
USING STATISTICAL MODELS TO PREDICT PHRASE BOUNDARIES FOR SPEECH
SYNTHESIS

Eric Sanders
�

and Paul Taylor
�

�������	�
���
���
�����������
�������� �! "�#
��%$&
��('*)+�&,��.-

/�0)+�*'�12
�����3�423�$�)+'*'�
����"
��5-6'�
���-6758+�&-6�5'

�:9;�0<"
��=�%�:
?>A@+�2B5C"
�
�3�$ED&
.3�$5��@5'*@����GF2
H�.
�);�:3�$& I�J�5���;
�������� �K@&>�L",+�*��MN8O���P$N 2L",+�*��MN8+�6�Q$& #�R-AS#-

��0)+�*'�12T")58O'�-UD�)H�&'*@+�V4W
�,5-6)53�-A8+7
$X�U�6CP1 Y�Y�ZIZ	ZI-A3H���%�U-A
�,5-6)53�-A8+7

ABSTRACT

This paper describes a variety of methods for inserting
phrase boundaries in text. The methods work by ex-
amining the likelihood of a phrase break occurring in a
sequence of three part-of-speech tags. The paper explains
this basic technique and desribes more sophisticaed vari-
ations using distance probabilities.

1. INTRODUCTION

The derivation of the prosodic phrase structure of a sen-
tence is an important part of the text analysis module of
any text-to-speech (TTS) system. The derived prosodic
structure is used in a number of subsequent modules
including the duration module, where the location of
phrase boundaries is needed for the correct prediction of
phrase-final lengthening effects, and the intonation mod-
ule where the location of the phrase boundaries helps in
deciding where nuclear accents should be placed.

It is well known that there is a relationship between
the prosodic and syntactic structures of a sentence. It
is not surprising then that many TTS systems derive the
prosodic structure by first performing a syntactic parse,
and then manipulating this structure to produce a prosodic
parse. However, syntactic parsing modules often have
large space and time requirements and nevertheless make
substantial numbers of errors on unrestricted text. These
considerations have lead to simpler approaches whereby
the prosodic structure is derived directly from the text [4],
[5].

This paper describes a series of experiments designed
to extract prosodic phrase structure directly from text.

2. DATA

The basic idea of the experiments was to use part-of-
speech (POS) tags to predict phrase boundaries. We used
the Spoken English Corpus (SEC) [3] and [1] which is
a compilation of spoken British English (taken mainly
from BBC Radio 4 broadcasts). The text is annotated
with POS tags, parse trees and prosodic boundaries. The
annotations were produced manually with the excep-

tion of the parsing, which was done semi-automatically.
The prosodic transcription was done by two expert tran-
scribers. The part of speech tags assigned to the words in
the SEC are from the CLAWS tagset.

3. WORD SEQUENCES

All the experiments are based on overlapping sequences
of three POS tags (i.e. trigrams). A preliminary experi-
ment showed that the best use of these trigram sequences
was in the prediction of a phrase break between the sec-
ond and third words in the sequence.

The algorithms described below make use of the prob-
ability of a break occurring within a trigram. This proba-
bility is calculated from the training data by finding all the
sequences of a particular trigram, finding out how many
breaks are marked, and dividing the number of breaks by
the total number of occurrences of the sequence.

4. PART OF SPEECH TAGGING

There are about 200 different tags in the original CLAWS
tagset, which is too many for direct training (this would
result in [N\5\&] = ^`_H\�\5\Q_a\5\�\ possible trigrams, whereas
there are only 18131 words in the training set). The tags
that were used were adjective, adverb, noun, determiner,
subjunction & conjunction, preposition, pronoun, auxil-
iary verb, main verb and other.

For the experiments described here, we used the hand
marked POS tags in the SEC. For speech synthesis use,
the POS tagging must be done automatically and this can
be accomplished using algorithms such as that described
by Brill [2].

5. PARSING STRATEGIES

5.1. Method 1
This method makes use of the trigram probabilities alone.
It considers every trigram in a sentence and places a break
when the probability is over a certain threshold b . b can
vary from 0 (always a break) to 1.0 (only a break when
all occurrences in the training data had a break).

When the probability of a certain trigram is 0.5 and b
is assigned 0.5, then errors will occur in about 50% of the
cases where that trigram appears. The closer to 0 or 1 a
probability is, the fewer errors occur.

1521 3 4 5 6 7 8 9 10 11 12 13 140 16 17

200

400

600

800

��� �����	��

������� ���
� ��������������� ���"!
� �#� �	�%$��&�#� �(')��*+���
�-,&� �
� �&'��
� �������.���+/&0#,�/1� �2��� 3�� ��� ����� �&'&��� ����*�� ���4�����	,&�5�6�%'
�7�8�	!���,
'�!�� ���69:0#,�/1� �+��� 3�� �+� ���4'���;6$��&�<�1*=���
�-,&� � ����*
� ��,&�>� �&'��
� �?�%'�� ���@!�,&�#,
$�,&� ���

0.
8

0.
6

0.
4

0.
2

0.
0

17161514131211109876543210

1.
0

��� �����	��A(���.��� �+��� �
�B�:�&������� ���6�����	,&�5��!
� �#�#,
'�C:�����D�($�,�0$��%� � �E9=!�� �F� �-�%$
���#� �('8�
5.2. Method 2

A basic failing of the simple trigram approach is that
it doesn’t take into account the fact that the location of
a prosodic phrase break is dependent on where the last
break occurred. It is unlikely that three phrase breaks
will occur after consecutive words; it is also unlikely that
a sequence of, say, 30 words will be spoken without a
break.

To rectify this failing in the basic trigram approach
we developed an additional measure termed the distance
probability, which is calculated from the phrase length
distribution characteristics of the corpus. Figure 1 shows
the phrase-length distribution.

The longest phrase in the corpus had 17 words. To
calculate the phrase-length characteristics, the number of
phrases of length 1, 2, 3 up to 17 are counted and divided
by the total number of phrases. This gives a probability
of a phrase being exactly G words long. The distance
probability is the probability that there is a break after
exactly G words given that there hasn’t been a break
before this word, and is calculated by summing all the
phrase-length probabilities from 1 to G . Figure 2 shows
the distance probability distribution.

Thus, the greater the distance from the previous break,
the higher the probability of a break being inserted.

Method 2 combines the trigram probabilities with the
distance probability by keeping a counter indicating the
distance from the last break. The algorithm calculates the
probability of aa break by multiplying the trigram proba-
bility and the distance probability. If the total probability

is over the threshold b , a break will be inserted. As soon
as a break is inserted, the phrase-length counter is reset
to 0.

5.3. Method 3

This method works by using a lookahead of H trigrams.
All H trigrams are examined by considering the normal
trigram break probability and the distance probability.
The trigram which has the highest probability is tested
against the threshold b and if this is exceeded a break is
inserted. Once a break has been inserted, the algorithm
starts again by examining the next H trigrams after this
break.

The advantage of this method is that it picks a single
best trigram in a relatively long sequence of words, thus
ensuring that breaks are sparsely placed and when they are
placed they are placed in the best location. The method
will however make errors in the few cases where breaks
should be placed close together.

5.4. Method 4

This method uses an exhaustive search for the best combi-
nation of breaks in a sentence using the trigram probabil-
ities. It examines every possible combination of bound-
aries between words in a sentence and computes the prob-
ability of that combination. After all the combinations
have been examined, it picks the one with the highest
probability and inserts the breaks accordingly.

If a sentence has I words, then there are [KJML � com-
binations possible (because trigrams are used, the place
after the second word is the first to be considered for a
break). A sentence with 4 words has the following pos-
sibilities:

word word word word word
word word word word N word
word word word N word word
word word word N word N word
word word N word word word
word word N word word N word
word word N word N word word
word word N word N word N word

All possible combinations of breaks and trigram prob-
abilities are calculated and the most probable pattern
is chosen as being correct. This method obviously in-
curs heavily computational cost because of its exhaustive
search. A sentence with a length of 22 words, which is
not uncommon in the corpus, will cause over a million
combinations to be examined.

5.5. Method 5

This method employs a limited exhaustive search by us-
ing a two pass approach. The first pass places phrase
breaks at every punctuation mark, and the second pass
performs an exhaustive search between these breaks.
This drastically reduces the search space, but there are
still some sequences in the corpus which have too many

Method % Correct breaks % Inserted breaks % Word-pair correct Adjusted Word-pair score
1 70 22 89 0.5
2 68.5 27 87 0.45
3 70 16 89 0.5
4 72 14 90 0.54
5 69 26 87 0.44

� ,
$�� �
����K� �:��� � �&�
words in a sequence without any punctuation, so a further
limit on maximum sequence length was imposed.

6. TESTING AND RESULTS

The training data consisted of 18131 words and 3526
breaks. The test set consisted of 6420 words and 1376
breaks. Because of the exhaustive search conducted for
method 4, it was impractical to train and test this on the
entire data and smaller amounts of data were used.

6.1. Method of computing the scores

It should be clear that there isn’t a single best method
for calculating the accuracy of placing breaks. Here we
employ two methods.

The first method is a simple percentage score of
whether the breaks that an algorithm places are the same
as those in the database. The total number of correct
breaks and the total number of spurious inserted breaks
are calculated are divided by the total number of breaks
to give percentage scores.

The second method examines every word pair in the
test set. If there is a break and the algorithm places a
break, this is correct. If there is no break and the algo-
rithm does not place a break, this is also correct. Other-
wise there is an error. The total score is the number of
correct word pairs divided by the total number of word
pairs. A disadvantage of this technique is that it doesn’t
take into account the natural skew in the data regarding
the number of breaks to the number of non-breaks. For
example, if only 10% of the word pairs contained a break,
an algorithm could score 90% by not placing any breaks
at all. Therefore an additional measure was employed
that took this into account: if the score using the nor-
mal method is � and the proportion of non-breaks to the
number of word-pairs is � then the adjusted score is � L��� L�� .

In the SEC, 78% of the inter-word spaces are non-
breaks (� = 0.78). If, a method scores 90% of the inter-
word spaces correct (� = 0.9) then the adjusted score
is 	�

� L 	�

��� L 	�

�� = \������ . In this method a score of below \
indicates the algorithm is doing no better than chance.

Table 1 gives the results of the five methods.

7. DISCUSSION

All the algorithms reported here have achieved high accu-
racy in finding phrase breaks. It is somewhat surprising
how similar all the results are, with the word-pair scores
ranging from 87% to 90%. It is surprising that the results
for the simple trigram technique perform slightly better
than methods 2 and 3 which use phrase-length informa-
tion. There are many ways in which the trigram and

distance probabilities can be combined, and the multipli-
cation method adopted here is non-optimal. Future work
will consider more sophisticated schemes for combining
the two sources of information.

A much bigger difference is observed in the numbers
of insertions for each method, with methods 3 and 4
producing far fewer insertions than the other methods.

The results for method 4 are also interesting. Using
method 4 in an actual synthesis system is clearly imprac-
tical, but the results are useful in that they give an upper
limit of performance using the trigram approach. As the
results for the other techniques are close to this figure, it
is clear these techniques are close to their optimal per-
formance. Different techniques will have to be used to
increase performance past the 90% mark.

Most of the techniques rely on a threshold value which
has been chosen to keep the numbers of insertions and
deletions equal. Depending on the exact purpose to which
the system is put, insertion errors may be deemed more
important than deletions and vice-versa. The threshold
value can be varied to achieve a different balance between
insertions and deletions.

It is also important to note that the algorithms are at-
tempting to mimic the patterns of the phrase breaks in the
database rather than to produce phrase breaks in accept-
able places explicitly. While this makes for easy training
and testing, there are some difficulties with this approach.
Speakers are not necessarily consistent in the placing of
phrase breaks in a sentence. For a given text, there may be
many possible phrase break placings which are deemed
acceptable. The technique described here does not take
this into account and therefore a break which is incorrect
in our scoring method may still be acceptable to listeners.

The techniques have a number of practical advantages
which make them suitable for use in a real-time text-to-
speech system. Except for the exhaustive search methods,
the algorithms are fast and efficient. Furthermore, they
can easily be re-trained on any suitable corpus.

REFERENCES

[1] Simon Arnfield. Prosody and Syntax in Corpus Based
Analysis of Spoken English. PhD thesis, University
of Leeds, 1994.

[2] Eric Brill. A Corpus-Based Approach to Language
Learning. PhD thesis, University of Pennsylvania,
1993.

[3] G. Knowles and L. Taylor. Manual of information
to accompany the SEC corpus. Technical report,
UCREL:The University of Lancaster, 1988.

[4] Kim Silverman. The Sructure and Processing of Fun-
damental Frequency Contours. PhD thesis, Univer-
sity of Cambridge, 1987.

[5] N.M. Veilleux, M .Ostendorf, P. J. Price, and S. Shat-
tuck Hufnagel. Markov modelling of prosodic phrase
structure. In International Conference on Speech and
Signal Processing. IEEE, 1990.

