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ABSTRACT

We present work intended to improve speech recognition per-
formance for computer dialogue by taking into account the
way that dialogue context and intonational tune interact to
limit the possibilities for what an utterance might be. We
report here on the extra constraint achieved in a bigram lan-
guage model, expressed in terms of entropy, by using separate
submodels for different sorts of dialogue acts, and trying to
predict which submodel to apply by analysis of the intona-
tion of the sentence being recognised.

1. INTRODUCTION

The ultimate goal of the work described here is to improve
speech recognition performance for computer dialogue by
taking into account the way that dialogue context and in-
tonational tune interact to limit the possibilities for what an
utterance might be.

For example, suppose that you ask a yes/no question, and
receive a short reply uttered fairly low in the speaker’s pitch
range and without much movement in pitch. The chances are
that the reply amounts to either “yes” or “no”. It might be
“sure” or “uh-uh” or some other equivalent, but a reply that
denied an assumption in the question, asked for clarification,
or simply refused to answer would probably be marked by a
pitch accent. This is a simple case of the sort of constraint
that we are exploiting.

We are developing our system on dialogues in the Map Task
domain, using data from two English corpora, referred to
as the HCRC and DCIEM Corpora [1] [2]. Our approach
combines an intonational event finder based on the work de-
scribed in Taylor [6] with a set of bigram language models
corresponding to different dialogue acts [3].A neural net is
trained to take the output of the event finder and predict
the most likely dialogue act given that output.

Although this work is ultimately intended for application in
a speech recognition system, we report here just on the theo-
retical constraint achieved in the language model, expressed
in terms of reduction in perplexity.

Our basic idea is that the bigram language models for dif-
ferent individual dialogue acts should have lower entropy -
more predictive power - than the general model for our data
set as a whole. This means that we should be able to get
improved performance if we were clairvoyant and knew in ad-
vance which model to use for a given utterance. We demon-
strate a method for predicting which kind of game move a
given utterance constitutes, by performing an analysis of the
utterance’s intonational tune. We investigate various combi-
nations of this imperfect prediction with game move bigram
models to see which give improved performance.

2. GAME MOVES IN DIALOGUES

Our dialogue analysis is based on the theory of conversa-
tional games first introduced by Power [4] and adapted for
Maptask dialogues in [3]. Conversational games are con-
ventional sequences of acts, such as question - answer - ac-
knowledgement, or, indeed, request - non-linguistic-action -
acknowledgement. The individual acts are termed moves.
We distinguish 12 types of game moves, 6 of which initiate
games and 6 which respond to and acknowledge earlier moves
in the game.

Game move types correlate with syntax, but they are not
syntactically defined because, for example, the move initiat-
ing a question game can have declarative syntax and indi-
cate its question force intonationally. Game moves also dif-
fer from conventionally defined speech acts, because they are
characterised by the purpose for which they are uttered. For
instance, we distinguish between questions seeking new in-
formation and ones seeking confirmation of information that
the speaker already believes to be true, and between state-
ments which answer a conversational partner’s question and
ones which volunteer unsolicited information.

It is our hypothesis that the combination of game context
and intonation can be used to predict game moves with
high accuracy, but in this paper we investigate the predictive
power of intonation on its own.



3. THE MAP TASK

In the Map Task [1] each of two participants has a schematic
map which the other cannot see. The participants collabo-
rate to reproduce on one of the maps a route already printed
on the other. The two maps are not identical; the partic-
ipants are told that they have been drawn by different ex-
plorers. Each map indicates about fifteen landmarks, and
a landmark present on one map may be absent, or differ-
ently labelled, on the other. Although the participant with
the pre-printed route is designated the Instruction Giver,
and the other as the Instruction Follower, no restrictions are
placed on what either can say.

The HCRC corpus consists of 128 dialogues between Glasgow
University undergraduates. It contains about 150,000 words
and has been transcribed at the word level and coded with a
game move type for every utterance. The vocabulary size is
1810. The DCIEM corpus consists of 216 dialogues between
Canadian military reservists. It has been transcribed at the
word level, and the utterances of 4 dialogues (6460 words)
were classified into game move types for the work described
here.

4. INTONATION RECOGNITION
AND TUNE ANALYSIS

Our game move prediction is based on the an analysis of the
distinctive intonational pattern or tune of each utterance.
We base our intonational tune recognition on the analysis
of pitch accents and boundary rises (collectively known as
intonational events).

Rather than using a set of discrete labels to describe into-
national events (such as those used in the ToBI system [5]),
we assign 4 continuous variables to each event. This has the
advantage of avoiding any thresholding in this intermediate
stage.

The values represent the 4 parameters in the Tilt intonation
model [7]. These are: amplitude (size of Fy excursion from
immediate environment), duration (duration of event), po-
sition (absolute Fy value at the start of the event) and tilt
(representing the shape of the event). In the model, events
are described as rises followed by falls, with the provision
that one or the other may be absent. The tilt parameter is
calculated by comparing the relative amplitudes and dura-
tions of the rise and fall components.

The approximate position and type of an utterance’s into-
national events are located by HMMs. These are trained
on hand labelled examples of five types of units: a (pitch
accent), b (boundary rise), ab (simultaneous occurrence of
pitch accent and boundary rise), ¢ (connection, the con-
tour between accents) and silence. The HMMs work on fea-
ture vectors of 12 cepstral coefficients, smoothed Fy, delta
smoothed Fy and energy. The system correctly recognises
80% of intonational events'.

1 The system was trained on multiple speakers but is not fully

After the approximate location of each event is determined
by the HMM recogniser, a parameter fitting technique is used
on the Fy contour to determine the 4 tilt parameters for that
event.

In common with much intonational analysis, we assume
that the tune of a utterance is mainly characterised by the
last pitch accent (the nucleus) and the boundary rise (if
any) which follows it. Thus we characterise tune as an 8-
component vector, the first 4 values representing the pitch
accent and the second 4 the boundary rise. There are two
special cases: a) when there is no event at the end of the
utterance, it is assumed that no boundary rise exists and
the 4 values are set to 0.0 b) where the nuclear accent and a
boundary rise both occur at the end of the phrase, the sec-
ond 4 values are the same as the first. The tune vectors are
then normalised so that each parameter lies in the range -1
to +1.

A standard single hidden layer neural network, trained us-
ing back propagation, is used to predict game move from
intonational tune. The network has 8 input nodes, one for
each component of the tune vector, 20 hidden nodes and 12
output nodes, one for each game move.

As our speech recogniser operates on the DCIEM version of
the corpus, we use only DCIEM data for intonation training
and testing.

In an a speaker independent open test, the first choice of
the neural network correctly predicts game moves 45% of
the time. Although this is far from perfect, it is well above
chance level with 12 game move types.

5. LANGUAGE MODELLING WITH
MOVE SPECIFIC BIGRAMS

The main goal of a language model in speech recognition is
to constrain the possibilities that the acoustic/phonetic com-
ponent needs to consider, and thereby make it more likely to
arrive at the correct answer. Bigram models are used in pur-
suit of the this goal as is common in most speech recognition
systems. The power (i.e., degree of constraint) of a bigram
can be expressed in terms of its entropy with respect to a
data set. Entropy figures are sometimes transformed into

perplexity as an aid to intuition, according to the formula
P =281,

Perplexity gives an estimate of the average number of choices
of following word that the system is faced with, given a de-
cision for the current word. In our system we consider a
bigram model for the whole corpus, as well as sub-bigrams
for the sets of utterances assigned to each individual game
move. The entire HCRC corpus has been game move coded
by hand and as such allows for the training of more robust

bigrams than the DCIEM data. Thus the results for bigrams

speaker-independent because the test speakers are the same as
the training speakers. The actual test utterances are separate of
course.



given here are trained and tested on material from the HCRC
corpus alone.

The word entropy of a model with respect to a test set can
be expressed as:

HW) =—(1/K)>_(1/n:)logP(s:)

where P(s;) is the probability assigned by the model to sen-
tence s;, n; is the number of words in sentence : of the set,
and K is the number of sentences in the test set. This can
be rewritten

HW) ==(1/K)Y _(1/n:) Y logP(wi;)

where and P(w;;) is the probability assigned by the model
to word j of sentence :. Interpreting P as giving bigram
probabilities we can compute the entropies of the general
model, and the individual sub-models for the various game
move types (see table 1).

To combine the entropies of the individual game moves
and the game move predictor we unpack P above as
P(si|lmi)P(m;), where m; is the correct game move class for
si, P(si|m;) is the probability of sentence s; in the bigram
model for game move m;, and P(m;) is the probability of the
intonational predictor correctly identifying m; for sentence
8.

The formula can thus be rewritten as

H=(1/K)Y _(1/n:)logP(si|m:) P(m;)
= (1/K) > _(1/n:) Y logP(wis|ms) + (1/ni)log P(m,)

Incorporating intonational prediction of game moves will give
an improved - more constrained - language model if H as
just defined is less than H(W) above, when P(w;;) is in-
terpreted as the probability assigned by the general bigram
model. Note that this formula incorporates the conservative
assumption that we need to correctly identify m; in order to
assign a non-zero probability to s;. Since sentences will in
general have non-zero probabilities with respect to “wrong”
models, use of the formula underestimates the power of the
model.

6. RESULTS

Table 1 shows three measures of bigram statistics represent-
ing closed test, open test and a special open test calcula-
tion. The first point to note is that in most cases the closed
test bigrams (H.) have significantly lower entropies than the
whole-task bigram. This is a demonstration that the divi-
sion of utterances in this way does produce more tightly con-
strained language models. The open test entropies (H,) fol-
low roughly the same pattern as the closed test ones, in that

Game-Move N H. H, H,.

whole-task 26736 | 3.7495 | 4.2421 | 3.6153
acknowledge 5320 | 1.9498 | 2.9368 | 1.9568
align 1810 2.5793 | 3.8005 | 2.1957
check 2260 3.8764 | 6.1647 | 3.7942
clarify 1276 3.9308 | 6.7900 | 3.8028
explain 2183 3.9021 | 7.1133 | 3.7795
instruct 4379 4.1171 | 5.4649 | 3.9852
query-w 779 3.2685 | 5.9838 | 3.0803
query-yn 1785 | 3.2028 | 5.2361 | 3.0195
ready 1884 1.4693 | 1.6855 | 1.4021
reply-n 894 1.1002 | 2.0818 | 0.8179
reply-w 960 3.6196 | 7.0179 | 3.4419
reply-y 3206 1.9615 | 2.5912 | 1.8820

Table 1: Entropy measurements for the whole-task bigram
and move-specific sub-bigrams. H. is closed test, H, is open
test and H,. is the special case open test. N gives the number
of utterances of that type in the whole corpus.

acknowledge has a relatively low entropy whereas clarify
has a relatively high entropy. However, seven of the game
moves have entropies which are much higher than the whole-
task entropy. It is our opinion that this increase is due to
insufficient training data for the sub-bigrams. We only have
about 1000 examples of a game move such as clarify and
this is probably too few to calculate a robust bigram for an
1800 word vocabulary. In recognition of this, we have calcu-
lated an additional measure H,. which is an open test that
discounts word-pair sequences which occur in the test set but
not in the training set. Here we see that in all cases the sub-
bigrams are either slightly higher or lower than the whole-
task entropy. This figure cannot be used as a true measure
of performance, but it is an indication that with more data
(or more sophisticated bigram estimation) we should expect
the move-specific bigram entropies to be lower in open test
conditions.

Table 2 shows the overall entropy for four conditions. Con-
dition 1 represents the whole-task bigram. Condition 2 rep-
resents the case where we combine intonational prediction
with game move-specific bigrams. The results show slightly
worse entropy that those for the whole-task bigram for the
open test. However the special open test figure shows that
the entropy is much lower than the whole-task bigram.

In light of the apparent sparse data problem, we reduced the
number of sub-bigrams. From examination of the transcrip-
tions, game moves were clustered into five categories that
were deemed to have similar syntactic properties. Condi-
tion 3 represents this clustering approach. These were (ac-
knowledge align ready), (check query-yn), (clarify explain
instruct), (query-w reply-w) and (reply-n reply-y). As well
as giving more training data for bigram estimation, the re-
duction in number of classes also helps the performance of
the game-move predictor, which gives a 55% recognition rate
for this clustering. Table 2 shows that both the genuine open
test and the special open test give lower entropies than the
whole-task bigram.



Condition | % A H, Hos PP, | PP,
1 - 4.2421 | 3.6153 18.92 | 12.26
2 45% 4.3624 | 2.5498 | 20.57 5.86
3 55% 4.0872 | 2.9780 17.00 7.88
4 - 5.3621 | 3.2653 | 24.66 | 10.25

Table 2: Results for conditions 1) whole-task bigram; 2)
12 game move bigrams; 3) clustered bigrams; 4) randomly
partitioned bigrams. %A is the accuracy of the game move
predictor, H, is open test, H,s is the special case open test
and PP is the equivalent perplexity measure.

Condition 4 is included for interest and shows the perfor-
mance when the data is arbitrarily divided into 12 sub
groups, for which we assume the same prediction power as
for condition 2. It can be clearly seen that the performance
is much worse. This is evidence that the game move analysis
is meaningful and is a sensible way to divide a corpus.

7. DISCUSSION

The results indicate that in principle, dividing a task in
this fashion can produce a more tightly constrained over-
all model. We have identified two main factors within the
current framework which will improve overall performance:
game move prediction accuracy and amount of training data.

To investigate the effect of game move prediction accuracy
we have made estimates of what overall entropy scores we
can expect for a given accuracy. It is impossible to calculate
exactly what entropy a particular prediction accuracy will
produce as the total entropy depends on what sort of errors
are made by the predictor. However, for a particular move
predictor of average accuracy 75%, we found that the open
test entropy was slightly lower in the 12 game move case.
Thus we can start expecting overall improvements in genuine
open tests when prediction accuracy approaches this figure.

In the 12 game move case, the bigram estimations are too
sparse. We have as yet not employed any sophisticated
smoothing techniques in bigram calculation, and this along
with more data should make the open test results better.
The reduction in sub-bigrams caused by clustering produces
both improved game move prediction and better bigram es-
timation, which is the reason for the improved performance
in this case.

Our most important finding is that using game move specific
bigrams reduces the perplexity of a language model. This is
only useful if we can predict which game move an utterance
belongs to prior to word recognition. Our work so far has
concentrated on using intonational tune for prediction but
the general technique still holds for any method of move
prediction.

An obvious next step is to use dialogue context. Dialogues
follow patterns in that one participant’s choice of utterance
is partly dependent on the other participant’s previous ut-
terance. Furthermore, we believe there to be an interaction

between intonation and context. In particular, a “default”
following move type at any stage is less likely to be intona-
tionally marked, as in the example given above in the intro-
duction.

It is clear from table 1 that most game move bigrams have
entropies which are significantly less than that for the whole
task. This is an indication of the uniformity of the utterances
assigned to that class. However, the technique we have devel-
oped here will work in principle for any division of a corpus
into utterance types. The success of a grouping depends on
two factors: that the sub-bigrams have a low entropy and
that the types can be predicted, either acoustically or from
context.

Notes: The DCIEM and HCRC maptask corpora are publicly
available databases distributed on CD-ROM. The basic speech
data and transcripts are distributed by DCIEM, HCRC at the
University of Edinburgh, and by the Linguistic Data Consortium.
The intonation labels and game move coding are not distributed
with the CDs but can be obtained from the authors.
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