
A MARKUP LANGUAGE FOR TEXT-TO-SPEECH SYNTHESIS

Richard Sproat
�
, Paul Taylor

�
, Michael Tanenblatt

�
, Amy Isard

�

(1) Bell Laboratories, Lucent Technologies
700 Mountain Avenue, Room 2d-451

Murray Hill, NJ 07974, USA
(2) Centre for Speech Technology Research,

University of Edinburgh
80 South Bridge, Edinburgh, U.K

ABSTRACT

Text-to-speech synthesizers must process text, and there-
fore require some knowledge of text structure. While
many TTS systems allow for user control by means of
ad hoc ‘escape sequences’, there remains to date no ad-
equate and generally agreed upon system-independent
standard for marking up text for the purposes of synthe-
sis. The present paper is a collaborative effort between
two speech groups aimed at producing such a standard,
in the form of an SGML-based markup language that we
call STML — Spoken Text Markup Language. The pri-
mary purpose of this paper is not to present STML as a
fait accompli, but rather to interest other TTS research
groups to collaborate and contribute to the development
of this standard.

1. INTRODUCTION

In order to be able to make most efficient use of comput-
ers in the processing of online text, it is necessary to have
mechanisms for marking those features of the text that
are deemed to be salient, but which might be difficult or
impossible to automatically detect in a general way. Ide-
ally, such markup languages should be standardized in
that they incorporate generally agreed upon conventions,
and abstract in that they represent properties of the text
with only minimal regard to the particular way in which
that text will be used.

A simple example will serve to illustrate the point. In
plain (‘ascii’) text there is no universally agreed upon
convention for delineating paragraph boundaries, though
there are several popular methods. Programs that need
to find paragraph boundaries (e.g., a text formatter) will
thus need to be somewhat clever, and they probably can-
not perform entirely without error. In the SGML-based
[1] markup language developed under the auspices of
the Text Encoding Initiative [2], standard mechanisms,
namely the markup tags � p � . . . � /p � , are used to
delimit paragraphs, meaning that in a text that is fully
marked up according to the TEI conventions, there can
never be ambiguity as to the location of paragraph bound-

aries. At the same time, notice that this markup is ab-
stract in that it specifies nothing at all about how a para-
graph might actually appear on a printed page: a text-
formatting program for TEI documents might adopt any
of a number of strategies of indentation or spacing, and
still be faithful to the markup.

Text-to-speech synthesizers, like text-formatting pro-
grams, must process text, and therefore require some
knowledge of text structure: at a minimum TTS systems
must either compute (or be told) where paragraph, sen-
tence and phrase boundaries lie; but additional informa-
tion, such as whether a particular element of text repre-
sents a table, or a title, can be relevant to how that ele-
ment should be rendered. We will refer to this kind of
information as text description. In addition, it is usually
desirable to be able to control certain properties of the
synthesizer which do not relate directly to the structure
of the text, but rather to its interpretation by the system:
such properties include the particular speaker chosen for
a passage, or the pitch range of a particular utterance.
This latter kind of information we shall denote speaker
directives.

Many TTS allow for markup of speaker directives: for
example the Bell Labs synthesizers have a relatively rich
set of ‘escape sequences’ for marking up such features as
pitch range, accent patterns, and speaker characteristics.
But such markup schemes are invariably system specific,
and often ad hoc. This is problematic for developers who
use TTS systems: what they require is a simple and clean
interface which allows control over the main aspects of
synthesis, and which is a standard such that they can use
the same markup with a range of TTS systems.

The present paper is a collaborative effort between
two speech groups (Bell Labs and Edinburgh University)
aimed at producing a single markup language for speech
synthesis. Previously, each of the sites has worked in iso-
lation on this problem: this paper presents the results of
our combined work to produce what we hope will be a
single standard.

STML (Spoken Text Markup Language) is a markup
language based on the Standard Generalised Markup
Language. As such it has a clearly defined syntax and
grammar, and there are many readily available tools for

parsing and processing text marked up in this way. Cru-
cially, STML proposes tags for both text description and
speaker directives, and these tags can thus control all rel-
evant aspects of the synthesis operation.

STML is the successor markup language to the sys-
tems previously developed by the two groups. SSML
(the Speech Synthesis Markup Language) was developed
at Edinburgh and was the first attempt at a TTS markup
language [3]. This system provided a rudimentary set of
system-independent tags based on SGML. The Bell labs
system involved the use of a rich set of escape sequences
in the input text. STML supersedes both these systems
by inheriting the SGML nature of SSML and the wide
coverage of the Bell Labs tag set.

In both its generality and its coverage, STML is supe-
rior to the only extant industry standard for TTS markup,
namely Microsoft’s Speech Application Programmer’s
Interface (SAPI). First, SAPI’s tag syntax is completely
ad hoc. Secondly SAPI provides tags only for speaker
directives, not for text description. One reason for this is
undoubtedly the SAPI designers’ somewhat limited view
of the function of TTS: “An application should use text-
to-speech only for short phrases or notifications, not for
reading long passages of text” [4, page 6]. In fact TTS
systems are routinely used in many applications to read
long passages of text, and therefore some mechanisms
for defining textual properties seem necessary.

2. SAMPLE TAGS AND THEIR
INTERPRETATION

The intended scope of STML is best illustrated by ex-
ample. Consider the marked-up text in Figure 1.. Note
that this example contains only a small subset of the
STML tags that have been developed to date. The

� LANGUAGE � and � SPEAKER � tags set (obviously
enough) the language and default speaker for that lan-
guage: in a multi-lingual TTS system, these specifica-
tions would cause appropriate language- and speaker-
specific tables (e.g. pronunciation rules, acoustic inven-
tory elements) to be loaded. The � GENRE � tag allows
one to set the type of text (plain prose, poetry, lists . . .).
If a TTS system supports a particular genre type, then it
will have at least some models particular to that genre.
For example, a list type might be specified as having a
different intonation pattern from that of plain prose. The

� DIV � tag specifies a particular text-genre-specific di-
vision: in the example, it is used to mark the end of list
items, for example. � EMPH � tags are used to place
emphasis on words. The tag � PHONETIC � marks the
contained region of text as being a phonetic transcrip-
tion in one of a predefined set of schemes; in this case
the scheme is the one native to the (hypothetical) TTS
system reading this text. The � DEFINE � tag is used
to specify the lexical pronunciation of a word. Here a
non-native phonetic scheme is used: it is up to the TTS
system to map from a foreign scheme to the native one.

The � BOUND � tag marks a prosodic phrase bound-
ary: in the example, a minor boundary is marked. It is

possible to change the voice by using the � SPEAKER �
tag where speakers are named according to convention.
Some standard names are given, (e.g. ”male1” and
”male2”) which are mapped onto the set of voices avail-
able on the local system.

While the example may seem verbose, the number of
tags can be reduced by SGML markup minimisation.
This facility removes the need for redundant tags, such
that during parsing, a � /LANGUAGE � tag implies the
presence of a � /SPEAKER � tag immediately before it
if this isn’t marked explicitly.

Note that while we have, for the purposes of this exam-
ple, presumed a TTS system reading the marked up doc-
ument from beginning to end, other ways of rendering
the text are also consistent with the purpose of STML.
Following [5], one can also view a TTS system as an
audio browser. In browser mode, a TTS system would
present information in a more ‘top-down’ manner, giv-
ing the user a high-level view of the structure of the doc-
ument, and allowing the user to navigate to interesting
sections of the document.

The tags described above are defined in terms of
their logical function. For example the � EMPH � word

� /EMPH � construction is defined as placing emphasis
on word rather than in terms of any direct processing in-
structions to the TTS system. While in general we expect
a TTS system to realise emphasis by making use of into-
nation, duration and energy, the specifics of how this is
actually done are not specified.

3. ISSUES IN TAG DESIGN

In theory, anything specifiable in the text which can give
an instruction or description to a TTS system could be in
a synthesis markup language. In the interests of produc-
ing a compact, powerful and coherent set of tags, we used
two criteria to decide which tags should be included in
STML. The first is that computer-literate non-synthesis
experts should be able understand what the tags mean
and should be able to achieve the effects they want with-
out too much effort. The second is that the tags should
be portable across platforms so that a variety of synthesis
systems should be able to make use of the additional in-
formation given by the tags. As it happens, these criteria
tend to work together and favour the same types of tags.

Users unfamiliar with intonation would be daunted by
having to using a notation system such as the tonal part
of ToBI when specifying markup for intonation; and as
many TTS systems do not use these labels internally
anyway they would not serve well as a system indepen-
dent intonation specification. Rather we have used tags
such as � EMPH � and � BOUND � to specify intona-
tion. These are easier to understand and are more likely
to be common to most TTS systems. � EMPH � and

� BOUND � are “higher level” than say, H* and L%,
and so have a downside in that they do not offer the same
level of overall control as the lower level equivalents. We
consider this to be an acceptable tradeoff, i.e. the benefits
of ease of use and cross platform portability outweigh the

� !DOCTYPE STML SYSTEM �
� STML �
� LANGUAGE ID � ENGLISH �
� SPEAKER ID � male1 �
� GENRE TYPE � plain �
This is an example of some STML text. In this example, we see some

� EMPH � particular � /EMPH � STML tags, including:
� GENRE TYPE � list �
Language specification � DIV TYPE � item �
Speaker specification � DIV TYPE � item �
Text type (genre) specifications � DIV TYPE � item �

� PHONETIC scheme � native � f&n"etik � /PHONETIC � specifications
phrase boundary � BOUND TYPE � minor � specifications

� /GENRE �

� DEFINE WORD � "Edinburgh" PRO � "e 1 d i n b 2 r @@" scheme � "cstr" �
This text can be processed by the Bell labs and Edinburgh Text to
speech systems.

Here is an example of the system switching to German
� /GENRE �
� /SPEAKER �
� /LANGUAGE �
� LANGUAGE ID � GERMAN �
� SPEAKER ID � female1 �
� GENRE TYPE � plain �
Guten Tag, meine Damen und Herren.

� /GENRE �
� /SPEAKER �
� /LANGUAGE �
� /STML �

Figure 1. An example of STML markup.

loss of fine control.
The problem of which tags to include in a generalised

markup scheme has been addressed in the text format-
ting domain where the distinction between the physical
and logical aspects of a document’s markup has proved a
useful concept in producing system-independent markup
languages. The logical structure of a document is usually
described declaratively, and without reference to how the
formatting program should actually realise the desired
format. In this way, it is possible for systems which work
in different ways to process the same document success-
fully. Often the finished article appears different if pro-
cessed on different systems, but in some sense the differ-
ent versions are essentially the same. This is the aim we
have for STML whereby the synthesized speech need not
sound identical on different systems, but should give the
same basic impression to the user.

3.1. Speaking Style

It is not always easy to maintain the logical and phys-
ical distinction. A good example involves the case of
different speaking voices. Given that the TTS system be-
ing used can speak in a number of voices, it is possible
that the listener will have preferences over which voice

to use and will instruct the TTS system accordingly. In
such cases, it is inappropriate for the choice of speaker to
be included in the document itself, it is much more suit-
able if can be set externally. However, in certain cases, it
can be argued that the choice of which speaker to use is
important to the structure of the document. Imagine for
instance that someone wishes to have the text of a drama
synthesized: it is obviously important that each character
is assigned a voice and that the choice of voice is con-
sistent throughout. Our solution to this is to use style
files which are locally defined mappings between names
and directives in the markup language and parameters in
the local system. For examples, speakers are referred to
as “male1”, “female 2” etc in the markup language, but
locally there is mapping saying which voices and param-
eters to use for each of these. In the case where only a
single voice is available on the system, all speaker names
in the marked up text will be mapped to this one voice. In
a similar way, we have investigated the use of speaking
style tags such as � RATE � which can be either internal
to the document or not.

4. PRACTICAL USES OF STML

We have successfully incorporated STML into a num-
ber of applications requiring TTS output, including an
email reader and a program which reads latex documents.
The ILEX system is a natural language generation (NLG)
system which examines a museum database and gener-
ates descriptions of exhibits taking into account the pre-
vious information that has been disclosed [6]. ILEX
constructs its text from scratch and as such, has inter-
nal knowledge of the syntax and topic/focus structure of
the text. It uses this structural knowledge to place STML
tags in appropriate places in the text. If STML were not
used the system could simply pass raw text, which would
throw away all the information created in generating the
sentence and force the TTS system to try to infer this
(undoubtedly with mistakes) from just the words. Alter-
natively the two systems could be tightly coupled and the
NLG system could write directly to the TTS system’s in-
ternal data structures. This is often difficult from an engi-
neering point of view as both the systems are large and an
internal change in one often means changing some part
of the other. STML is serves as a simple interface be-
tween the NLG and TTS systems, and doesn’t limit the
NLG system to using one synthesizer exclusively.

5. CONCLUSION

We have presented some preliminary specifications on
STML, the Spoken Text Markup Language. As noted
previously, we openly invite all interested TTS re-
search groups to participate in future development of
this standard. Further information on the current
status of the project can be found at our websites,
www.cstr.ed.ac.uk/projects/stml.html and
www.bell-labs.com/project/tts/stml.html.

REFERENCES

[1] C. F. Goldfarb, The SGML Handbook. Oxford,
Clarendon Press, 1990.

[2] C. Sperberg-McQueen and L. Burnard, Guidelines
for Electronic Text
Encoding and Interchange. Chicago/Oxford, Text
Encoding Initiative, 1994. Available as http://www-
tei.uic.edu/orgs/tei/info/elect.html.

[3] P. A. Taylor and A. Isard, “SSML: A speech syn-
thesis markup language,” Speech Communication,
no. 21, pp. 123–133, 1997.

[4] Microsoft, Microsoft Speech Software Development
Kit Developer’s Guide, version 2.0 ed., 1996.

[5] T. V. Raman, Audio System for Technical Readings.
PhD thesis, Cornell University, 1994.

[6] J. Hitzeman, C. Mellish, and J. Oberlander, “Genera-
tion of museum web pages: The intelligent labelling
explorer,” in Proceedings of the Museums and the
Web conference, Los Angeles, California, 1997.

