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Abstract—

This paper describes the use of a semi-continuous hidden
Markov models for speaker verification. The system uses
a technique for discriminative hidden Markov modelling
known as discriminating observation probabilities (DOP).
Results are presented for text-dependent experiments on
isolated digits from 25 genuine speakers and 84 casual im-
poster speakers, recorded over the public telephone network
in the United Kingdom. Performance measures which are
used to assess the DOP technique are equal error rate, zero
false rejection rate, zero false acceptance rate and two mea-
sures of the distance between probability distributions for
genuine and imposter speakers. The different performance
measures are assessed with regard to their suitability for
comparing speaker verification algorithms. This analysis
further supports previous work which shows that the ad-
dition of DOP to an HMM system provides a significant
advantage in speaker verification performance.
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1. INTRODUCTION

The technique of incorporating discriminating observation
probabilities (DOP) into an HMM has been reported as
being beneficial in the speaker verification task [3]. This
paper extends that work by employing a second data set
and several performance measures to test the reliability of
the initial results.

Section 2 describes the database used in these experiments
and describes how a second set of data is created by rotat-
ing the database to improve the robustness of performance
measures. Section 3 briefly describes the DOP technique,
which is introduced in [3].

The various performance measures used in this paper are
explained in Section 4, including a new distance measure
specifically aimed at assessing the performance of verifica-
tion systems. The parameter sets used in these experiments
are cepstra, mel frequency cepstra (MFCC), and the cor-
responding difference parameters. Each parameter set is
tested separately and in combination with the correspond-
ing DOP scores.

2. DATABASE

The procedure for parameter extraction and for training
the HMM is the same as described in [3]. The database is
also the same, except for the addition of 3 speakers to the
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training set. There are now 23 speakers (12 female and 11
male) with the set of 84 imposters remaining the same.
The training database is divided into 5 blocks each con-
taining 5 tokens per word. These blocks are labelled a
to e. The A data set referred to in these experiments
involves training on the a block and testing against the
b,c,d,e blocks. The B data set involves training on the b
block and testing on the a,c,d,e blocks. The C data set
involves combining the results obtained from the A and B
data sets.

There are 20 genuine speaker utterances and 84 imposter
speaker utterances in the test set for each digit. The data
was end-point detected to remove excess silence and min-
imise storage requirements.

The data consists of twelve isolated digits (digits ‘one’ to
‘nine’ plus ‘zero’, ‘nought’ and ‘oh’), recorded over the U.K.
telephone network. The training data was recorded in a
single session, with the test data being recorded over a
period of six months.

3. DISCRIMINATING OBSERVATION PROBABILITIES
(DOP)

In order to address the lack of explicit discrimination be-
tween classes in conventional HMM, a technique using
discriminating observation probabilities has been devel-
oped [3].

The procedure for generating a DOP HMM for a speaker
(speaker A) is as follows:

o Train a conventional HMM for speaker A (model A).

¢ Train a conventional HMM as a reference model using
appropriately chosen speech data (model R).

o Take the differences in the observation probabilities of
model A and model R.

¢ Normalise the differences into probabilities in the range
0tol.

o Create a DOP model for speaker A by using these proba-
bilities as the observation probabilities for the HMM model.
The DOP model is not a separate model but is treated
similarly to the various codebooks in a multiple codebook
HMM.

For these experiments the reference model is a general
speaker independent model, trained with data from an
independent group of 20 speakers. A reference model is
trained for each digit.

DOP HMM has the following technical benefits:

¢ A DOP model can be derived from a conventional HMM
with no extra training



¢ The DOP model can be easily implemented as another
information stream in a multiple codebook system.

o DOP models can be generated for all parameter sets in
a multiple codebook HMM, thus doubling the number of
information sources available for the verification decision.

¢ DOP models require minimal extra processing.

o The results in Section 5 show that the combination of
DOP scores and conventional HMM scores provides better

speaker discriminating performance then either score alone.

4. PERFORMANCE MEASURES

Speaker verification is concerned with the classification of
unknown bidders into two classes, genuine speakers and
imposters. There are two types of correct classification,
the acceptance of genuine speakers, and the rejection of
imposters. There are two corresponding types of errors,
namely the rejection of genuine speakers, often called false
rejection (FR), and the acceptance of imposters, often
called false acceptance (FA).
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Figure 1 is a typical plot of FA rate and FR rate against the
choice of decision threshold. Notice that there is a trade-off
between FR and FA. Error rates for any given threshold
can be determined from this plot. It is also possible for the
trained eye to make some assessment of the robustness of
the system to an imperfect choice of threshold. However,
an objective measure of the separation of the genuine and
imposter probabilities is still required to compare various
algorithms and systems reliably.

There are several performance measures available for com-
paring speaker verification systems which measure different
aspects of performance. The ZFR rate is the FA rate when
no genuine speakers are rejected and the ZFA rate is the
FR rate when no imposters are accepted. These measures
are critically dependent on the worst genuine speaker score
and the best imposter score, respectively. The ZFR and
ZFA measures cannot be used as the sole basis for select-
ing one algorithm over another, since slight changes in the
data could easily reverse the rankings of the algorithms, as
can be seen in Section 5.2.

4.1 Equal Error Rate (EER)

The most common performance measure referred to in the
literature is the equal error rate. This involves applying
an a posteriori threshold Tggpr which makes the percent-
age of FA and FR errors equal. It is important to make
a distinction between whether Tgggr is speaker-specific or
speaker-independent [3], [4]. Tegrg is speaker independent
in these experiments.

The use of an EER implies a perfect choice of threshold,
which is not possible in a real application since the thresh-
old would have to be determined a priori. Therefore the
EER provides an upper bound on performance and does
not indicate how robust the system is to variations in data.
Although EER is an important performance measure, it is
also useful to have a measure of how well a system sepa-
rates the probability distributions for the genuine speakers
and the imposters. Such a measure would give an indica-
tion of the robustness of the system to an imperfect choice

of threshold.
4.2 Mahalanobis Distance (MD)

A parametric measure of the distance between two statis-
tical populations is the Mahalanobis distance [6], which
assumes that the two populations have normal (Gauss-
Laplacian) distributions. Consider that the two popula-
tions of log probabilities from imposter (i = 1) and genuine
(i = 2) speakers are respectively represented by the sets,

(1)

These populations are normal distributions with a Lil-
liefors” probability [5] of approximately one, although it
is noted that their greatest deviations from normal dis-
tributions are above the 90'"-percentile for the imposter
scores (i = 1) and below the 10%*-percentile for the gen-
uine speaker scores (i = 2).

The Mahalanobis distance of two univariate normal distri-
butions is given by,
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The MD gives a measure of the separation between gen-
uine speaker scores and imposter scores. Unfortunately, as
is shown in section 5.1, this is not an ideal measure for
the purpose of quantifying speaker discriminating perfor-
mance. This is because the primary goal of a new algorithm
is to reduce errors and most imposters are never mistaken
for genuine speakers and most genuine speakers are not
usually falsely rejected. Thus, the scores which most need
to be improved are those near the equal error threshold.



The Mahalanobis distance assigns equal importance to all
scores. A distance measure which targets the most impor-
tant scores is required.

4.8 Targeted Distance Measure (TDM)

A figure of merit called the targeted distance measure is
used in this paper. TDM targets the most important
scores, namely the highest third of the imposter scores
and the lowest third of the genuine speaker scores. It is
calculated by the addition of two distance measures —
T D M;pmp for the imposter scores and T'DM ., for the gen-
uine speaker scores.

TDM = TDM;p, + TDM,.p, (3)

where,
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This calculation takes an average signed distance from
Terer and normalises it with respect to the distance be-
tween the means of the two distributions. Note the rever-
sal of sign between the calculation of T'DM;,,, and that of
TDMgen, so that a higher number corresponds to better
performance in both cases.

5. REsSULTS
5.1 Comparing Performance Measures

Figure 2 is a comparison of 5 different parameter sets using
seven different performance measures and three different
data sets.

The ordinate measures performance, with the top repre-
senting the score of the best algorithm and the bottom
representing the score of the worst algorithm. This means
that the lowest error rates and the greatest distances are at
the top. The ordinate is linear and has no absolute scale.
The seven performance measures, EER, ZFR, ZFA,
TDMgen, TDM;pmp, TDM, and MD all have three verti-
cal columns, one for each of the data sets. Each column
has been normalised so that the relative performance of
the five algorithms can be directly compared over all the
performance measures, and all the data sets.

This figure is a comparison of performance measures as well
as a comparison of algorithms. TDM shows a clear ranking
of the algorithms. Not only is the ranking the same over all
three data sets, but the relative differences in performance
of the algorithms are the same over the three sets. This is
an indication of a reliable performance measure, because
it means that the relative merits of one algorithm over an-
other can be assessed without undue sensitivity to the data
set being used.
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Fig. 2. Comparison of 5 different parameter sets using seven perfor-
mance measures. Three different data sets are used, A B and C'.
The top of any vertical column represents the best algorithm for
the given data set and performance measure.

Contrast this with the ZFR rate and the T'DM,., results.
The relative positions of the algorithms change consider-
ably between data set A and data set B, even though they
are derived from the same database. These measures must
therefore be used with caution.

The ZFA rate appears to be more reliable, although it
should suffer from the same sensitivity as the ZFR rate,
because it is a similar type of measure. It is interesting
to note that the rankings from ZFA are different from the
ranking of the other measures. This does not mean that
it is a poor performance measure. It is a good measure
of a different aspect of performance. The ZFA rate is a
measure of system performance when security is the key
requirement, taking priority over convenience and ease of
use.

The Mahalanobis distance maintains the ranking for the
different data sets and but does not appear to be measuring
the same thing as the EER and the TDM. The MD favours
the DOP algorithm in all cases. This means that the DOP
scores are better separated overall than the conventional
scores, but this has not lead to a corresponding reduction
in real or potential misclassifications. This supports the
need for the TDM.

Finally, the T'DM;,,, was more stable than the TDM.,,
which can probably be explained by the fact that T'DM;,,
is derived from 644 scores while T'"D M., is calculated from
only 154 scores.

5.2 Adding DOP Scores to Conventional HMM scores

Several experiments were conducted using various combi-
nations of normal cepstra and DOP cepstra. A simple
weighted sum of the probabilities was employed, using the
same method described in detail in [3]. Figure 3 shows
the performance of the best of these combinations against
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Fig. 3. Comparison of cepstra alone versus a weighted sum of cepstra
plus DOP cepstra. Three different data sets are used, A B and
C (which is the combination of the A and B sets). The top of
any vertical column represents the best performance for the given
performance measure.

cepstra alone. This figure differs from Figure 2 in that
the results are normalised for each performance measure,
instead of for each data set withing each performance mea-
sure. This allows some indication of the significance in
the differences in the algorithms relative to the difference
caused by using different data sets.

It can be seen that the EER, TDM and MD results were
better for data set B than for data set A. As would be
expected from a reliable performance measure, the results
for data set C' lie about half way between those for A and
for B. The EER, TDM and MD performance measures all
clearly illustrate the advantage of adding DOP to the sys-
tem.

The results from ZFR and ZFA require some comment,
since they illustrate the points made in Section 4. Cepstra
without DOP gave clearly the best ZFA rate for all data
sets, and on balance it was also superior for ZFR rate.
It is interesting to note, however, that the best ZFR rate
was obtained by DOP+CEP on data set A which other
measures found to be the hardest of the data sets. This
supports the proposition in Section 4 that these measures
need to be used with caution.

The absolute values of the performance measures for the
two algorithms can be seen in Table 5.2, along with the
results for the other parameters tested. No DOP denotes
only the conventional scores for that parameter were used,
while +DOP denotes a combination of conventional and
DOP scores. Note that since the TDM is a distance, the
higher the number, the better the performance, while the
reverse is true for EER.

The addition of DOP improves both performance measures
for all the parameters tested. Comparison of these results
with other studies in the literature [1], [7], [8] is not re-
ally possible because of the lack of a common database.
Also note that state duration probabilities from the HMM

6. CONCLUSIONS

A targeted distance measure has been developed which is
a reliable complement to the conventional EER. It is eas-
ily calculated using the EER threshold. The TDM is a
more useful measure for speaker verification than a total
distance between the genuine and imposter probability dis-
tributions, such as the Mahalanobis distance.

The results of earlier work [3] on DOP HMM have been
confirmed by experiments on a second data set. The in-
corporation of DOP scores lead to improvements in the
EER and the TDM for a variety of parameters. Further
investigation is required to find an optimal combination of
multiple speaker discriminating information streams.
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