type is not known.

2. RECOGNISING GAME MOVES IN THE
MAPTASK

The experiments reported here use a subset of the
DCIEM Maptask corpus [1] . This is a corpus of spon-
taneous goal-directed dialogue speech collected from
Canadian speakers. The corpus has been analysed us-
ing the theory of conversational games first introduced
by Power [9] and adapted for Maptask dialogues in Car-
letta et al. [3]. Conversational games are conventional
sequences of acts, such as question - answer - acknowl-
edgement, or, indeed, request - non-linguistic-action -
acknowledgement. We distinguish 12 types of individ-
ual acts, which are termed “moves” in the conversational
games.

The DCIEM corpus is fully spontaneous dialogue
speech. In the experiments reported here, 20 dialogues
(3726 moves) were used for training the system and 5
(1061) for testing. None of the test set speakers were
in the training set, i.e. the system is speaker indepen-
dent. The two participants in the dialogue have different
roles called the giver and follower. Generally the giver is
giving instructions and guiding the follower through the
route on the map. Because of the different roles, each
participant has a different distribution of moves.

Our hypothesis was that moves had characteristically
different intonational tunes, and that HMMs could be
used to determine the most likely move type for an un-
known utterance. The ability to detect the most appropri-
ate move for an utterance has proven very useful in the
maptask automatic speech recogniser [11]. A key com-
ponent of this system is the use of move specific language
models. It has been shown that using a move specific
language model on an utterance of the appropriate move
type can reduce error rate. The HMM system described
here is used to detect the move type for an unknown ut-

terance, and based on this, a language model of that move
type is used during recognition.

3. INTONATIONAL EVENTS AND TILT
PARAMETERS

3.1. Problems with Discrete Intonational Classifica-
tion

In sketching previous intonational systems in the HMM
framework, we made the assumption that discrete HMMs
were being used. That is, the observation probabilities
for each state describe the probability of that state emit-
ting one of the finite number of legal symbols for that
state. In practice, we use continuous density HMMs in
which states use a continuous probability density func-
tion to describe continuous variables rather than symbols.

Discrete intonational symbols have been avoided for a
number of reasons. Firstly, we need a substantial quantity
of hand-labelled data to train the HMMs. Even on clean
speech human labellers find it notoriously difficult to cat-
egorise pitch accents reliably, and the reliability drops
further for spontaneous speech. In a study [8] on the
ToBI labelling (a variant of Pierrehumbert’s scheme), la-
bellers agreed on pitch accent presence or absence 80%
of the time, while agreement on the category of the ac-
cent was just 64% and this figure was only achieved by
first collapsing some of the main categories (e.g. H* with
L+H*).

Secondly, we would need an inventory of labels which
are suitable for describing intonational tune differences.
In the ToBI scheme the distribution of pitch accent types
is often extremely uneven. In a portion of the Boston
Radio news corpus which has been labelled with ToBI,
79% of the accents are of type H*, 15% are L*+H and
other classes are spread over the remaining 6%. From
our point of view such a classification isn’t very useful
because some tunes which are clearly different will be
marked with H* throughout. Furthermore, intonational
factors which are significant in tune description, such as
local prominence, are omitted.

Thirdly, we would need an automatic system capable
of producing the symbol sequence for an utterance. Sim-
ilar to human labellers, automatic systems (e.g. [10]) find
the task of locating pitch accents much easier than clas-
sifying them.

3.2. Intonational Events and Tilt Parameters

Rather than have several discrete symbols to describe in-
tonation, we have one for accents, one for boundaries and
a combined one for when accents and boundaries occur
too close to be separated. These are termed intonational
events and carry linguistically interesting intonational in-
formation. In addition we use a label for silence and a la-
bel “connection” to represent any part of the contour that
is not classified as one of the events. A diacritic of “mi-
nor” was used to mark accents which were either small
or whose existence was questionable. The 25 dialogues
used for training and testing were hand labelled using this
scheme.



To describe the intonational content of the pitch ac-
cents and boundaries we use 4 continuous variables col-
lectively known as tilt parameters [12]. These are start
F0, which is the F0 value at the start of the event; ampli-
tude, a measure of the F0 excursion of the event; duration
(in time); and tilt, a continuous dimensionless parameter
expressing the shape of the event (a value of -1 means
the event is a pure fall, +1 means a pure rise and values
between indicate the event has a rise and fall). These
values can be calculated automatically given the approx-
imate location of a event (accent or boundary) and the F0
contour.

4. USING HMMS TO RECOGNISE MOVE TYPE

In the speech recognition application described above,
the process of recognising moves from the data must
be fully automatic and hence we must derive the into-
national events themselves automatically. Intonational
event detection is performed by using a continuous den-
sity HMM system (which is completely separate from the
move type detector).

4.1. Locating and Analysing Intonational Events

Each utterance is represented acoustically by F0 and en-
ergy, and their first and second derivatives. A single con-
text independent model is trained for each of the main
label categories. The system is trained on the hand la-
belled data described in section 2.

Performance is assessed by measuring how well the
hand labelled test set matches the output of the recog-
niser. Only accents and boundaries are counted. Silence
is unimportant and connections are positioned as a con-
sequence of accent and boundary placement and hence
are redundant. For an automatically labelled event to
count as correct, it must overlap a hand labelled event
by at least 50%. Using this metric the performance
of the recogniser is 74.3% correct with an accuracy of
29.4%. A large number of errors arose from minor ac-
cents. When these were ignored the performance was
86.5% correct with 54.3% accuracy.

The low general accuracy is almost certainly a result
of the data being spontaneous and speaker independent.
An equivalent speaker dependent system trained on part
of the data gave 87% correct and 63% accuracy, while
a system trained on fluent “simulated dialogue” speech
gave 85% correct with 76% accuracy. We are currently
examining speaker normalisation techniques which we
hope will increase performance on the speaker indepen-
dent data.

After this stage, each event is analysed to determine its
tilt parameters.

4.2. Experiments

We use a different HMM to model the intonation of each
type of move. As observations, the HMMs use sequences
of vectors, each corresponding to the 4 tilt parameters of
a single event. A three state, left-right continuous density
HMM is trained for each move. The observation density

Model % correct
Unigram 39.5
Bigram 44
Giver Bigram 49
Follower Bigram 55
Giver+follower Bigram 61

Table 1. Results for 12 game moves

functions comprise of a set of weighted gaussians, each
with a mean and variance.

The HMMs are trained in two stages, initialisation and
re-estimation. Initialisation involves providing crude es-
timates for the HMM parameters, which are then itera-
tively re-estimated using the standard Baum-Welch algo-
rithm. Two types of initialisation (described in section
5.) were investigated.

Preliminary experiments showed that moves follow
one another with some degree of predictability (e.g. a
reply-yes or reply-no is the most common response to a
query-yes/no). We make use of this by combining the
HMMs with an N-gram model which gives the a priori
probability of a sequence of N moves occurring.

The data was modified in a number of ways, omitting
either silences or connections or both. The modified data
improves the recognition results as it omits linguistically
non-significant events. The data was also normalised in
an attempt to eliminate some speaker specific character-
istics, such as overall pitch range. All the observation
vectors for a particular speaker were normalised by sub-
tracting the mean and dividing by the standard deviation
for that speaker.

4.3. Results

Table 1 gives a summary of results for recognition on the
12 game moves. If utterances are considered in isola-
tion (achieved by using a unigram), 39.5% of moves are
recognised correctly. The type of the previous move of
the other speaker can be used to condition the choice of
the move under examination by using a bigram. Using
this the score increases to 44% correct.

This analysis corresponds to an overhearer scenario
where one is trying to determine the move type of both
participants in the dialogue. The type of the previ-
ous move has been guessed automatically and hence the
probability of the current move may be conditioned on
incorrect information. An alternative scenario is where
the move type of one participant is known, for exam-
ple in human-computer dialogue. In this case (imag-
ining that we are recognising the speech of the human
participant) the move type of the computer’s previous
utterance is known, and hence we have a better chance
of a priori estimation of the current utterance. The dis-
tribution of move types is different for givers and fol-
lowers and hence we can use different bigrams depend-
ing on whether we are recognising the giver’s or fol-
lower’s moves. Under these conditions the performance
improves to 49% when recognising the givers’ moves
and 61% when recognising the followers’ (54% overall).



5. DISCUSSION

In order to examine exactly how the HMMs model the
intonation contour, we investigated the relationship be-
tween states and different types of intonational events.
Two types of HMM initialisation were examined. In
the first type, the sequence of observations is divided
into three equal sized parts and each state estimates
its parameters on one of these parts. The second type
gives each state an explicit function: state 1 models pre-
nuclear events (head), state 2 nuclear accents and state 3
boundary events (tail), reflecting the intonation contour
structure of the British School and Ladd. Recognition
scores of HMMs after initialisation are poor, but improve
greatly after re-estimation. Re-estimation is an unsuper-
vised iterative technique which optimises the maximum
likelihood of the models emitting the observations in the
training data. The re-estimation process takes several it-
erations and often after training the states do not emit the
same observations as after initialisation.

The overall likelihoods of each state emitting differ-
ent types of events when recognising each of the test
utterances were investigated. We found that both types
of initialisation produced similar recognition results with
similar state occupation statistics. State 1 mostly emits
pre-nuclear accents, states 2 and 3 both emit nuclear ac-
cents and state 3 mostly emits boundary tones. A possi-
ble reason why state 3 emits nuclear accents is due to the
fact that many of these are combined accents and bound-
ary tones. While there is no exact alignment of states
to event types, this shows that the HMMs are modelling
the contour in more or less the same way as the FSNs of
the British School and Ladd. Although the two types of
initialisation process are different, the re-estimation pro-
cedure produces similar HMMs regardless.

The results reported above are for a fully speaker inde-
pendent task. A previous pilot study which had the same
speakers in the test and training sets produced a unigram
score of 49% and a bigram score of 55% for the basic
task, compared with 39% and 44% shown above.

In order to investigate possible intonational similari-
ties between move types, we clustered the moves. One
experiment grouped the 12 moves into 3 new types,
termed questions, statements and replies. A unigram
model gave 68% correct and a bigram model 70%.

6. CONCLUSION

The main purpose of this work is to show that HMMs
are a suitable model for intonational structure, and that
this facilitates practical applications such as recognising
tune types from F0 contours. The specific task described
here was motivated by the fact that the move recogniser
is used in our speech recognition system. We hypothe-
sised that each move has a distinct tune but the fact that
the recognition scores are not perfect shows that this is a
weak assumption. Better scores should be obtainable if
the utterance types being recognised correlate more di-
rectly with intonational behaviour, as was the case when
the moves were clustered. It should be clear that many

other types of utterance classification (both top down and
bottom up) are compatible with the HMM framework.
Recognition results are dependent on the number of tune
types being modelled and whether the tune classification
is top-down or bottom-up.
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