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Python and NLTK are installed on the DICE workstations (i.e. the machines in Appleton Tower). Login
using your allocated account and password, then launch a Terminal. You can either run Python by either
typing python2.3 or idle2.3 at the command prompt. The former launches Python within the current
terminal, while the latter will open a new window and also allows editing of files and debugging.

You should use either a standard Unix editor (such as emacs, vim or pico) or use idle in order to create
and edit source files.

If you wish to install Python and NLTK on your own machine, you will find distributions online.
Currently, the latest release of Python is 2.4.1, and is available from http://www.python.org. You
can also retrieve NLTK from http://nltk.sourceforge.net — installation instructions are given at
http://nltk.sourceforge.net/install.html.

Note: the environment variable NLTK_CORPORA must be set to /usr/share/nltk-data in order to access
the corpora. This should be done automatically in your login scripts. However, if you have problems
using the corpora, use export or setenv in your shell to set the variable before running Python.

Tokenization

NLTK Tokenizers convert a string into a list of Tokens. For the tokenization exercises you will need to
import the following modules:

>>> from nltk.token import *
>>> from nltk.tokenizer import *
>>> from nltk.corpus import *

1. Try creating some tokens using the built-in whitespace tokenizer:

>>> ws = WhitespaceTokenizer (SUBTOKENS=’WORDS’)

>>> sentence = Token(TEXT=’My dog likes your dog’)

>>> ws.tokenize(sentence, add_locs=True)

>>> sentence

<[<My>@[0:2c], <dog>@[3:6c], <likes>@[7:12c], <your>@[13:17c], <dog>@[18:21c]]>

Extract the third token’s type and location using the WORDS, TEXT and LOC properties.

2. Next, use the corpus module to extract some tokenized data.

>>> gutenberg.items ()
[’austen-emma.txt’, ’bible-kjv.txt’, ..., ’chesterton-ball.txt’, ...]
>>> text = gutenberg.read(’chesterton-ball.txt’)

The text variable contains the entire novel as a list of tokens. Extract tokens 2631-2643.

3. The regular expression tokenizer RegexpTokenizer() was discussed in the lecture. Provide a
regular expression to match ‘words’ containing punctuation.

>>> t = RegexpTokenizer (’your regular expression goes here’)
>>> sentence = Token(TEXT=’0K, we\’ll email $20.95 payment to Amazon.com.’)
>>> t.tokenize(sentence)



4. Try out your tokenizer on the header of a Gutenberg corpus file, which contains a lot of punctuation.
How many tokens are there? Is it the same as what other people get?

>>> text = Token(TEXT=gutenberg.raw_read(’chesterton-ball.txt’) [:1020])
>>> t.tokenize(text)
>>> len(text[’SUBTOKENS’])

Part-of-speech tagging

Tokens are often “tagged” with additional information, such as their part-of-speech. The TAG property
is used to store POS tags, while the TEXT property stores the word type. For these exercises you will
need to additionally import the following module:

>>> from nltk.tagger import *

1. Try creating a few tagged tokens:

>>> chair = Token(TEXT=’chair’, TAG=’NN’)

>>> chair

<chair/NN>

>>> chair = Token(TEXT=’chair’, TAG=’"NN’, LOC=CharSpanLocation(l, 6))
>>> chair

<chair/NN>@[1:6c]

Extract the token’s type and the type’s tag using token’s TEXT and TAG properties.

2. Use the TaggedTokenReader to tokenize a tagged sentence into a list of tagged tokens. The input
is a string of the form:

>>> input = ’I/NP saw/VB a/DT man/NN’

You will need to use the token reader’s read_tokens method.

3. Use the corpus module to extract some tagged data. Both the Brown and Penn Treebank corpora
contain tagged text. These corpora can be accessed using brown and treebank. Each corpus is
divided into groups and items. Items are the logical units, usually files, into which the corpus has
been split. Groups are logical groupings or subdivisions of the corpus corresponding to different
sources, genre or markup for instance. The items may be listed exhaustively, or limited to only
those beloning to a given group:

>>> brown

<Corpus: brown (contains 500 items; 15 groups)>

>>> brown.groups ()

[’skill and hobbies’, ’humor’, ’popular lore’, ’fiction: mystery’,
’belles-lettres’,

>>> brown.items(’popular lore’)

(°cf01’, ’cf02’, ’cf03’, ’cf04’, ’cf05’, ’cf06’, ’cf07’, ’cf08’,
’c£09’, ’cfl10’,

>>> brown.raw_read(’cf04’)

>{\bs}In{\bs}In{\bs}t‘‘/ ¢ The/at food/nn is/bez wonderful/jj and/cc
it/pps ...

>>> brown.read(’cf04’) [’WORDS’] [:10]

[>¢¢>/>¢“°@[0Ow], ’The’/’AT’@[1w], ’food’/’NN’@[2w], ’is’/’BEZ’@[3w],

Try extracting some tagged text from other items and groups of the Brown corpus and the Penn
Treebank. You will need to use the ’tagged’ group of the Treebank. The tag sets used differs
between the two corpora. See http://www.scs.leeds.ac.uk/amalgam/tagsets/brown.html and
http://www.scs.leeds.ac.uk/amalgam/tagsets/upenn.html for descriptions of the tag sets.



4. Use the DefaultTagger to tag a sequence of tokens. First extract some tagged text, remove all
tags using the exclude () method then apply the tagger. Tagging accuracy can be measured using
the accuracy () method:

>>> tagged_tokens = brown.read(’cf04’)

>>> retagged_tokens = tagged_tokens.exclude(’TAG’)

>>> default_tagger = DefaultTagger(’nn’, SUBTOKENS=’WORDS’)
>>> default_tagger.tag(retagged_tokens)

>>> tagged_tokens [’WORDS’] [205:209]

[<home/nn>, <to/in>, <60/cd>, <children/nns>]

>>> retagged_tokens [’WORDS’] [205:209]

[<home/nn>, <to/nn>, <60/nn>, <children/nn>]

>>> accuracy(tagged_tokens[’WORDS’], retagged_tokens[’WORDS’])
0.16961913197519929

Inspect the output (retagged_tokens) by hand, comparing it to the original in order to see what
kind of errors were made.

5. Use the UnigramTagger and NthOrderTagger with varying order (1 or more) on the same data.
These taggers need to be trained in order to initialise their probability estimates. It is best to train
on different data to that tested, hence we’ll use a different item:

>>> training_tokens = brown.read(’cf01’)

>>> unigram = UnigramTagger (SUBTOKENS=’WORDS’)
>>> unigram.train(training_tokens)

>>> unigram.tag(retagged_tokens)

This tagger doesn’t perform very well as it hasn’t seen much training data and thus its probability
estimates are quite biased. See if and how much the accuracy can be improved by increasing the
amount of training data (while ensuring that you're not using the training data for testing).

6. You may have noticed that the NthOrderTagger failed miserably for high orders, where the
UnigramTagger was quite robust. Why do you think this happens?

Use a BackoffTagger with a unigram and nn cd tagger as shown below. Add some higher order
taggers (eg. second, third order) to the start of the list of taggers. Does performance improve?

>>> backoff = BackoffTagger([unigram, default_tagger], SUBTOKENS=’WORDS’)
>>> backoff.tag(retagged_tokens)

7. Find the 10 most common tags in a group of items of the Brown corpus. Use the nltk.probability.FreqDist
class to count the number of instances of each tag, using the inc() method for the tag of each
token as they are processed. You may need to refer to the lecture slides and NLTK documentation
on the FreqDist class.

Note: NLTK is installed in the subdirectories /usr/1ib/python2.3/site-packages/nltk and /usr/share/nltk-data.
The first contains the source code to NLTK, and the latter contains the corpus data.



