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ABSTRACT

This paper descirbes a technique for finding intonatioanl
events, (pitch accents and boundary tones) from wave-
forms. The technique works in a bottom-up manner by
using a recurrent neural network to perform a classifica-
tion of each frame in the input waveform. An autoseg-
mental description, consisting of intonational events, syl-
lables and the links between them, is then produced from
this frame-based classification. The technique correctly
identifies 85.7% of pitch accents and boundary tones.

1. INTRODUCTION

In order to use prosodic information in speech recogni-
tion, it is necessary to have algorithms which can auto-
matically extract prosodic information from speech wave-
forms. This paper describes a technique for automatically
extracting a representation of an utterance’s intonation
from its waveform.

The rise/fall/connection (RFC) labelling system [9]
achieves good results on a low level intonation labelling
task. However, this system falls short of producing the
type of output that is ideally required. The most signif-
icant problem is that there is no explicit way to link the
intonation description to the segmental description. It is
possible to say where a pitch accent is located in time,
but not possible to say which syllable in the utterance is
carrying this accent. In addition, the RFC description is
too low-level for direct phonological analysis.

This paper describes a completely new technique for
extracting intonational information directly from a wave-
form. The technique is purely bottom-up and requires no
additional information, such as the segmental string, to
have been pre-calculated.

2. A SYSTEM FOR DERIVING
AUTOSEGMENTAL REPRESENTATIONS

The system consists of three basic components, the most
important of which is the intonational event labeller. The
term “intonational event” is a general one used to de-
scribe pitch accents and boundary tones. The “event” is

the key component in an intonational formalism devel-
oped to represent intonation on acoustic, phonetic and
phonological levels [10]. The work presented here is
only concerned with the finding of events and not with
their sub-classification as different sorts of accents and
boundary tones. The second component is the syllable
labeller which produces a list of the syllables in the utter-
ance. The third component is the linker which associates
events and syllables.

The outputs of the three components combine to form
a structure which is in many ways similar to an autoseg-
mental representation [3]. In our formalism, this repre-
sentation consists of two streams, each being an ordered
list of linguistic units. One stream represents syllables,
the other intonational events. Links represent associa-
tions between units in one stream and units in another1.
An example is given in figure 1.

An autosegmental representation is particularly useful
in intonation, as it allows us to analyse the intonation
stream and syllable stream independently. This enables
us to compare intonation streams from two utterances di-
rectly to see whether they have the same tune or not, while
still being able to know if a given syllable is accented or
not.

3. THE SYLLABLE LABELLING COMPONENT

Hunt [5] describes a technique for syllable nucleus la-
belling using recurrent neural networks (RNN). This tech-
nique gave 94% correct identification of syllables in a
speaker independent test on the TIMIT corpus. Hunt’s
experiment was replicated on our data with equivalent
success (For practical reasons, we used a slightly differ-
ent RNN topology from Hunt).

3.1. Recurrent Neural Networks
RNNs are now a popular tool in speech and language
research as they have a limited ability to model time-
dependencies. The type of network used here, com-

-
This terminology is somewhat different from that of Goldsmith.

This is because our autosegmental descriptions are part of a broader
linguistic structure formalism which owes its origins to Hertz’s [4]
Delta system. Our streams are equivalent to Hertz’s streams, but it
should be noted that our method of relating units on different streams
is slightly different to Delta.
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monly referred to as an Elman net [2], is similar to a
standard 3 layer back-propagation network, but has ad-
ditional “context” layers which are used for the time de-
pendency modelling. For the syllabification labelling
problem, the network consists of an input layer which
has the same number of units as each input vector (e.g.
one for each cepstral coefficient), a hidden layer of 20
units, and a single output unit. In addition, there are two
context layers, one for the hidden layer and one for the
output layer. The context layers have the same number
of units as their respective hidden and output layers. The
network is trained using the back-propagation algorithm.

3.2. Syllabification

Owing to the theoretical difficulties in defining what ex-
actly a syllable is and where its boundaries (if even they
exist) should go, syllabification algorithms often simply
attempt to delimit syllabic nuclei rather than the syllable
boundaries. In nearly all cases syllabic nuclei contain
one and only one vowel. The only common exceptions
occur due to the presence of syllabic consonants (such as
the /m/ in rhythm). Thus an algorithm which can locate
all vowels and syllabic consonants can be used for syl-
labification. This is the approach taken by Hunt, which
works as follows.

The technique requires a moderate amount of training
data (40 utterances were sufficient) that have previously
been hand segmented with phonemic labels.

To train the system, each utterance is analysed in 10ms
frame intervals and the RNN is presented with pairs of
input and output values in order. There are 12 input val-
ues which represent cepstral coefficients and one output
value, which is 1.0 if the frame is part of a vowel or
syllabic consonant and -1.0 otherwise.

When run, the RNN produces a track against time
which indicates how closely a given frame matches a
vowel. This vowel-likeness track can then be converted
back into a list of labels: every time the track crosses
zero in a positive direction a new vowel label is started,
and every time it crosses zero in a negative direction
the current vowel label is ended, resulting in a series of
vowel and non-vowel labels for the utterance. Hunt uses a
second RNN to split vowel-vowel sequences into separate
syllables (this second stage has not yet been implemented
and leads to the syllabification accuracy being worse than

the accuracy reported in Hunt’s paper).
Hunt’s RNN frame classification technique was pri-

marily developed for syllabification, but it can be readily
extended to any problem where a binary classification is
required to distinguish frames in one broad class from
another. This RNN set-up can be used to label vowels
(as in syllabification), obstruents, silence etc. This more
general technique is referred to as a binary broad class
labeller.

4. THE EVENT LABELLING COMPONENT

Event labelling can also be formulated as a broad class
labelling problem, and so we use the RNN approach for
this task also. The output of the net is set up in much
the same way: hand marked label files are converted
into 10ms interval tracks where a frame has a value of
+1 if it lies within the boundaries of an event and -1
elsewhere. In place of cepstral coefficients each frame
is associated with a vector of features representing rms
energy, smoothed FJ , differentiated FJ , vowel scores, and
obstruent scores.

4.1. Smoothed FJ
A “raw” FJ contour is extracted using a version of the
super-resolution pitch tracker, originally developed by
Medan et. al [7] and improved by Bagshaw et. al. [1].
Although this algorithm is very accurate in measuring
fundamental frequency, further processing is required be-
fore the contour can be used.

First of all, there are no FJ values during unvoiced
segments. This is undesirable for intonation recogni-
tion as we wish to present contours resulting from the
same underlying intonational representations as being the
same. The presence of unvoiced segments can superfi-
cially make two FJ contours look different, when in fact
they are produced from the same underlying intonational
pattern and they are perceived as being equivalent. It is
generally accepted [6], [8] that unvoiced segments simply
mask the FJ contour, and therefore the underlying con-
tour can be reconstructed by interpolation through these
regions.

A problem arises in that pauses as well as unvoiced
segments produce gaps in the FJ contour. This is prob-
lematic as we wish to interpolate through unvoiced re-
gions but not through pauses. To solve this problem,
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we use a pause labeller developed using the broad class
labelling RNN technique. The two training classes are
“non-pause”, containing all speech labels, and “pause”
which is mostly silence labels, but also contains some
cough and breath noise labels. The pause broad class la-
beller is very accurate, labelling 99% of frames correctly.
Using the pause track, it is possible to fill the gaps in the
unvoiced segments while leaving the pauses unfilled.

The FJ contour is median smoothed using a 170ms long
window. The smoothing removes most (but not all) of the
perturbations caused by obstruents. The resultant contour
is smooth and unbroken in speech regions.

4.2. Differentiated FJ
Regardless of whether one adopts a “tones” or “configu-
rations” view of intonation, it is clear that rapid changes
in FJ values are a a more salient indication of intonational
activity than absolute FJ values. With this in mind a dif-
ferentiated FJ contour is calculated from the smoothed FJ
contour, by subtracting the FJ value of the previous frame
from the value of the current frame.

4.3. Vowel scores and Obstruent scores

Previous work [9] showed that substantial rises and falls
in the FJ contour were good indicators of pitch accent
presence. It was also shown that other, non-intonational,
factors could also produce rises and falls which could
potentially lead to confusion if no effort was made to
distinguish the two types.

With this in mind, two further tracks were included as
input. The vowel track is the same as that used in the
syllabification process described in section 3..

Again using the broad class labelling method, an ob-
struent labeller was developed. This correctly recognised
frames within obstruents 98% of the time. This was in-
cluded as inhibitory information: as obstruents are the
primary source for spurious rises and falls, the inclusion
of obstruent information can help the RNN identify these

spurious FJ excursions.

4.4. Using the Broad Class Labeller for Event La-
belling

The RNN is most sensitive when its input values lie in the
range -1 to +1. To facilitate this, the five input variables
are normalised. First the mean and standard deviations of
each variable are calculated across the entire training set.
Next the mean is subtracted from each value which is then
divided by twice the standard deviation, so that at least
95% of the values lie in the required range. The RNN is
trained as before. When run, the RNN again produces a
track with values ranging between +1 (this frame is in an
event) and -1 (this frame is not in an event). This track
is converted into a label description using the previously
described zero-crossing technique.

Experiments have shown that the output of the event
labeller is much more uneven than the output of other
labellers. The output has a substantial amount of uneven
local jitter superimposed on the underlying pattern. This
is troublesome when values are close to 0 because fluctu-
ations in this area can cause the zero-crossing technique
to insert a large number of spurious labels. To avoid
this, the output of the event labeller is smoothed by a
100ms moving average low-pass filter and the resultant
track is passed to the zero-crossing algorithm. The raw
and smoothed output of the event labelled can be seen in
figures 2.

5. THE LINKING COMPONENT

The final component in the system is the linker, which
provides the association lines between the syllable and
intonation streams. Well formedness criteria govern how
the two streams may be linked in principle. Every event
must have one and only one link to the syllable stream but
a syllable may have zero, one or more links to the event
stream. A syllable is normally linked with an event in
the case where that syllable is “accented”. Further links



Stream Events Syllables
% Correct frames 89.1% 94.5%

Total labels 112 249
Correct labels 98 198
Inserted labels 2 15

% Correct labels 85.7% 79.5%
% Inserted labels 9.1% 6.0%
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can be made in the case where the syllable is phrase-
initial or phrase-final and there are phrase-initial and final
intonational events (boundary tones).

At present, only a very simple linking algorithm has
been implemented. This algorithm links each event to
the syllable whose middle is closest to the event’s middle,
whilst making sure that all the well-formedness criteria
are obeyed.

6. DATA, TESTING AND RESULTS

30 sentences from an American male speaker were used
for training and testing. The sentences were part of a
natural (but fluent) dialogue. This dataset was labelled
by hand with phonemic and intonation labels. The data
contained 112 intonation events and 249 syllables. Open-
test experiments were carried out in three batches, each
time using 20 utterances for training and 10 for testing,
and then choosing a different set of training and test ut-
terances for the next batch. In this way, all 30 utterances
were subjected to open-class testing.

The labelling algorithms are assessed in two ways. The
first measure is a frame by frame measure whereby each
frame in the test output is compared to its equivalent
frame in the training output. If the training frame’s value
is -1 and the test value is negative or the training frame’s
value is +1 and the test value is positive, the frame is
judged as correct. This figure is mainly used to assess the
raw performance of the neural net.

The second measure determines the accuracy on a label
by label basis. Here we calculate how many labels in
the training data have been correctly identified and how
many spurious labels have been inserted. The definition
of “correctly identified” is somewhat arbitrary, but we
chose a measure whereby two labels had to overlap by
at least 50% to be classed as the same. The results are
shown in table 1.

From an analysis of the correctly identified events, the
number of links that were correct was 56%.

7. DISCUSSION

The number of correctly identified events, 85.7%, is con-
siderably higher than the 73% accuracy reported for the
previous, RFC labeller [9]. In addition, the algorithm is
more useful as its output is higher level than the RFC
system and also describes the relation between the into-
national events and the syllables. Approximately half the

errors occurred because two neighbouring events are clas-
sified as a single event. More sophisticated processing of
the RNN output is required to rectify this problem.

It should be noted however that the linking component
of the system does not as yet give a reliable guide as
to which event is linked to which syllable. About 40%
of the errors occured because the syllable that the event
should have been linked to was not recognised. The
remainder of the errors were due to failings in the linking
algorithm itself. Current work is focusing on building a
more sophisticated linker which makes judgements based
on the acoustic characteristics of a syllable as well as
simply the time distance between it and an event.
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NOTES

All the software and testing programs reported here (writ-
ten in C++) are available for use by other researchers.
The software is in ftp.cstr.ed.ac.uk. Alternatively, consult
http://www.cstr.ed.ac.uk.
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