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ABSTRACT

This paper descirbes atechnique for finding intonatioanl
events, (pitch accents and boundary tones) from wave-
forms. The technique works in a bottom-up manner by
using a recurrent neural network to perform a classifica:
tion of each frame in the input waveform. An autoseg-
mental description, consisting of intonational events, syl-
lables and the links between them, isthen produced from
this frame-based classification. The technique correctly
identifies 85.7% of pitch accents and boundary tones.

1. INTRODUCTION

In order to use prosodic information in speech recogni-
tion, it is necessary to have algorithms which can auto-
matically extract prosodicinformation from speechwave-
forms. Thispaper describesatechniquefor automatically
extracting a representation of an utterance’s intonation
from itswaveform.

The riseffal/connection (RFC) labelling system [9]
achieves good resultson alow leve intonation labelling
task. However, this system fals short of producing the
type of output that isideally required. The most signif-
icant problem is that there is no explicit way to link the
intonation description to the segmental description. Itis
possible to say where a pitch accent is located in time,
but not possible to say which syllable in the utteranceis
carrying this accent. In addition, the RFC descriptionis
too low-leve for direct phonological anaysis.

This paper describes a completely new technique for
extracting intonationa information directly from awave-
form. Thetechniqueis purely bottom-up and requiresno
additional information, such as the segmental string, to
have been pre-cal cul ated.

2. ASYSTEM FOR DERIVING
AUTOSEGMENTAL REPRESENTATIONS

The system consists of three basic components, the most
important of whichistheintonational event labeller. The
term “intonational event” is a general one used to de-
scribe pitch accents and boundary tones. The “event” is

the key component in an intonational formalism devel-
oped to represent intonation on acoustic, phonetic and
phonologica levels [10]. The work presented here is
only concerned with the finding of events and not with
their sub-classification as different sorts of accents and
boundary tones. The second component is the syllable
labeller which produces alist of the syllablesin the utter-
ance. The third component isthe linker which associates
events and syllables.

The outputs of the three components combine to form
a structure which isin many ways similar to an autoseg-
mental representation [3]. In our formalism, this repre-
sentation consists of two streams, each being an ordered
list of linguistic units. One stream represents syllables,
the other intonational events. Links represent associa-
tions between unitsin one stream and unitsin another™.
An exampleisgiveninfigure 1.

An autosegmental representation is particularly useful
in intonation, as it alows us to anayse the intonation
stream and syllable stream independently. This enables
usto compare intonation streams from two utterances di-
rectly to seewhether they havethesame tuneor not, while
still being able to know if agiven syllableis accented or
not.

3. THESYLLABLELABELLING COMPONENT

Hunt [5] describes a technique for syllable nucleus la
belling using recurrent neural networks (RNN). Thistech-
nique gave 94% correct identification of syllables in a
speaker independent test on the TIMIT corpus. Hunt's
experiment was replicated on our data with equivalent
success (For practical reasons, we used a dightly differ-
ent RNN topology from Hunt).

3.1. Recurrent Neural Networks

RNNs are now a popular tool in speech and language
research as they have a limited ability to mode time-
dependencies. The type of network used here, com-

T This terminology is somewhat different from that of Goldsmith.
This is because our autosegmental descriptions are part of a broader
linguistic structure formalism which owes its origins to Hertz's [4]
Delta system. Our streams are equivalent to Hertz's streams, but it
should be noted that our method of relating units on different streams
is dightly different to Delta.
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Figure 1. An autosegmental diagram. The top stream shows the position of the intonation events and the bottom
stream shows the position of the syllables. The lines indicate the links (associations) between the intonation events

and the syllables. The x-axis denotes time and is in ms.

monly referred to as an Elman net [2], is similar to a
standard 3 layer back-propagation network, but has ad-
ditiona “context” layers which are used for the time de-
pendency modelling. For the syllabification labelling
problem, the network consists of an input layer which
has the same number of units as each input vector (e.g.
one for each cepstral coefficient), a hidden layer of 20
units, and a single output unit. In addition, there are two
context layers, one for the hidden layer and one for the
output layer. The context layers have the same number
of unitsastheir respective hidden and output layers. The
network istrained using the back-propagation a gorithm.

3.2. Syllabification

Owing to the theoretical difficultiesin defining what ex-
actly asyllableis and where its boundaries (if even they
exist) should go, syllabification algorithms often simply
attempt to delimit syllabic nuclei rather than the syllable
boundaries. In nearly all cases syllabic nuclei contain
one and only one vowel. The only common exceptions
occur dueto the presence of syllabic consonants (such as
the /m/ in rhythm). Thus an algorithm which can locate
all vowels and syllabic consonants can be used for syl-
labification. This isthe approach taken by Hunt, which
works as follows.

The technique requires a moderate amount of training
data (40 utterances were sufficient) that have previously
been hand segmented with phonemic labels.

To trainthe system, each utteranceisanalysed in 10ms
frame intervals and the RNN is presented with pairs of
input and output valuesin order. There are 12 input val-
ues which represent cepstral coefficients and one output
value, which is 1.0 if the frame is part of a vowe or
syllabic consonant and -1.0 otherwise,

When run, the RNN produces a track against time
which indicates how closaly a given frame matches a
vowel. This vowel-likenesstrack can then be converted
back into a list of labels: every time the track crosses
zero in a positive direction a new vowel label is started,
and every time it crosses zero in a negative direction
the current vowel label is ended, resulting in a series of
vowel and non-vowel |abelsfor the utterance. Hunt usesa
second RNN to split vowel -vowel sequencesinto separate
syllables (thissecond stage has not yet been implemented
and | eads to the syl abification accuracy being worse than

the accuracy reported in Hunt's paper).

Hunt's RNN frame classification technique was pri-
marily developed for syllabification, but it can be readily
extended to any problem where a binary classification is
required to distinguish frames in one broad class from
another. This RNN set-up can be used to label vowels
(asin syllahification), obstruents, silence etc. This more
genera technique is referred to as a binary broad class
labeller.

4. THE EVENT LABELLING COMPONENT

Event labelling can aso be formulated as a broad class
[abelling problem, and so we use the RNN approach for
this task also. The output of the net is set up in much
the same way: hand marked labd files are converted
into 10ms interval tracks where a frame has a value of
+1 if it lies within the boundaries of an event and -1
elsewhere. In place of cepstral coefficients each frame
is associated with a vector of features representing rms
energy, smoothed R, differentiated y, vowel scores, and
obstruent scores.

4.1. Smoothed Ry

A “raw” R contour is extracted using a version of the
super-resolution pitch tracker, originally developed by
Medan et. d [7] and improved by Bagshaw et. a. [1].
Although this algorithm is very accurate in measuring
fundamental frequency, further processingisrequired be-
fore the contour can be used.

First of al, there are no Ryvaues during unvoiced
segments.  This is undesirable for intonation recogni-
tion as we wish to present contours resulting from the
same underlyingintonational representationsas being the
same. The presence of unvoiced segments can superfi-
cialy make two Ry contours look different, when in fact
they are produced from the same underlying intonational
pattern and they are perceived as being equivalent. It is
generally accepted [6], [8] that unvoi ced segmentssimply
mask the Ry contour, and therefore the underlying con-
tour can be reconstructed by interpolation through these
regions.

A problem arises in that pauses as well as unvoiced
segments produce gaps in the iy contour. Thisis prob-
lematic as we wish to interpolate through unvoiced re-
gions but not through pauses. To solve this problem,



Figure 2. Figure (a) shows the raw output of the event labeller and figure (b) shows the smoothed output. The
horizontal dotted line is the zero threshold and the black vertical lines show where the track crosses the threshold. In
figure (a) sharp spikes cause the threshold to be crossed several times, resulting in 4 spurious events being inserted.
In figure (b), the smoothing has removed all the sharp spikes which results in all the events being labelled correctly.

we use a pause labeller developed using the broad class
labelling RNN technique. The two training classes are
“non-pause’, containing all speech labels, and “pause”
which is mostly silence labdls, but aso contains some
cough and breath noise labels. The pause broad class la-
bellerisvery accurate, labelling 99% of frames correctly.
Using the pause track, it is possibleto fill the gapsin the
unvoiced segments whileleaving the pauses unfilled.

The Rk contour ismedian smoothed usinga170mslong
window. The smoothingremovesmost (but not al) of the
perturbationscaused by obstruents. The resultant contour
is smooth and unbroken in speech regions.

4.2. Differentiated R

Regardless of whether one adopts a “tones’ or “configu-
rations’ view of intonation, it is clear that rapid changes
in R valuesare aamore saient indication of intonational
activity than absolute iy values. With thisin mind a dif-
ferentiated /y contour is cd cul ated from the smoothed F
contour, by subtracting the Ry value of the previousframe
from the value of the current frame.

4.3. Vowe scores and Obstruent scores

Previouswork [9] showed that substantial rises and fals
in the iy contour were good indicators of pitch accent
presence. It was also shown that other, non-intonational ,
factors could also produce rises and falls which could
potentially lead to confusion if no effort was made to
distinguish the two types.

With thisin mind, two further tracks were included as
input. The vowe track is the same as that used in the
syllabification process described in section 3..

Again using the broad class labelling method, an ob-
struent |abeller was devel oped. Thiscorrectly recognised
frames within obstruents 98% of the time. Thiswasin-
cluded as inhibitory information: as obstruents are the
primary source for spurious rises and falls, the inclusion
of obstruent information can help the RNN identify these

spurious iy excursions.

4.4. Using the Broad Class Labeller for Event La-
belling

The RNN ismost sensitivewhenitsinput vaueslieinthe
range -1 to +1. To facilitate this, the five input variables
arenormalised. Firstthemean and standard deviationsof
each variable are calcul ated across the entire training set.
Next themean issubtracted from each valuewhichisthen
divided by twice the standard deviation, so that at least
95% of thevauesliein the required range. The RNN is
trained as before. When run, the RNN again produces a
track with values ranging between +1 (thisframeisin an
event) and -1 (thisframe is not in an event). Thistrack
isconverted into alabel description using the previously
described zero-crossing technique.

Experiments have shown that the output of the event
l[abeller is much more uneven than the output of other
labellers. The output has a substantial amount of uneven
local jitter superimposed on the underlying pattern. This
istroublesomewhen vaues are close to 0 because fluctu-
ationsin thisarea can cause the zero-crossing technique
to insert a large number of spurious labels. To avoid
this, the output of the event labeller is smoothed by a
100ms moving average low-pass filter and the resultant
track is passed to the zero-crossing algorithm. The raw
and smoothed output of the event Iabelled can be seen in
figures 2.

5. THE LINKING COMPONENT

The final component in the system is the linker, which
provides the association lines between the syllable and
intonation streams. Well formedness criteriagovern how
the two streams may be linked in principle. Every event
must have one and only onelink to the syllable stream but
a syllable may have zero, one or more linksto the event
stream. A syllable is normally linked with an event in
the case where that syllable is “accented”. Further links



Stream Events | Syllables
% Correct frames | 89.1% 94.5%

Total labels 112 249
Correct labes 98 198
Inserted labels 2 15

% Correct labels | 85.7% 79.5%
% Inserted labels | 9.1% 6.0%

Table 1. Results showing the accuracy of the event
and syllable labellers. (The % inserted labels figure is
calculated by dividing the number of insertions by the
total number in the original data)

can be made in the case where the syllable is phrase-
initial or phrase-final and thereare phrase-initial and final
intonationa events (boundary tones).

At present, only a very simple linking agorithm has
been implemented. This agorithm links each event to
the syllablewhose middleisclosest to theevent’smiddle,
whilst making sure that al the well-formedness criteria
are obeyed.

6. DATA, TESTING AND RESULTS

30 sentences from an American male speaker were used
for training and testing. The sentences were part of a
natural (but fluent) dialogue. This dataset was labelled
by hand with phonemic and intonation labels. The data
contained 112 intonation eventsand 249 syllables. Open-
test experiments were carried out in three batches, each
time using 20 utterances for training and 10 for testing,
and then choosing a different set of training and test ut-
terances for the next batch. In thisway, all 30 utterances
were subjected to open-class testing.

Thelabellingalgorithmsareassessed intwoways. The
first measure is a frame by frame measure whereby each
frame in the test output is compared to its equivalent
frame inthetraining output. If thetraining frame'svalue
is-1 and the test value is negative or thetraining frame's
value is +1 and the test value is positive, the frame is
judged as correct. Thisfigureismainly used to assessthe
raw performance of the neurd net.

The second measure determinesthe accuracy on alabel
by label basis. Here we calculate how many labels in
the training data have been correctly identified and how
many spurious labels have been inserted. The definition
of “correctly identified” is somewhat arbitrary, but we
chose a measure whereby two labels had to overlap by
at least 50% to be classed as the same. The results are
shownintable 1.

From an analysis of the correctly identified events, the
number of linksthat were correct was 56%.

7. DISCUSSION

The number of correctly identified events, 85.7%, iscon-
siderably higher than the 73% accuracy reported for the
previous, RFC labdller [9]. In addition, the algorithm is
more useful as its output is higher level than the RFC
system and & so describes the relation between the into-
national eventsand thesyllables. Approximately half the

errorsoccurred becausetwo neighbouring eventsareclas-
sified asasingleevent. More sophisticated processing of
the RNN output isrequired to rectify this problem.

It should be noted however that the linking component
of the system does not as yet give a reliable guide as
to which event is linked to which syllable. About 40%
of the errors occured because the syllable that the event
should have been linked to was not recognised. The
remainder of the errorswere dueto failingsin thelinking
algorithm itself. Current work isfocusing on building a
more sophisticated linker which makesjudgements based
on the acoustic characteristics of a syllable as well as
simply the time distance between it and an event.
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NOTES

All the software and testing programs reported here (writ-
ten in C++) are available for use by other researchers.
The software is in ftp.cstred.ac.uk. Alternatively, consult
http://www.cstr.ed.ac.uk.
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