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Abstract

Chinese is a tonal language, with four main distinguishing tones. One school of thought
argues that ‘the tones are essentially independent of the vocal tract parameters of the
syllables’. So the approach taken is to process tone and syllable (regardless of tone) in
parallel. The other school argues that the correlation between excitation and vocal tract
parameters is not negligible, and therefore the other approach’s base syllable recognition
rate will always be limited.

It is widely accepted that the tone contour in Mandarin syllables is affected by the
initial consonant (INITIAL) , if there is one, and by the rest of the syllable (FINAL). In the
early seventies Howie studied the domain of tone in Mandarin. Ho studied the effects of
the syllable-initial consonant on tone. One aim of this dissertation project is to investi-
gate whether the findings of Howie and Ho’s studies can aid recognition of Mandarin, in
particular the recognition of the tone.

Using a single speaker, and isolated monosyllabic words, various HMM (Hidden Markov
Model) systems were designed and tested to see which could yield the best results and to
see if this performed better than a simple 4-model system.

It was possible to achieve high accuracy rates by using 4 multimixture models for the
FINAL)s. Using only FO- and energy- related information in the feature vectors performed
slightly better than using FO-, energy, and MFCC- (Mel-frequency Cepstral Coefficient)
information.
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Chapter 1

Introduction

1.1 Historical review

Mandarin Chinese is a tone language. In a tone language, ‘pitch has been captured for use
in the phonemic system’ (Ladd 1996), i.e. it functions to distinguish lexical items from
one another.

It has been shown (Ho 1976), (Howie 1974), (Garding 1987), (Shih 1988) and (Shen
1990) that pitch height and slope are important parameters in distinguishing the tones.
There are four tones whose contours are predictable, and a fifth, often called the neutral
tone, whose pitch contour is less predictable.

Chinese uses a non-alphabetic character set, of which the characters number up to
50,000. The need to simplify input to machines has led to the development of over 200
methods, none of which compare in terms of efficiency with those used with alphabetic
languages (ICC 1988).

Dictation machines offer prospects of such efficiency, and consequently much work on
the design of such machines has been carried out over the past ten years. Over the past ten
years, there have been varying approaches to the recognition of Mandarin Chinese speech.

The earlier ones chose to ignore the fifth tone. This greatly simplified the problem. In
a practical system, the fifth tone cannot be ignored. Recent systems handle the fifth tone
but use durational modelling to do so.

The predominant approaches that have been taken in the development of Mandarin
lexical tone recognisers involve HMMs or Gaussian classifiers (GC).

Where HMMs are used, pitch-related information is almost invariably used as features
in the observation vector. Energy-, and duration-related information is also used, and is
particularly useful in classifying the 5th tone (Lee, T'seng, Gu, Liu, Chang, Hsieh & Chen
1990) and (Cheng, Sun & Chen 1990).

Tone 5 has always posed problems because it can be characterised by a short duration,
and HMMs are unsuited to modelling duration unless duration is explicitly provided as a
feature.

The Golden Mandarin (Lee, Tseng, Gu, Liu, Chang, Lin, Lee, Tu, Hsieh & Chen



1993), (Lee, Tseng, Chen, Hung, Lee, , Chien, Lee, Lyu, Wang, Wu, Lin, Gu, Nee, Liao,
Yang, Chang & Yang 1993) and (Lyu, Chien, Hwang, Hsieh, Yang, Bai, Weng, Yang, Lin,
Chen, Tseng & Lee 1995), and Tangerine (Hon, Yuan, Chow, Narayan & Lee 1994) and
(Gao, Hon, Lin, Loudon, Yogananthan & Yuan 1995) systems have been at the forefront
of Mandarin recognition. The developers of Tangerine have always favoured an integrated
tone-syllable recognition approach, but at one point did use a separate GC for tone recog-
nition. The Golden Mandarin series’ designers prefer to identify tones independently of
the base-syllable. Their latest system uses (GCs similar to those used in an earlier version
of Tangerine, but also uses disyllabic GCs to handle continuous utterances.

Of the four-tone systems, Yang, Lee, Chang & Wang (1988) cite the use of the statistical
computation of mean, variation and range of pitch parameters to classity the four tones in
speaker dependent recognition (Cheng & Sherwood 1992) and (Chan & Ng 1982). Yang
et al. (1988) used Vector Quantisation (VQ) and Discrete HMMs (DHMM) to evaluate
the effects of codebook size and tonal model topology. They achieved 98.33% recognition
accuracy for the speaker-dependent case.

Cheng et al. (1990) implemented a multi-layer perceptron (MLP) in a speaker- inde-
pendent tone recognition system. They divided the voiced part of the monosyllable into 3
segments. The energies, means, and slopes of the normalised pitch contour of each segment,
plus the duration of the voiced part were used as the ten features in the input vector. It
could be seen from these studies that training a neural network requires large amounts of
training data and ‘very long’ training times (Owens 1993) which may make it unsuitable
for speaker-adaptive systems, while training required for HMMs is considerably less.

Golden Mandarin I (Lee, Tseng, Gu, Liu, Chang, Lin, Lee, Tu, Hsieh & Chen 1993)!,
the ‘first successfully implemented real-time Mandarin dictation machine’, and Golden
Mandarin II (Lee, Tseng, Chen, Hung, Lee, , Chien, Lee, Lyu, Wang, Wu, Lin, Gu, Nee,
Liao, Yang, Chang & Yang 1993) were speaker dependent monosyllable recognition sys-
tems. 5-state DHMMs with 32-word V(Q codebook were implemented for tone recognition.
They gave a recognition accuracy of 95.5% for 5-tone recognition, which was slightly better
than the 94.3% of the CHMM. In investigating CHMMs, it was found that a single mix-
ture Gaussian density was adequate, since mixture densities were found to produce slightly
lower or equal recognition rates.

Since then, more sophisticated techniques, using pitch analysers and a Gaussian Clas-
sifiers, have been used to develop speaker independent recognition systems that accept
utterances continuous and have speaker-adaptive capabilities.

Hon et al. (1994) adopted an approach proposed by Lin, Lee & Ting (1993), who argue
that the correlation between excitation and vocal tract parameters is not negligible and
that systems that treat them as independent (e.g. Golden Mandarin) cannot achieve a
high recognition rate. They claim that the errors in the separate tone and base-syllable
recognition subsystems will multiply in the final recognition performance.

Lin, Lee & Ting used 10 cepstral coefficients and 10 corresponding delta cepstral co-

!Golden Mandarin I was first developed in 1990.



efficients (derived from LPC coefficients?) plus 1 normalised energy feature and 1 delta
energy feature in a 22-feature vector. They implemented a 5-state CHMM? to simultane-
ously recognise tone and base-syllable. The result was a 94.85% tone recognition accuracy.
They showed that it was possible to classify tones using feature vectors without pitch or
excitation information. However they make no mention of the 5th tone.

Hon, Yuan, Chow, Narayan & Lee used a VQ stage with 4 codebooks* and 3-state
DHMMs for both the initial consonant (INITIAL) and the remainder of the syllable (FINAL).
Their best tone recognition accuracy was a ‘mediocre’ 86.4% and thus investigated other
techniques.

Tangerine (Gao et al. 1995) finally addressed the 5th tone. In developing their speaker-
dependent word-based system, they again used the integrated tone-syllable approach (Lin
et al. 1993) and (Hon et al. 1994), this time using mel-scale frequency cepstral (MFCC)
coefficients plus the pitch and its derivative as input to the DHMM. No specific recognition
accuracy data was provided.

Fu, Lee & Clubb (1996) gives a good summary of more diverse techniques that have
been applied. Most of the more recent approaches attain recognition accuracy rates above

95%.

1.2 Aims

There were two primary aims in this this project:

1. To examine how an integrated tone-syllable approach and a tone-independent-of-
syllable approach compare.

2. To see if grouping segments together, based on similarities in their phonetic makeup,
improved performance.

Having reviewed above the approaches taken, decisions were made accordingly on which
approaches would prove most helpful and time saving.

It was hoped that the best recognition system would attain accuracy results above 90%.

The HTK toolkit was used to build the recognition systems. It is used to build contin-
uous density hidden Markov model based recognisers.

1.3 Layout

This dissertation is organised as follows: Chapter 2 explains the nature of tone and syllable
in Mandarin and the choice of vocabulary used in this study. The methodology is discussed

2See Rabiner & Schafer (1978) and Deller, Proakis & Hansen (1993).

34 states were used for syllables without initial consonants.

4Codebook (CB) 1 quantised 12 LPC cepstral coefficients; CB 2 quantised 12 LPC delta cepstral
coefficients; CB 3 quantised 12 LPC 2nd-order delta cepstral coefficients; CB 4 quantised power, delta
power and 2nd-order power. CBs 1, 2, and 3 had 256 codewords and CB 4 had 32.



in Chapter 3. Chapter 4 looks at the technology involved in speech recognition, in particular
HMMs and the HTK toolkit and uses the design of a recogniser to illustrate some of the
issues involved. Chapter 5 explains the other approaches to tone recognition attempted in
this study.

1.4 Transcription convention

It is appropriate now that the notation used hereafter is explained. The form of romani-
sation used throughout this paper is pinyin. However, pinyin is not completely phonetic.
While the pronunciation of any syllable written in pinyin is distinct, sub-syllable segments
written in pinyin may have more than one pronunciation. When referring to a complete
syllable, the original pinyin transcription will be used. When referring to sub-syllabic units,
they will be written using my own modified pinyin representation (MPR). MPR was used
to label INITIAL and FINAL segments (See Section 3.2).
MPR is the same as pinyin except for:

1. Diacritics are not used. Instead the tone number is appended to the segment.
2. u 1s written as uu.
3. ¢ as in shi is written as I; ¢ as in ¢ is written as 1i;

4. Initial-less syllables are written the same as the same segments appear when preceded
by an initial, e.g. wan becomes uan , yi becomes 1i.



Chapter 2

Tone and Syllable in Mandarin

2.1 Introduction

The dialects of Chinese are all largely monosyllabic in the sense that the equivalence
between morpheme and syllable is almost perfect. In Mandarin there are few morphemes
of two syllables, and only one subsyllabic morpheme (the retroflex suffix, r). Constraints
on the combination of segments in the syllable admit only 408 different segmental syllables
(without the r suffix). MSC has 4 lexical tones and a neutral tone, resulting in a pool of
1632 possible combinations with which different syllables can be formed. In fact, due to
lexical gaps, only 1,345 are actually used. This figure also includes syllables that carry the
fifth tone. These are mainly grammatical particles which although occur quite often in
speech, are few in number.

While the fifth tone is quite important, it has been ignored in this study. It is usually
discriminated by duration, which was not employed as a parameter in this study.

2.2 Tone in Mandarin

The modification of tone has three acoustic dimensions: F0, intensity level, and duration.
Of the three, FO (perceived as relative pitch) is the most easily identified (Shen 1990).

The general tendencies of the four tones are commonly demonstrated on isolated tonic
syllables. These citation forms practically never occur in live speech (Kratochvil 1968, 37),
but they are useful as an illustrative starting point form the basis of all linguistic studies
of tone.

These are illustrated in Figure 2.1 and described by Chao (1948, 24,25) as follows:

Tone Chinese name Description  Pitch Diacritic

1 Yinping Sheng  high-level 5]

2 Yéangping Sheng high-rising 35
3 Shang Sheng low-dipping 214 Y
4 Qu Sheng high-falling 51 )



The values in the Pitch column represent the pitch contour: 5 represents the highest
of 5 levels; 1 represents the lowest. These values are relative and have to be adjusted for
individual speakers and for style of speech. It should be noted that in non-final position
in continuous speech, tone 3 undergoes tone sandhi. However, since this study only deals
with isolated monosyllables, the sandhi forms are not dealt with.

2.3 The Syllable in Mandarin

The segmental breakdown of syllables is as follows (Howie 1974):

1. Initial. Initial consonant. Optional.
2. Medial. Non-syllabic vowel (i or u). Optional.
3. Nucleus. Syllabic vowel. Obligatory.

4. Terminal. Non-syllabic vowel or nasal consonant. Optional.

Wang (1967) and Chao (1968) say that the domain of tone is over the entire voiced
portion of the syllable. Others argue that it is over segments 2-3 (Kratochvil 1968, 36) or
only segment 3 (Dow 1972, 102). All of these are based on impressionistic observations.
Howie’s measurements (1974) suggest that the domain of tone be identified with segments
3 and 4, what is called the rhyming part.

Howie used 9 groups of monosyllables; the groups were classed according to the initial
(or medial in syllables without initials).

The groupings were:

1. Those with initial syllabic vowel, e.g. yi, a, wu, ai.

2. Those with initial non-syllabic vowel, e.g. ya, yao, you.

3. Those with initial non-syllabic vowel and final nasal consonant, e.g. yang, yuan, wen.
4. Those with initial voiceless fricative, e.g. shi, fa, zu.

5. Those with initial voiced continuant, e.g. ma, ni, lu.

6. Those with initial aspirated stop, e.g. pao, tu, ke.

7. Those with initial unaspirated stop, e.g. bi, du, ge.

8. Those with initial aspirated affricate, e.g. gie, can, chi.

9. Those with initial unaspirated affricate, e.g. jie, zan, zhi.
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He found that variations in the shapes of the FO contours were associated with the
segment preceding the syllabic vowel. The F0 contour seemed to move in an anticipatory
manner during initial voiced consonants and non-syllabic vowels.

Ho (1976) examined the effects of syllable vowel and preceding consonant on tone. He
found that, although the four contours maintain their characteristic shapes, different vowels
and different preceding consonants do modity the four tone contours to varying degrees.
The influence of the vowel is more considerable than that of the preceding consonant.

He showed that for the four tone contours, high vowels usually have higher fundamental
frequency than mid-vowels, while mid-vowels usually have higher FO than the low vowel.
He showed that the FO contours of V syllables differed from those of CV syllables. His
comparison of contours of syllable nuclei after voiced and aspirated consonants showed that
they start lower after voiced consonants than after voiceless consonants. Contours start
lower after aspirated consonants than after unaspirated consonants.

2.4 Choice of vocabulary

The task of dealing with all the syllables of Mandarin is a large one. given the time
constraints, it was decided to take a subset of the language to investigate the points in
question.

The subset was based on groupings of segments similar to Howie’s. The idea of grouping
segments for recognition purposes is not altogether new?.

The following groups were chosen for this study on the basis of there being a significant
distinction between them in terms of their effects on tone as suggested by Howie’s study.
The abbreviated forms - shown in parentheses - are worth noting as it is used in later

sections when referring to these groups.
1. Voiced continuant initial (vc): 1, m, n
2. Voiceless fricative initial (v1f): f, h, s, sh, x
3. Aspirated affricate initial (asaf): ¢, ch, q

4. Monophthongs (mon): a, e, i, I, 0, u, uu

(@]

. i-medial diphthongs and triphthongs without final nasal (iris): ia, iao, ie, iu
6. u-medial diphthongs and triphthongs with final nasal (urn): uan, uang, un, ueng

All Oxford Concise Dictionary entries only for syllables (including all lexical tone vari-
ations) containing combinations of the above (a total of 268 toned syllables) were chosen
as the language subset to be studied.

!Tangerine (Gao et al. 1995) classified segments according to their pronunciations and durations.
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Chapter 3

Methodology

3.1 Data Acquisition

One female Mandarin speaker was asked to provide all the training and test data. She was
born and educated in Beijing and has lived in Edinburgh for two years.

Each syllable was written in pinyin including diacritics to mark the tone. This was
preferred to using the ideograms, as some ideograms have more than one possible pro-
nunciation. Ambiguity as to which pronunciation was intended was removed by using
pinyin.

Six blocks were recorded. For each block, 268 syllables were randomised (each block
differently). Five were to be used as training; one for testing. The main tone recognition
systems cited in Section 1.1 generally use at least 5 training blocks. Such a small number
is used because in a practical system, it is impractical to require a new speaker to produce
too many training utterances (Lee, Tseng, Gu, Liu, Chang, Lin, Lee, Tu, Hsieh & Chen
1993). The idea is to try to utilise a limited, yet sufficient (see Section 4.2.4), number of
training utterances efficiently.

The data was recorded to a digital audio tape (DAT) using the following recording
equipment:

Microphone Sennheisser MKH815T RF condenser microphone
Mixing console Soundcraft 200b

Recording equipment Sony pecm2700A Digital Audio Tape recorder

Playback DAT Sony DTC60ES DAT recorder

The subject sat in a soundproof recording studio and read each syllable with an ap-
proximate frequency of one syllable every 2 seconds. The sheets from which they were read
were placed on a table in front of the subject. The subjected was instructed not to touch
the sheet, so as not to create noise. After each sheet was read, it was placed to one side,
the next sheet was positioned, and the DAT was marked. After each block, the recording
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was paused and the speaker allowed a brief rest and an opportunity to drink some water.
This was intended to reduce the probability of laryngealising, which can occur after long
periods of talking.

3.2 Labelling

Using the ESPS! program xwaves each syllable was delimited and viewed in the time
domain, and in the frequency domain using a wideband spectrogram. Labelling was done
using ESPS’ x1abel label editor.

Since inconsistency in labelling is a potential source of error in training and recognition,
it was necessary from the outset to decide on firm labelling criteria.

Two sources were consulted (Isard & Thompson 1996) and (Hieronymous, Alexander,
Bennett, Cohen, Davies, Dalby, Laver, Barry, Fourcin & Wells 1990) and a combination
of both plus some improvisation were used as is detailed below. The improvisation was
primarily called upon when phenomena peculiar to Mandarin had to be dealt with. This
was due to the fact that the HCRC and SCRIBE guidelines are intended for use with
English.

Non-speech sounds

For non-speech sounds, the following labels were assigned:

sil For periods of silence between words (syllables).

#h Breaths in and out. Often occurring before words, or where the subject needed to
catch her breath. Not all of these were labelled, as they were generally not visible
in the time domain, and periods of silence were not aurally examined to detect non-
silence phenomena. Thus, inevitably some breaths or sighs may have been included
in segments labelled sil.

#s Lipsmacks and related lip or tongue clicks. If a something resembling a lipsmack was
spotted, it was listened for. If it was not audible at normal volume level, it was
ignored. If, on the other hand, it was audible, it was labelled. The labelled period
was always made to be at least 36 ms (usually between 40 and 50 ms) so that at least
one 25.6 ms parametrisation frame (see Section 3.3) ‘captured’ the label.

#n Noise. Usually inaudible (if very low frequency), this type of phenomenon was visible
in segments of silence when viewed in the time domain.

!Entropic Signal Processing System
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3.2.1 INITIALS

INITIALS were labelled in MPR (See Section 1.4) with tone number appended. Labelling
depended on which category (See Section 2.4) they were part of.

vif Voiceless fricatives: f, h, s, sh, x. The beginning was taken to be the point where
frication, however slight, became visible on the spectrogram. The end was marked
at where the onset of voicing of the following FINAL was seen.

asaf Aspirated affricates: c, ch, q. The HCRC guidelines for stop closures state:

When post-silence stop-initial words occur, a period of silence roughly
as long as the release should be included in the word. This is better than
either nothing (bad for speech recogniser training) or a fixed amount of
silence (not true to articulatory facts).

Affricates in English are generally unaspirated, so for the aspirated Mandarin ones,
which are longer, it was decided to include a period of silence roughly half as long as
the aspiration. Lipsmacks were often seen roughly half the length of the aspiration
before the release burst (or onset of aspiration if there was no burst) supporting the
decision taken - since lipsmacks often signal the beginning of a closure. If a lipsmack
occurred at a another close point, this was instead taken to be the beginning of the
closure.

vc Voiced continuants: 1, m, n. The beginning was taken as the onset of voicing; the end
was signalled by a sharp discontinuity in the formant frequencies and by an evident
increase in the formant amplitudes of the following vowel.

3.2.2 FINALS

These were marked by the onset and end of voicing, except for the two cases detailed:

Tails Tails are the the trailing low-amplitude noise at the end of a word. If following a
voiced phone (all Mandarin syllables have a voiced final) it is usually characterised
by an absence of voicing, but retains traces of the formants of the final phone, similar
to a vowel- or nasal-sounding breath out.

Initially, tails were to be labelled, but for convenience and time-saving, the boundary
between word and silence was set to the midway point of the tail. If the tail was
very slight (low amplitude), it was excluded from the word completely. In retrospect,
this was perhaps not the optimum choice. If included in the word, a HMM state
could be assigned to it, however less than half the syllables had no tails. If included
in the silence segment, it could corrupt the silence model unless an extra state or
mixture was assigned. A third possibility would be to explicitly model tails. As long
as short-time energy was a feature, in the parameter vector, it should avoid confusion



with vowel sounds. This would be reinforced by using F0 information as was done in
part of this study. As it turned out, no major problems were encountered in adopting
the midway criterion.

Post-silence clicks A throat or tongue click was often found before post-silence FINALS
and fs. If the click resembled a lipsmack, it was labelled as such, unless there was less
than one-and-a-half parametrisation frame lengths (40 ms) between the click and the
syllable body, in which case it was included in the body.

3.3 Parametrisation

A C-shell script incorporating HTK’s HCode was used to parametrise each data file. ESPS
header information was removed before the parametrisation in to MFCCs (Mel-scale Fre-
quency Cepstral Coefficients) was carried out. HCode allows the inclusion of arguments
that generate delta MFCCs, energy (F), and delta energy (AF), if desired.

CSTR’s SpeechTools? provided programs to generate F0, AF0 and probability of voicing
(PV); PV having a value of either 0 or 1. The pitch tracker used a super resolution pitch
determinator (SRPD) algorithm (Medan, Yair & Chazan 1991). Bagshaw, Miller & Jack
(1993) in their study of PDAs (pitch determination algorithms) found that this algorithm
performed well relative to the other PDAs studied.

For most tests, three types of feature vectors were used and the results of the tests
compared. The three types were:

1. C1,ACy, E,AE,F0,AF0, PV (7 features)
2. Cl..Olg, ACl..ACU, E, AE (26 features)
3. Cl..Olg, ACl..Aclg, E, AE, FO, AFO, PV (29 features)

where C,, 1s the nth MFCC.

The three types were chosen on the basis of the following arguments:

3.3.1 FO-related information

F0 and AF0 are useful acoustic quantities in recognising tone (See Section 1.1).

Lee et al. (1990) found that using only pitch frequency information was fine with 4
tones but poor with 5. Like Cheng et al. (1990), they used pitch frequency, short time
energy and duration of the voiced part of the syllable as features, since short time energy
is lower and the duration of the voiced part of the syllable is considerably shorter for the
5th tone.

So it would seem that the use of £, AE and duration would be helpful in being able to
expand the system to handle the fifth tone. In this study, £, AE were used, but duration

2Centre for Speech Technology Research, University of Edinburgh.
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was excluded as the four tones are relatively similar in duration for monosyllables (Ho
1976).Cy and AC; were included as HCode requires at least one MFCC to calculate E;
likewise for A MFCCs and AFE.

3.3.2 MFCCs

MFCCs were used as they generally out perform other forms of parametrisation and tend
to be the favoured parametric representation in most of today’s speech recognition systems.

Tangerine (Gao et al. 1995) used MFCCs. Its forerunner (Hon et al. 1994) used LPC
based speech representation. Using MFCCs was reported to have reduced recognition
errors by 17%. However they also claim that although using MFCCs provides a good
representation of speech, it is not very robust to environmental and acoustical disturbances,
and so they recommend the use of spectral subtraction and cepstral mean normalisation
to make the representation more robust.

MFCCs without these noise handling enhancements were considered satisfactory for
the speech used in this study which was recorded in a controlled environment (See Section
3.1).

MFCCs are generated as follows:

If P is the analysis order, and N is the number of MFCCs required, then P triangular
bandpass filters are equally spaced out along the mel-scale, where the mel-scale used by

HTK is:

Mel(f) = 2595 log, (1 + %) (3.1)

The MFCCs are generated using the following discrete cosine transform:

P I\ 7
Ci:ZXkCOS[i<k_._)_]7 1=1,2,--- N (32)
por 2/ P

where X;, k= 1,2,---, P, represents the spectral magnitude output of the kth filter.

A tull discussion of MFCCs is beyond the scope of this dissertation. The HTK reference
manual (Young 1992) gives details of the computation of the delta coefficients.

Young (1992) recommends an analysis order that is twice as large as the desired number
of MFCCs. For our purposes, the analysis order was set to 24, as there were to be 12
MFCCs. HCode also generated £, AE and the A MFCCs.

The analysis frame period was set at 10 ms; the analysis window duration at 25.6 ms.
These are the default settings in HCode. 2 windows were used to calculate the A MFCCs.

3.3.3 MFCCs and F0 Information

This feature vector was a combination of the two types of feature vectors above. How
recognisers would perform using this combination was a question this project aimed to
answer.
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Chapter 4

HMMs and Recogniser Design

4.1 HMDMs

A HMM is a ‘stochastic finite state automaton’ (Deller et al. 1993). It has been mainly
used to model speech utterances, be they words, subword units, or phrases. They have
also been used extensively, in one form or another, to model lexical tone in Mandarin?.
HMDMs attempt to characterise some of the variability in speech.

For a given frame, features of the entity to be modelled (in this case, tone) are extracted,
parametrised, and form a feature vector. For tone, most cases (except Tangerine) the vec-
tors include pitch-related information. A sequence of such vectors is called an observation
string, O = 01,09, --, 071, where T is the number of observations in the string.

In the training phase, the HMM is taught the statistical make-up of the observation
strings for its particular tone. The HMM is then capable of stochastically generating the
tone it was taught.

In the recognition phase, given an input observation string, it is imagined that one of
the trained HMMs generated the string. For each of the HMMs, the likelihood of that
HMM generating the input string is computed. The tone that trained the HMM with the
highest likelihood is deemed to be the input tone.

4.1.1 Model Parameters

A model M can be characterised by three sets of parameters:

© = {m;} or initial state distribution. =; is the probability of state ¢ generating the first
observation O;.

A = {a;;} or state transition probability distribution. a;; is the probability of a transition
from one state ¢ to another state j. Since there are an integral number of states, and hence
an integral number of possible transitions, this is a discrete distribution.

B = {b;(k)} or observation vector probability distribution. b;(k) is the probability of
generating observation Oy from state j.

THenceforth simply ‘tone’.

18



At this time it is appropriate to explain the characterising difference between the dis-
crete HMM (DHMM) and the continuous HMM (CHMM).

In DHMMs the number of observable vectors is reduced, usually by means of vector
quantisation (VQ). In a VQ training session, neighbouring vectors are clustered about
a codeword vector? which then acts as a representative of the cluster. The codewords
together form a codebook. Generally the number of codewords in a codebook is 256 or
less. This means that k in b;(k) above is an integral. Thus B has a discrete distribution
for each state, with probabilities only assigned to the codewords. It should be noted that
VQ is computationally expensive and, like any form of quantisation, can result in serious
degradation.

Lee, Tseng, Gu, Liu, Chang, Lin, Lee, Tu, Hsieh & Chen (1993) found that for 4 tones,
8 codewords performed better than bigger codebooks, explaining that too many codewords
may cause confusion. On the other hand 32 codewords was best for 5 tones.

Lee et al. (1990) concluded that DHMMs were best for 4 tones but that continuous
HMMs (CHMM) and HMMs with bounded state durations performed better for 5 tones.

4.1.2 CHMDMs

CHMMs avoid the quantisation problem. Since the observation vectors are continuous
signals, a continuous probability density function (pdf) is used to characterise b;(k), which
is better denoted by b;(O) (since k is often used for discrete values).

Generally, the pdf is of the form:

M
b;(0) = > ¢jmn[O, fim, Cjm] for each state j (4.1)
m=1

where O is the vector being modelled, ¢;,, 1s the mixture coefficient for the mth mixture
component in state j, and 5 is usually a Gaussian density function®, with mean vector g
and covariance matrix Cjy, for the mth mixture in state j.

A HMM state with a mixture density is equivalent to a multistate single mixture density
model (Rabiner & Juang 1993). They say ‘the distribution of the composite set of substates
(each with a single density) is mathematically equivalent to the composite mixture density
with a single state’. See Figure 4.2.

Mixtures offer an ability to capture variation within speech that would be treated as
homogenous in the single mixture case. The difference between using single and double
mixtures for inhomogenous data is illustrated in Figure 4.1.

Lee, Tseng, Gu, Liu, Chang, Lin, Lee, Tu, Hsieh & Chen (1993) found that a single

mixture was adequate for 5 tones, in which case, Equation 4.1 becomes:

b;(0) = 1[0, ;, C;j] for each state j (4.2)

If the 5 is a Gaussian distribution, then Equation 4.2 becomes:

2Usually the centroid of the cluster.
3The function can be ‘any log-concave or elliptically symmetric density’ (Rabiner 1989).
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b;(0) = (27) 72| Cj| 72 exp[—(0 — )" C* (O — 1) /2] (4.3)

where n is the number of features in each vector.

4.2 Training and Recognition with WT7

The training and recognition of HMMs is best illustrated by example and also provides an
opportunity to illustrate the issues raised so far. This will be done in the context of the
implementation of a recogniser using the HTK toolkit.

The system in question is a 4-tone, 1 model per tone, using an FO feature vector of
seven elements (See Section 3.3). This kind of recogniser will be be referred to as WTT%.
Each recogniser that is a subsequent variant (e.g. by virtue of having different numbers of
mixtures) will be referred to as WT7_1, WT7_2, etc. This syntax will be used throughout
this dissertation.

We will look at the following steps:

1. Data preparation

2. Training: initialisation
3. Training: reestimation
4. Recognition

Performance assessment

(&3¢

6. Discussion of performance

4.2.1 Data preparation

As was discussed in Section 3.2, the syllables were split into INITIAL/FINAL with each
labelled in its modified pinyin representation (MPR).

For a 4-model tone recogniser, a word (syllable) is required to have one of four different
labels; one label for each tone: wti, wt2, wt3, wt4 . HTK provides a label editor,
HLEd, to replace, merge and delete (among other functions) labels.

To illustrate, for the syllable shuan the labels of the INITIAL and FINAL are sh2 and
uan? respectively. These were then merged into a single label, wt2 .

Implementing a HMM involves deciding on the type of model (ergodic, left-right), size
(number of states), observation symbols (discrete, continuous), and in the CHMM case,
the number of mixtures.

*WT denotes word (syllable) tone; 7 is the feature vector size.
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There is no known simple, theoretically correct way of making these decisions; they are
made depending on the signal being modelled. Since the HTK toolkit only uses CHMMs,
they will be used exclusively.

A typical HMM for tone recognition has between 3 and 5 states. A left-right 4-state
double-transition model is shown in Fig. 1. A left-right model is better suited to modelling
signals whose properties change with time in a successive manner. Generally the decision
as to the number of states to be used is made on the basis of empirical testing, and
computational and performance considerations. A greater number of states does not imply
better performance. Restricting the number of allowed transitions from a state ensures
that large changes in state indices do not occur and reduces computational overhead.

A complex model may not be justified if the sequences associated with the model are not
long or not rich enough (Rabiner & Juang 1993). Choosing too many states or mixtures
would be in appropriate because it ‘forces the use of an underspecified system’. As is
mentioned below, the number of states is more flexible. When multimixtures are to be
investigated in this study. A starting point of one mixture per state (mps) per model is
used; the number of mixtures are then incremented one by one.

It is best to try to correspond the number of states to changing properties of the signal.
With tone, this could be the number of segments between turning points in the pitch
contour. A typical pitch contour for tone has two or three turning points (Yang et al. 1988).
Hence the suitability of 3 or 4 states per model. It should be noted that one weakness of
conventional HMMs is their durational modelling. This may cause recognition errors if the
number of states is just enough to model each different pitch segment. Adding extra states
aids the discrimination of tones which differ in length. Duration plays a dominant role
in distinguishing the 5th tone. Explicit durational density models are preferable (Rabiner
1989), but complicate and increase computation.

Yang et al. (1988) studied the effects of tonal topology using VQ and DHMMs. They
investigated 4 different types of models:

1. 3-node, single transition
2. 3-node, double transition allowed
3. 4-node, single transition

4. 4-node, double transition allowed (See Figure 4.1)

They found that all the above model topologies have almost equal performance when
F0 features for the voiced portion of syllables are used.

Golden Mandarin I (Lee, Tseng, Gu, Liu, Chang, Lin, Lee, Tu, Hsieh & Chen 1993)°,
the ‘first successfully implemented real-time Mandarin dictation machine’, and Golden
Mandarin II (Lee, Tseng, Chen, Hung, Lee, , Chien, Lee, Lyu, Wang, Wu, Lin, Gu,
Nee, Liao, Yang, Chang & Yang 1993) were speaker dependent monosyllable recognition

5Golden Mandarin I was first developed in 1990.
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systems.found that a single mixture Gaussian density was adequate, since mixture densities
were found to produce slightly lower or equal recognition rates.

On this basis, a 4-node, double-transition-allowed model with one mixture per state
(mps) was chosen as a starting point.

4.2.2 Training: Initialisation

The training of a HMM is the most difficult problem. This involves taking the initial
estimate of the model generated by HTK’s Hlnit, and then reestimating the model on
presenting it with the training data.

For a given training sequence, the probability of the observation given the model,
P(O|M), is generally a non-linear function of the parameters that the model has. This
function will have local maxima in the multidimensional space. The optimal model corre-
sponds to the global maximum of the likelihood function.

The problem here is finding initial estimates of the HMM parameters so that the local
maximum is equal to or as near as possible to the global maximum of the likelihood
function.

It is common practice to run reestimation algorithms a number of times with different
initial estimates and to take the model that produces the highest local maximum as being
the best model. However this has the disadvantage of added computational overhead.

Rabiner & Juang (1993) say that either random or uniform initial estimates of 7 and A
are adequate in almost all cases. However, good initial estimates are essential for training
CHMMs 6. Rabiner (1989, 284) cites a number of ways to obtain good initial estimates.
He suggests using manual segmentation techniques or segmental K-Means segmentation
with clustering. It is a form of the latter that is used by Hlnit.

HlInit iteratively calculates an initial set of parameter values using a segmental K-means
procedure and Viterbi allignment. In the case of multiple mixtures, a modified K-Means
clustering algorithm is used.

On the first iteration, the training data is uniformly segmented (according to the number
of states). From this data, means and variances are calculated for each state.

On each reiteration, Viterbi allignment replaces the uniform segmentation. This finds
the optimum state sequence through each observation sequence using the Viterbi algorithm
(See Section 4.2). Here, ‘recognition’ is carried out on each observation sequence. Each
observation vector is then assigned to the state that generated it by using the optimal path
criterion and backtracking. Then means and variances are recalculated for each state.

This produces a maximum likelihood estimate for B . The values of A remain unchanged
and = is fixed by forcing every state sequence to begin in the first state.

When there are more than one mixture per state, the observation vectors assigned
to each state must be divided into subsets (1 per mixture), also called clusters. This is
usually done using a modified K-means clustering algorithm’. The clustering algorithm

5Good initial estimates are optional for training DHMMs
“A good account of the K-means algorithm is given in Deller et al. (1993, 71)
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used by HInit® is ‘rather crude (but fast) and convergence is not guaranteed when multiple
mixtures are used’. As will be seen later, sometimes clustering cannot be achieved.

Before carrying out the initialisation process, it is necessary to provide HlInit with a
prototype HMM. The prototype defines the topology and characteristics of the HMM.
A PERL script was written that generated the required prototype, when inputted with
the number of states, number of mixtures, and observation vector size. Rabiner & Juang
(1993, 380) say that ‘it has been found that it is more convenient and sometimes preferable
to use diagonal matrices’. The reason they give is the difficulty in reliably reestimating
the off-diagonal components of the covariance matrix from limited training data. Thus,
diagonal matrices were used on all occasions.

4.2.3 'Training: Reestimation

Having obtained initial parameter values using HInit, the next step is to train the models.
This is done using HRest.

For every training sequence, the parameters of a new model are reestimated from those
of the old model until there is an improved model of the training sequence. At each
iteration, the new model (if an improvement on the old) replaces the old model and an-
other reestimation of the model is carried out until convergence is attained, or a specified
maximum number of iterations has been executed.

The model can be improved by maximising =, A , and B separately (subject to some
stochastic constraints). If, after reestimation, the new set of parameters are a better set,
it is retained, incorporated into the model, and the older set discarded.

The most popular method for locally maximising a model is the the forward-backward
algorithm? This algorithm calculates the probability of an observation string being gener-
ated by a model in a computationally efficient way. HTK uses this algorithm for training
when HRest is called.

A full discussion of the forward-backward algorithm is beyond the scope of this paper.
However, a summary of how each set of parameters is reestimated (without derivation or
explicit formulae) is provided.

7 = expected number of times in state ¢

expected number of transitions from state ¢ to state j

aij = — :
! expected number of total transitions from state @

- expected number of times in state j and observing O

b;(0) =

expected number of times in state j

The left-hand sides represent the reestimates; the right-hand sides are calculated using
the older values of the variables. The computation of the right-hand side is done using a

8Details are given in Young (1992, 86)
°Also known as the Baum-Welch reestimation algorithm.
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set of forward and backward probabilities which can be calculated in a computationally
efficient way.!1®
For the multimixture case ¢j,,, pjm, and Cjy, all need to be reestimated:

expected no. of times in state j with the mth mixture generating the observation

Cim . . .
! number of times in state j

[iim, and C;, are weighted time averages of the observation vectors, having been
weighted according to the likelihood of their being produced by mixture m in state j.

4.2.4 Recognition

Having trained up the models, we are ready to use them for recognition purposes. this is
done using HVite. HVite allows the use of a grammar and bigram probabilities.

HVite takes a set of speech files and assigns labels to them using the trained models
to make the assignment. The assignment algorithm used is the Viterbi algorithm. This is
a dynamic-programming based algorithm which finds the single best state sequence. The
best state sequence can be obtained by always locally choosing the best state sequence.

It is initiated by finding the probabilities of each state generating the very first obser-
vation:

¢1(j) = m;b;(01)

Then, for each pair of time frames, a calculation is made of the probability of each
state generating the first observation (of the pair), and of moving to each other state (or
remaining in the same state), and of that next state generating the second observation (of
the pair); the best local path being chosen:

¢t+1(j) = i:{%fL.fN{qﬁt(i)aij}bj(ot-l—l)
A record of the best local can be kept. The algorithm is terminated at the final
observation. The Viterbi probability is then:

v .
PT = max {67(j)}
The model with the highest PV is deemed to be the best match.
A grammar may be used to constrain the recognition sequence. This was used, but its
discussion will be postponed for now.
Bigram probabilities can also be used, but for our purposes they were ignored. This
was because it was desirable to have all tones equally likely.

10The forward probability a;(t) is the probability of the partial observation sequence 01,02, - -,0;, and
being in state ¢ at time ¢, calculated using an ‘any path’ criterion. The backward probability 8;(¢ + 1) is
the probability of being in state j at time ¢ + 1 and of the partial observation sequence 0t41, Oty2, - -+, 0T;
again, using any path.
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- Overall Results -
STATS: %Corr=81.27, Acc=29.59 [H=217, D=5, S=45, [=138, N=267|

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 43 3 6 9 31 70.5
wt2 0 51 6 2 0| 86.4
wt3 0 1 65 0 01 98.5
wt4d 5 6 7 58 1 76.3
Ins 8 35 37 53

Table 4.1: Results for Test WT7_1

Finally there are a couple of other issues relevant to tone recognition worth mentioning.

A single observation string cannot be used to train left-right models. A particular state
will only be occupied for a small number of observations before a transition is made. So to
make reliable estimates of the model parameters, multiple observation strings are required.
The tone recognition systems cited in the overview generally use at least 5 observation
strings.

4.2.5 Performance Assessment

Having carried out the recognition (the product being a series of recognised label files'!),
the next task was to assess the recognition performance.

Given that the test data had been hand-labelled as with the training data, these ‘correct’
labels are used as reference labels with which to compare the test labels.

HTK’s HResults does this using a dynamic programming implementation. The output
gives details of the number of correct (C), deleted (D), substituted (S), and inserted (I)
labels, as well as the total number of labels in the reference label files. The output looks

like Table 4.1.

The % correct and % accuracy figures are calculated from:

H
%Corr = N x 100

H-1

% Acc = x 100

The figures in the far right column give the correctness of the individual labels.

HHenceforth referred to as the test labels.



It should be noted from the above results that the numbers of insertions and deletions
in the STATS section do not tally exactly with the figures in the confusion matrix. There
is an element of erroneousness in the results output by HResults. This will be discussed
later.

Before going further into a discussion of the result just obtained, it is now appropriate
to address one issue that has so far been ignored - the issue of non-speech modelling.

4.2.6 Non-speech Modelling

One approach to handling non-speech sounds is to ignore them by marking the word
endpoints and placing each word in a separate file. This way the non-speech sounds are
discarded and do not have to be modelled.

Another approach is to intentionally include non-speech at both ends of each training
sample. The non-speech would be incorporated in the word models (most likely in the
initial and final states).

The third approach, which was taken here, is to separately train explicit non-speech
models.

It was found that 1 state, 2 mps models adequately modelled each non-speech sound,
but only with the help of the HVite’s grammar.

In our preliminary test, a grammar was used with the following syntax:

NONSPEECH = sil or #h or #s or #n;

WORD = wtl orwt2 orwt3 or wt4;

PHRASE = any no. of NONSPEECHSs followed by 1 WORD followed by at least 1 NONSPEECH;
SENTENCE = any number of PHRASEs .

It was noticed that there were an alarming number of insertions. These were due to
a breath or lipsmack (#h or #s) being inserted in the middle of a large number of words.
These insertions did not directly account for the high number of insertions, as HResults
was instructed to ignore non-speech sounds when assessing performance. However it caused
single words to be split in two (with a #h or #s in the boundary between the two parts)
See Fig 4.3. These extra ‘words’ caused the high number of insertions.

This type of insertion occurred mainly in iris- and urn-type syllables roughly where
the transition was made from the non-syllabic ¢ or u into the main vowel (See figure 4.3).

There were three solutions that were considered:

1. Employ durational information.
2. Improve the non-speech modelling.

3. Use the grammar to prevent the mid-word insertion of non-speech.
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- Overall Results

STATS: %Corr=72.28, Acc=68.54 [H=193, D=10, S=64, I=10, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 37 1 1 20 5 62.7
wt2 0 52 5 1 1| 89.7
wt3 0 2 64 0 01 97.0
wt4d 4 23 7T 40 31 54.1
Ins 0 4 1 5

Table 4.2: Results for Test WT7_2

Option 1 offered the best prospects, however the omission of the 5th tone from this
study was done to avoid the complications of including durational information.

Optimising non-speech modelling would distract from the aims of the project, so the
third option was chosen.

Tone 3 syllables were particularly susceptible to this mid-word non-speech insertion.
Han & Kim (1974) in their study of Vietnamese syllables found that the characteristic
of the low-dipping ‘broken tone’ was heavy laryngealisation causing an abrupt dip that
‘broke’ the FO contour and that creaky voice was heard during this dip.

In an attempt to prevent non-speech insertions, the grammar was modified so that a
minimum number of non-speech segments had to appear consecutively between each pair of
words. Using trial and error, it was found that a minimum of forty consecutive non-speech
segments prevented all mid-word non-speech insertions.

When the affected words were examined, they were all found to be tone 3 and sounded
creaky. Figure 4.4 shows this phenomenon when a grammar forced at least 15 consecutive
non-speech segments between words. The 10 ms analysis window is large enough to capture
the excitation cycles, but takes them for lipsmacks (See Figure 4.5).

The above figure of forty was equivalent to setting a lower limit of 415.6 ms on the
length of inter-word periods of non-speech.

The results with this new constraint imposed are shown in Table 4.2.

Apart from the obvious improvement in accuracy, the figures of note here are those of
deletions and insertions. They are curiously the same.

The reason for this is the dynamic programming algorithm and scoring system employed
by HResults. In calculating the lowest cost path, substitutions have a penalty of 10 each;
insertions have a penalty of 7 each. Sometimes an insertion and deletion cost less than two
substitutions and therefore the allignment from which the results are calculated produce
erroneous figures. The correct figures would appear as below:
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- Overall Results -
STATS: %Corr=72.28, Acc=72.28 [H=193, D=0, S=84, [=0, N=267]

Actual results for Test WT'7_2

As long as we are dealing with word (syllable) units, separated by longer periods of
silence and constrained by our grammar, we should expect to have a one-to-one mapping
between the reference labels and the test labels, unless the number of deletions and inser-
tions are not the same. If they are the same, they can be added together, the total added
to the number of substitutions, and the figures for deletions and insertions set to zero (as
above). The accuracy figure becomes that of the correctness.

In different circumstances, an equal number of deletions and insertions should not be
interpreted as misallignment. Although it is suggested that the figures be treated with
suspicion, the only way to get truly reliable figures is to manually check the allignment of
the transcription and test label files.

Similarly, the confusion matrices will only be a rough guide, not an accurate one.

This concludes the design of a complete recognition system. We will now look at a
multimixture version of the same.

4.3 Multimixture WT systems

4.3.1 More WT7 tests

A prototype model was created with 4 states and 2 mps. As before, the models were
initialised, reestimated and recognition performed.

The results are shown in Table 4.3. It should be noted that the figure of 42 insertions of
wt4 is another instance of the erroneousness that can appear in these confusion matrices.

With an accuracy of 94.76%, there is a marked improvement on the single mixture
recogniser. Most of the errors arise from wt3 being recognised as wt4.

The relatively poor accuracy rate in the single mixture case might be expected as
all types of syllables are bundled together. For example, shuan has an initial period of
voicelessness and by Howie’s reckoning would only have a characteristic tone 3 contour
(falling-rising) over the an part of the syllable. On the other hand d has a characteristic
tone 3 contour over the whole syllable. this does not make for a very robust model.

Increasing the number of mixtures will allow for some of the variability to be accounted
for. Rabiner & Juang (1993, 377) says that ‘lumping together all the variability from
inhomogenous data sources leads to unnecessarily complex models, often yielding lower
modelling accuracy’. This argument was not intended to support the idea of ‘the more
mixtures the better’, but was directed towards using more models to cater for the different
data sources. This will be done in Chapter 5. For now, we will further investigate the
effects of mixtures.
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- Overall Results -
STATS: %Corr=94.76, Acc=94.76 [H=253, D=0, S=14, [=0, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 64 0 0 1 01 98.5
wt2 0 56 3 0 01 94.9
wt3 0 0 56 10 0| 84.8
wt4d 0 0 0 77 01 100
Ins 0 0 0 42

Table 4.3: Results for Test WT7_3

- Overall Results -
STATS: %Corr=76.40, Acc=76.40 [H=204, D=0, S=63, [=0, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 64 0 0 1 01 98.5
wt2 0 59 0 0 01 100
wt3 0 3 4 59 01 6.1
wt4 0 0 0 77 01 100
Ins 0 0 0 42

Table 4.4: Results for Test WT7_4

Looking at the results of WT7_2 and WT7_3, it seems that the single mixture model
for wt3 performs better. A test was performed using a single mixture model for wt3 and
double mixture model for the other three tones. The results are shown in Table 4.4.

The majority of wt3s were ‘claimed’ by wt4. This shows three things:

1. The performance of an individual model is not independent of the other ‘competing’
models. In WT7_3 wt3 has a correctness figure of 84.8%; in WT7_4, the figure is
6.1%.

2. A model that has a more accurate representation (in this case wt4) of the variabil-
ity of its data source may claim tokens belonging to a model with a less accurate
representation (in this case wt3) of the variability of its data source.
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- Overall Results

STATS: %Corr=71.16, Acc=70.04 [H=190, D=3, S=T74, [=3, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 0 26 0 36 31 0.0
wt2 0 58 1 0 01 98.3
wt3 0 0 55 11 01 83.3
wt4d 0 0 0 77 01 100
Ins 0 1 1 1

Table 4.5: Results for Test WT7_5

- Overall Results

STATS: %Corr=85.39, Acc=83.52 [H=228, D=5, S=34, I=5, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 64 0 0 1 01 98.5
wt2 6 28 19 1 51 51.9
wt3 0 0 59 7 01 89.4
wtd 0 0 0 77 01| 100
Ins 0 0 1 3

Table 4.6: Results for Test WT7_6

3. These results reinforce the idea that HMMs are non-discriminative in recognition,
i.e. they are not trained as to what to reject in recognition.

There is also a suggestion that a ‘weak’ model’s tokens will be claimed by the ‘stronger’
model that is characteristically closest to it.

Tests WT'7_5 to WTT7_11 explore this.

In WT7.5 a test was performed using a single mixture model for wt1 and double
mixture model for the other three tones. Results are in Table 4.5.

In WT7.6 a test was performed using a single mixture model for wt2 and double
mixture model for the other three tones. Results are in Table 4.6.

In WT7.7 a test was performed using a single mixture model for wt4 and double
mixture model for the other three tones. Results are in Table 4.7.
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STATS: %Corr=77.53, Acc=77.53 [H=207, D=0, S=60, [=0, N=267]

- Overall Results

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 65 0 0 0 01 100
wt2 0 56 3 0 01 94.9
wt3 0 0 66 0 01 100
wt4d 13 1 43 20 01 26.0
Ins 0 0 0 42

Table 4.7: Results for Test WT7_7

- Overall Results

STATS: %Corr=75.28, Acc=73.78 [H=201, D=4, $=62, I=4, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 65 0 0 0 01 100
wt2 48 5 0 01 81.4
wt3 1 1 64 0 01 97.0
wt4d 21 24 4 24 41 32.9
Ins 3 0 0 1

Table 4.8: Results for Test WT7_8

In WT7.8 a test was performed using a double mixture model for wt1
mixture model for the other three tones. Results are in Table 4.8.

In WT7.9 a test was performed using a double mixture model for wt2
mixture model for the other three tones. Results are in Table 4.9.

In WT7_10 a test was performed using a double mixture model for wt3
mixture model for the other three tones. Results are in Table 4.10.

In WT7_11 a test was performed using a double mixture model for wt4
mixture model for the other three tones. Results are in Table 4.11.

From these results, summaries of which appear in Tables 4.12 and 4.13, it can be seen
that their is a correlation between tones that have similarities in their tone contours: There
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- Overall Results

STATS: %Corr=62.55, Acc=57.68 [H=167, D=13, S=87, I=13, N= 267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 8 55 0 0 1 12.7
wt2 0 59 0 0 01 100
wt3 1 10 55 0 01 83.3
wt4 9 7 5 45 9| 68.2
Ins 0 7 3 55

Table 4.9: Results for Test WT7_9

- Overall Results

STATS: %Corr=63.67, Acc=57.30 [H=170, D=17, S=80, I=17, N= 267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 34 1 6 16 71 59.6
wt2 0 35 21 1 21 614
wt3 0 0 65 0 1| 100
wtd 2 5 28 36 6 | 50.7
Ins 1 0 14 1

Table 4.10: Results for Test WT7_10
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- Overall Results -
STATS: %Corr=53.18, Acc=50.56 [H=142, D=7, S=118, 1=7, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 2 0 0 60 21 3.2
wt2 0 53 1 3 21 93.0
wt3 0 0 10 54 21 15.6
wt4d 0 0 0 77 01 100
Ins 0 0 0 7

Table 4.11: Results for Test WT7_11

when weak | claimed by
wtl wt2 and wt4
wt2 wt3
wt3 wtd
wtd wt3

Table 4.12: Summary of Tests WT7_4 to WT7_7

is not much correlation between tones 1 and 3; neither is there much between tones 2 and
4. Tt is also interesting to note that when a model is ‘strong’ compared to all others, its
correctness rises to 100%.

4.3.2 HHEd

It was attempted to increase the number of mixtures per state to 3 in each model, but
HInit’s clustering algorithm could not achieve the required number of clusters.

There is an alternative way of increasing the number of mixtures: using HT'K’s HHEd.
HHEd is a HMM editor that allows one to take an existing HMM and modify it in some
way, the result being a new model that will provide initial parameter values.

In Test WT7_12, the single mixture models from WT7_2 were taken and a mixture
added'? to each state in each model. These new models were then reestimated using
HRest.

The results are shown in Table 4.14.

12This was done using HHEd’s MU command.
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Table 4.13: Summary of Tests WT7_8 to WT7_11

when strong

claims

wtl
wt2
wt3
wt4

wtd
wtl

wt2 and wt4d
wtl and wt3

- Overall Results
STATS: %Corr=82.77, Acc=81.65 [H=221, D=3, S=43, [=3, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 64 0 0 0 01 100
wt2 0 57 0 2 01 96.6
wt3 0 7 58 0 1| 89.2
wt4 1 31 2 42 1| 55.3
Ins 0 2 1 42

Table 4.14: Results for Test WT7_12
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- Overall Results
STATS: %Corr=86.14, Acc=86.14 [H=230, D=0, S=37, [=0, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 65 0 0 0 01 100
wt2 1 58 0 0 01 98.3
wt3 0 2 64 0 01 97.0
wt4d 12 16 6 43 01 55.8
Ins 0 0 0 42

Table 4.15: Results for Test WT7_13

- Overall Results
STATS: %Corr=86.89, Acc=86.89 [H=232, D=0, S=35, [=0, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 65 0 0 0 01 100
wt2 0 58 1 0 01 98.3
wt3 0 2 64 0 01 97.0
wt4 9 19 4 45 01 58.4
Ins 0 0 0 42

Table 4.16: Results for Test WT7_14

Although the results are an improvement over those of WT7_2, they are not as good

as those of WT'7_3. In particular wt4 seems poorly modelled.

Tests WT'7_13 to WT7_15 increased by one the number of mixtures per state for each
model to see if results comparable to those of WT7_3 could be achieved. The results are

shown in Tables 4.15 to 4.17.

The accuracy peaks in WT7_14 (3 mps per model), and at 86.89% it is still well below

that of WT7_3.

Rabiner, Juang, Levinson & Sondhi (1985) found that multimixture CHMMs ‘are most
sensitive to estimation errors in the location of the means of each mixture density’. If the
initial estimate of the mean is not a very good one, the reestimation procedure cannot be

expected to yield good parameter estimates.
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- Overall Results -
STATS: %Corr=86.14, Acc=86.14 [H=230, D=0, S=37, [=0, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 65 0 0 0 01 100
wt2 0 58 1 0 01 98.3
wt3 0 2 64 0 01 97.0
wt4d 5 25 4 43 01 55.8
Ins 0 0 0 42

Table 4.17: Results for Test WT7_15

HHEd’s mixture-increasing algorithm (Young 1992, 75-6) works by halving the largest
mixture (i.e. halving the weight of the mixture with the largest weight), cloning this,
increasing the mean of one by 0.2 standard deviations and decreasing the mean of the
other by 0.2 standard deviations.

The above results suggest that when using multiple mixtures it would be best to use
HInit to get good initial estimates of the model parameters, rather than using a modified
version of an existing model.

On this basis, all the tests used Hlnit to create initial estimates of multimixture models,

rather than using HHEd.

4.4 Summary of WT7 tests

The best results were obtained in Test WT_3, where all models had roughly the same
degree of modelling, and whose initial estimates were obtained using HInit.

4.5 The WT26 and WT29 tests

The next set of tests are not as investigative as those using a 7 feature vector (Sections 4.2
and 4.3). They aim to produce results which can be compared with the best of the WT'7
tests.

Test WT26_1 used 4 single mixture models; Test WT26_2 used 4 double mixture models;
Test WT26_3 used 4 triple mixture models. The results are shown in Tables 4.18 to 4.20.

All the accuracy scores are around the mediocre 70 - 75% mark, which is well below
the highest score (94.8%) when only F0O-related information is used. Increasing the number
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- Overall Results
STATS: %Corr=75.28, Acc=70.79 [H=201, D=12, S=54, [=12, N= 267]

Confusion Matrix

wtl wt2 wt3 wt4d |Del | Yc
wtl 47 0 0 14 41 77.0
wt2 0 43 3 8 41 79.6
wt3 0 2 56 6 2| 87.5
wt4d 0 8 13 55 1] 724
Ins 0 5 4 2

Table 4.18: Results for Test WT26_1

- Overall Results
STATS: %Corr=68.91, Acc=62.92 [H=184, D=16, S=67, [=16, N= 267]

Confusion Matrix

wtl wt2 wt3 wt4d |Del | Yc
wtl 35 13 0 12 51 58.3
wt2 0 54 4 0 11 93.1
wt3 0 6 45 12 31 71.4
wtd 1 5 14 50 T 714
Ins 2 5 4 2

Table 4.19: Results for Test WT26_2
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- Overall Results
STATS: %Corr=73.41, Acc=69.66 [H=196, D=9, S=62, [=10, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 34 21 0 6 4 || 55.7
wt2 0 58 1 0 01 98.3
wt3 0 5 53 6 2| 82.8
wt4d 2 13 8 51 3| 68.9
Ins 3 4 1 1

Table 4.20: Results for Test WT26_3

- Overall Results
STATS: %Corr=76.03, Acc=71.16 [H=203, D=12, S=52, [=13, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 48 0 0 13 4| 78.7
wt2 4 51 2 1 1| 87.9
wt3 0 8 50 2 6| 83.3
wt4 1 11 10 54 1 71.1
Ins 3 3 3 3

Table 4.21: Results for Test WT29_1

of mixtures did not make much difference (at least up to 3 mixtures). This time, wt2 is
‘strong’ in Tests WT26_2 and Test WT26_3, but claims tokens from a ‘weaker’ wt1.

Test WT29_1 used 4 single mixture models; Test WT29_2 used 4 double mixture models.
The results are shown in Tables 4.21 and 4.22. Clustering could not be achieved for 3 mps.

The results compare favourably with those of the WT26 tests, and with WT7_2 in the
single mixture case. There is also a more even spread in the correctness scores of the
individual models.
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- Overall Results -
STATS: %Corr=85.39, Acc=84.64 [H=228, D=1, S=38, [=2, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 56 1 0 8 0| 86.2
wt2 1 54 1 3 01 91.5
wt3 0 7 5l 7 1| 78.5
wt4d 1 4 5 67 0| 87.0
Ins 1 1 0 42

Table 4.22: Results for Test WT29_2

Summary of WT26 and WT29 tests

It can be seen that while using only MFCC information, an accuracy score of 75.3%'?
(Test WT26_1) suggests a considerable degree of correlation between tone and syllable, or
at least that MFCCs implicitly contain tone contour information.

This was to be expected from the findings of Lin et al. (1993). However, by using
explicit FO information better performance can be achieved.

4.6 Summary of WT tests

When using only 4 models to recognise tone, using the 7-element feature vector (with FO-,
and energy-information) yields the best results.

Only using MFCC information performs relatively poorly but does suggest that there
is considerable tonal information in MFCCs.

13This figure has been adjusted to allow for the error produced by HResults.
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Figure 4.1: (a) 4 state, double transition allowed HMM; (b) Estimated density (thin con-
tour) and single mixture model density (thick contour) for one observation vector compo-
nent; (¢) Same estimated density (thin contour) and double mixture model density (thick

contour) for one observation vector component.
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Figure 4.2: Equivalence of a state with a mixture density to a multistate single-density
distribution (after Juang et al. (1986)).
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Figure 4.3: Non-speech insertion in word
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Figure 4.4: 15 non-speech (lipsmack) insertions in tone 3 word
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Figure 4.5: 15 lipsmack insertions in tone 3 word (zoom version of previous figure)
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Chapter 5

More Recognisers

5.1 The TS and TF tests

The TS (toned segment) TF (toned FINAL) tests took the approach taken by Lin et al.
(1993), i.e. to simultaneously recognise tone and syllable.

Because of the limited training data, and to avoid the need to have 268 models, each
toned syllable was split into INITIAL and FINAL.

In the TS tests, both segments, INITIAL and FINAL were tone-marked. This reduced
the number of models to 104 and provided more training data for each model. No label
editing was necessary for the TS tests.

In the TF tests, only FINALs were tone-marked. This reduced the number of models
even further, to 59% and provided more training data for each INITIAL model than was
provided in the TS tests. Some label editing was required to replace all the tone-marked
INITIALs with untoned equivalents.

If the INITIAL has no influence on the tone, we would expect the tone recognition
performance of both the TS and TF tests to be similar. If however, the INITIAL does
exert some influence on the tone, as found by Howie and Ho, we would expect the tone
recognition performance of the TS recogniser to be better.

An advantage to using the split-syllable approach is that a more refined grammar can
be implemented. For example: a uu can only follow a n, [, x, or ¢; a I can only follow a s,
sh, ¢, or ch.

No label editing was necessary for the TS tests.

Model topology was an issue that had to be considered.

In the WT series of tests, all models had 4 states, double transition allowed. All models
had similar correctness rates when all had the same number of mixtures.

Hon et al. (1994) used three states to model all the context independent sub-syllabic
units (INITIALs and FINALs as in this project).

If a fixed number of states is used across all models, then models that have states that

111 iNiT1ALS, 15 FINALS, 4 tones: (11+ 15) x 4 = 104.
211 INITIALs, 15 FINALs, 4 tones: (11 x 4) + 15 = 59.



- Overall Results -
STATS: %Corr=91.01, Acc=90.26 [H=243, D=2, S=22, [=2, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 57 0 0 6 21 90.5
wt2 8 5l 0 0 0| 86.4
wt3 0 3 63 0 01 95.5
wt4d 1 2 2 T2 01 93.5
Ins 0 2 0 59

Table 5.1: Results for Test TS7_1

roughly correspond to to the same number of sounds are expected to perform best (Rabiner
& Juang 1993). Picone (1989) in his study of speech recognition suggests that the number
of states be allowed to vary across models for better results.

Lin et al. (1993) used 1 state to model INITIALs, | state to model the transition between
INITIAL and FINAL , and 3 states to model the FINAL. Concatenated, this meant 5 states
per model, except for initial-less syllables for which the figure was 4. This method was not
an option in this study, unless all the data was relabelled to include a transition state.

The difficulty in deciding the number of states is compounded because we are simulta-
neously dealing with two entities: the segment and the tone.

It was decided to try the following compromise:

All segments were assigned 3 states per model except:

irises: 4 states; an extra state for the non-syllabic ¢ .

urns: ) states; an extra state each for the non-syllabic v and the nasal.

All the tests were done using single mixture models; multimixturing was not attempted,
as some models already had small numbers of training examples.

The procedure for finding the tone recognition accuracy rates was as follows:

1. Recognise the segments.

2. Using the HLEd label editor, convert to wt labels, i.e. words (syllables) marked by

tone.

3. Run HResults.

5.1.1 Tone recognition results

The results are displayed in Tables 5.1 to 5.6 with a summary in Table 5.7.
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STATS: %Corr=87.64, Acc=86.14 [H=234, D=4, $=29, I=4, N=267]

- Overall Results

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 57 2 0 4 21 90.5
wt2 2 52 4 0 1| 89.7
wt3 0 4 60 2 01 90.9
wt4 0 2 9 65 1| 85.5
Ins 0 2 2 55

Table 5.2: Results for Test TF7_1

STATS: %Corr=89.51, Acc=89.51 [H=239, D=0, $=28, 1=0, N=267]

- Overall Results

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 50 9 0 6 01 76.9
wt2 0 56 2 1 01 94.9
wt3 0 9 57 0 0| 86.4
wtd 0 1 0 76 0| 98.7
Ins 0 0 0 59

Table 5.3: Results for Test TS26_1
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STATS: %Corr=88.01, Acc=87.64 [H=235, D=1, $=31, I=1, N=267]

- Overall Results

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 49 10 0 6 01 75.4
wt2 0 56 1 1 1| 96.6
wt3 0 9 57 0 01 86.4
wt4 0 4 0 73 01 94.8
Ins 0 1 0 55

Table 5.4: Results for Test TF26_1

STATS: %Corr=92.51, Acc=92.51 [H=247, D=0, $=20, 1=0, N=267]

- Overall Results

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 55 4 0 6 0| 84.6
wt2 0 56 2 1 01 94.9
wt3 0 5 60 1 01 90.9
wtd 1 0 0 76 0| 98.7
Ins 0 0 0 59

Table 5.5: Results for Test TS29_1
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- Overall Results -
STATS: %Corr=89.14, Acc=89.14 [H=238, D=0, S=29, [=0, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 48 10 0 7 01 73.8
wt2 1 54 2 2 01 91.5
wt3 0 6 60 0 01 90.9
wt4d 0 1 0 76 0| 98.7
Ins 0 0 0 59

Table 5.6: Results for Test TF29_1

Test type | TF (toned FINAL) | TS (toned segment)
7-1 87.64 91.01
26_1 88.01 89.51
291 89.14 92.51

Table 5.7: % Summary of accuracy scores for tone recognition in the TF and TS tests.

In all 3 cases the marking of the tone of the INITIAL (TS tests) yields better results
that when the INITIAL is unmarked for tone. This would seem to confirm that the INITIAL
affects the tone and that this could be used to improve recognition.

The best scores are produced by using both F0 and MFCC information.

The figures of 88.01% and 89.01% are not as high as as the figure of 94.85% achieved by
Lin et al. (1993) who used a 5-state CHMMs to simultaneously recognise tone and syllable
(See Section 1.1).

There is a possibility that by using some multimixture models, the figures achieved
above could be improved.

5.1.2 Segment recognition results

The results for the recognition of the segments (without merging toned segments together),
are shown in Table 5.8.
The figures are not as high as might be expected for two main observed reasons:

1. There were many insertions of vecs at the beginning of initial-less FINALSs.

2. The majority of irises and urns were misrecognised as mons.
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Test type | TF (toned FINAL) | TS (toned segment)
71 25.21 24.79
26_1 60.83 62.50
291 63.33 58.96

Table 5.8: % Accuracy scores for segment recognition in the TF and TS tests.

There are at least two possible explanations (which are not mutually exclusive) for
these phenomena:

1. The misrecognised segments are poorly modelled relative to other models (See Section

1.3.1).

2. There is a disparity in the numbers of training sequences across models.

5.2 The TSG tests

The TSG (toned segment groups) series of tests employ the principle of the TS tests above,
but are only aimed at recognising tone. The segments were placed in 6 groups (as listed in
Section 2.4) and were tone-marked. This meant 24 models®. It was decided to experiment
further with the number of model states.

mon 2 states

iris 4 states, double transition allowed
urn 4 states, double transition allowed
vif 2 states

asaf 3 states

vc 2 states

The results for the single mixture case are shown in Tables 5.9 to 5.5

Each group above has a different number of elements, i.e. the mon group has 7 elements;
the iris and urn groups have 4 each; the v1f group has 5; the asaf andvc groups have
3 each. If the number of mixtures per state in every model is increased in ‘in one fell
swoop’, some models might improve, while at the same time others may be adversely
affected. Therefore a PERL program was written to increase the number of mixtures per
state in each model, but doing so one at time.

36 groups; 4 tones.
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STATS: %Corr=79.78, Acc=76.78 [H=213, D=8, =16, I=8, N=267]

- Overall Results

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 38 0 0 22 4| 63.3
wt2 3 53 0 3 01 89.8
wt3 0 9 54 2 01 83.1
wt4 0 6 1 68 2| 90.7
Ins 1 5 0 1

Table 5.9: Results for Test TSGT7_1

STATS: %Corr=90.26, Acc=89.89 [H=241, D=1, $=25, I=1, N=267]

- Overall Results

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 59 2 0 4 01 90.8
wt2 0 53 4 2 01 89.8
wt3 0 1 58 6 1| 89.2
wtd 0 2 4 71 01 92.2
Ins 0 0 1 59

Table 5.10: Results for Test TSG26_1
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- Overall Results -
STATS: %Corr=85.39, Acc=84.27 [H=228, D=3, S=36, [=3, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 48 6 0 10 1 75.0
wt2 1 56 0 1 1| 96.6
wt3 0 (Y 2 0| 86.4
wt4d 2 5 2 67 1| 88.2
Ins 1 1 0 1

Table 5.11: Results for Test TSG29_1

5.2.1 Accuracy Maximisation Program

There is no guarantee that increasing the number of mixtures per state will create a better
model of the estimated density. Therefore some criterion had to be used in deciding if
increasing the number of mixtures per state does actually create a better model of the
estimated density. If such a better model was created, it was retained; if not, it was
discarded, the older version reinstated, and no more attempts to increase the number of
mixtures per state in that model would be made.

The algorithm for deciding if increasing the number of mixtures per state creates a
‘better’ model of the estimated density is as follows:

if (
cannot create new model, i.e. clustering cannot be achieved
)
then {
use older version for next test;
move on to next model
}
else A
if (

accuracy score of segment recognition in current test
>= highest accuracy score of segment recognition so far
then A

discard older model;

use new version for next test

b
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else if (
(accuracy score of segment recognition in current test
= highest accuracy score of segment recognition so far)
and
(correctness score of segment recognition in current test
>= highest correctness score of segment recognition so far)

)
then {
discard older model;
use new version for next test
}
else if (

accuracy score of tone recognition in current test
>= highest accuracy score of tone recognition so far

)
then {
discard older model;
use new version for next test
}
else if (

(accuracy score of tone recognition in current test

= highest accuracy score of tone recognition so far)
and

(correctness score of tomne recognition in current test
> highest correctness score of tone recognition so far)

)
then {
discard older model;
use new version for next test
}
else {

discard new model;
use older version for next test

b
b

Sample outputs are shown in Appendix A.
The results for the tests that achieve the highest accuracy are shown in Tables 5.12 to

5.14, and summarised in Table 5.15.
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- Overall Results -
STATS: %Corr=99.63, Acc=99.63 [H=266, D=0, S=1, [=0, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 65 0 0 0 01 100
wt2 0 58 1 0 01 98.3
wt3 0 0 66 0 01 100
wt4d 0 0 0 77 01 100
Ins 0 0 0 59

Table 5.12: Results for Test TSG7_2

- Overall Results

STATS: %Corr=93.63, Acc=93.63 [H=250, D=0, S=17, I=0, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 62 2 0 1 01 954
wt2 0 56 1 2 01 94.9
wt3 0 1 62 3 01 93.9
wt4 1 3 3 70 01 90.9
Ins 0 0 0 55

Table 5.13: Results for Test TSG26_2

5.2.2 Summary of TSG tests

While using a 29-element feature vector yields high results, the 7-element vector seems
slightly better. The 26-element vector is again lagging behind.

The recognition accuracy of the segment groups is still relatively poor with the same
error characteristics as were mentioned in Section 5.1.2.

One important point should be noted. The accuracy scores came from using the same
data used by the accuracy maximisation program. More objective and reliable results
would have been obtained had a fresh set of test data been used.
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- Overall Results -
STATS: %Corr=98.88, Acc=98.88 [H=264, D=0, S=3, [=0, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 63 1 0 1 01 96.9
wt2 0 59 0 0 01 100
wt3 0 0 65 1 01 98.5
wtd 0 0 0 77 01| 100
Ins 0 0 0 59

Table 5.14: Results for Test TSG29_2

Test type | Tone accuracy | Segment group accuracy
TSGT72 99.63 57.71
TSG26.2 93.63 66.04
TSG29.2 98.88 58.96

Table 5.15: % Highest Accuracy scores for the TSG tests.



- Overall Results

STATS: %Corr=99.63, Acc=99.63 [H=266, D=0, S=1, I=0, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 64 1 0 0 01 98.5
wt2 0 59 0 0 01 100
wt3 0 0 66 0 01 100
wt4d 0 0 0 77 01 100
Ins 0 0 0 59

Table 5.16: Results for Test TGF7_1

5.3 The TGF tests

The TGF (toned grouped final) series of tests employ the principle of the TSG tests above,
and are again only aimed at recognising tone. The INITIAL segments were placed in 3
groups but were not tone-marked. The FINALs were all grouped together and were tone-
marked. This meant 7 models as listed below. The makeup of the models that attain
the maximum accuracy - 99.63% - using the accuracy maximisation program (See Section
5.2.1) are shown below. It was decided to use the same number of model states for the
INITIALs as was used in the TSG tests above. Initially it was decided to use 3 states for
each FINAL model, but FINALI and FINAL2 would not initialise with 3 states, but would

initialise using 2 states.

FINALI 2 states, 4 mixtures per state.

FINAL2 2 states, 3 mixtures per state.

FINAL3 3 states, 3 mixtures per state.

FINAL4 3 states, 3 mixtures per state.

vif 2 states, 3 mixtures per state.

asaf 3 states, 3 mixtures per state.

vc 2 states, 3 mixtures per state.

The best results for TGF7 are shown in Table 5.16.

No TGF26 tests were carried out as the accuracy scores for tone recognition using only
MFCC information had in the other tests been low relative to the scores achieved using F0
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- Overall Results -
STATS: %Corr=97.75, Acc=97.75 [H=261, D=0, S=6, [=0, N=267]

Confusion Matrix
wtl wt2 wt3 wt4d |Del | Yc
wtl 61 4 0 0 01 93.8
wt2 0 58 1 0 01 98.3
wt3 0 0 66 0 01 100
wt4d 0 0 1 76 0| 98.7
Ins 0 0 59

Table 5.17: Results for Test TGF29_1

information (7-element feature vector), and F0 and MFCC information (29-element feature
vector).

For the TGF29 tests, the makeup of the models that attain the maximum accuracy -
97.75% - using the accuracy maximisation program are shown below.

FINALI 2 states, 5 mixtures per state.
FINAL2 3 states, 3 mixtures per state.
FINAL3 3 states, 5 mixtures per state.
FINAL4 3 states, 4 mixtures per state.
vif 2 states, 3 mixtures per state.
asaf 3 states, 4 mixtures per state.

ve 2 states, 2 mixtures per state.

The best results for TGF29 are shown in Table 5.17.

5.3.1 Summary of TGF tests

It is possible to achieve high tonal recognition without using as many models as were used
in the TSG tests. On the other hand, more mixtures per state per model were required.

It would seem that tone-marking the FINALSs is sufficient in order to obtain a very high
degree of accuracy.
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Chapter 6

Conclusion

6.1 Main Points

1.

While there is evidence to suggest there is a high degree of correlation between
tone and syllable as Lin et al. (1993) argued, there is no evidence to suggest that
an integrated tone-syllable approach is better than a tone-independent-of-syllable
approach for tone recognition. In fact the results point towards the latter being
slightly preferable.

The results do confirm two widely accepted things:

(a) Explicit FO information is best for tone recognition.

(b) HMMs are non-discriminative.

The results contradict the findings of the Golden Mandarin I and II designers who
found that a single mixture Gaussian density was adequate in modelling tone. They
said that mixture densities were found to produce slightly lower or equal recognition
rates.

. While grouping segments together according to tone and phonetic makeup (i.e. using

the findings of Howie (1974) and Ho (1976)) does achieves a very high degree of
accuracy, comparable results can be achieved by simply tone-marking the FINALSs
and using multimixture models.

It is possible to use only two states to model tones 1 and 2.

6.2 Future Work

In the short term, the icing on the cake would be to see if a fresh set of test data produced
accuracy scores comparable to those yielded by the TGF7 and TSGT tests (99.63%).

In the longer term, there are two main directions this work could go:
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1. To conduct similar tests on tone recognition for the following:

e polysyllables and/or continuous speech;
o the 5th tone;

e speaker independence and adaption.

2. To conduct extensive tests on syllable recognition to see how an integrated tone-
syllable approach and a syllable-independent-of-tone approach compare.
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Appendix A

Sample outputs from accuracy
maximisation program

A.1 TSGT tests

A.1.1 TSG7 Segment Recognition

I I I I

I 2| vifit | 2| 2| 39.79| 26.46| 191| 38| 251| 64| 480]|
I 3| asaft | 3| 2| 40.62| 28.12| 195| 34| 251| 60| 480]
I 4| vel | 2| 2| 42.29] 30.00| 203| 28] 249| 59| 480]|
I 5| monl | 2| 2| 42.92] 32.50| 206] 27| 247| 50| 480]|
I 6l dirisi | 4 | 2| 42.29] 31.46| 203| 29| 248]| 52| 480]|
I 7| urnl | 4 | 2 | 43.12] 33.96| 207 27| 246]| 44| 480]|
I 8| vif2 | 2| 2| 44.17] 35.62| 212| 28| 240]| 41| 480]|
I 9] asaf2 | 3| 2| 43.33| 34.79| 208| 28| 244| 41| 480]|
| 10] ve2 | 2| 2| 46.46| 34.79| 223| 33| 224]| 56| 480]|
| 11} mon2 | 2| 2| 47.92| 35.62| 230] 35| 215| 59| 480]
| 121 diris2 | 4 | 2 | 47.92| 35.42| 230| 35| 215| 60| 480]
| 13] urn2 | 4 | 2 | 47.50| 36.88| 228| 26| 226| 51| 480]|
I 14| vif3 | 2| 2| 47.50| 36.88| 228 26| 226] 51| 480]|
I 15| asaf3 | 2| 2| 47.50| 36.88| 228 26| 226| 51| 480]|
| 16] ve3 | 2| 2| 47.08| 36.46| 226| 25| 229| 51| 480]|
I 17| mon3 | 2| 2| 52.08| 41.04| 250| 26| 204| 53| 480]|
| 18] iris3 | 4 | 2 | 49.79| 38.33| 239| 32| 209| 55| 480]
I 19| urn3 | 4 | 2 | 52.92| 41.67| 254| 28| 198]| 54| 480]|
I 201 vifa | 2| 2| 52.92| 41.67| 254| 28| 198]| 54| 480]|
I 21| asaf4 | 3| 2| 52.71| 41.67| 253| 27| 200| 53| 480]|
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A.1.2 TSGT7 Tone Recognition

I 1] - | -1 -1 79.78]|
I 2| vifi | 2| 2| 80.15]
I 3] asaft | 3| 2| 80.52]
I 4| vel | 2| 2| 84.27]|
I 5] monl | 2| 2| 80.52]
I 6l dirisit | 4| 2| 80.15]
I 71 urnl | 4| 2| 79.78]|
I 8| vif2 | 2| 2| 80.52]
I 9] asaf2 | 3| 2| 79.40|
| 10] ve2 | 2| 2| 81.27]
| 11} mon2 | 2| 2| 81.65]
| 121 diris2 | 4| 2| 81.27]|
| 13] urn2 | 4 | 2 | 82.40]
I 14| vif3 | 2| 2| 82.40]
I 15| asaf3 | 2| 2| 82.40]
I 16| ve3 | 2| 2| 83.52]
I 171 mon3 | 2| 2| 87.64|
I 18| iris3 | 4| 2| 85.02]
I 19| urn3 | 4 | 2 | 87.64]
| 20] vifa | 2| 2| 87.64]
| 211 asaf4 | 3| 2| 88.76|
| 22] ved | 2| 2| 89.51]
| 23] mond | 2| 2| 93.26]
| 241 iris4 | 4| 2| 93.63]
| 25] urnd | 4| 2| 93.63]|
| 26] vifi | 2| 3| 93.63]
| 271 asafi | 3| 3| 93.63]
| 28] vel | 2| 3| 94.38]
| 29] monl | 2| 3| 94.38]
| 30] vif2 | 2| 3 | 94.38]
| 31] ve2 | 2| 3| 94.01]
| 32] mon2 | 2| 3| 94.01]
| 33| urn2 | 4 | 3 | 89.14]
| 34] vif3 | 2| 3| 94.01]
| 351 asaf3 | 2| 3| 94.01]
| 36| mon3 | 2| 3| 97.75]
| 37| urn3 | 4 | 3| 97.75]
|  38] vifa | 2| 3| 97.75]|
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