Unit Selection Synthesis with BOSS -Part 1

Stefan Breuer EMLS Summer School 2004 IKP, Bonn

Overview

- Reminder: General Architecture of a TTS-System
- Concatenative Synthesis
- Unit Selection Synthesis

General Procedure

Concatenation

- A string of segments needs to be transformed into a continuous speech signal
- Since segments influence each other across segmental boundaries, these effects need to be modelled
- Data-based synthesis takes prerecorded units of speech and concatenates them

Concatenation in Data-driven synthesis

- Natural prerecorded units are concatenated
- Unit size variable (diphones, demisyllables, words etc.)
- Coarticulation "for free" (within limits)
- Good corpus design necessary
- Prosodic manipulation (duration and FO), and smoothing of concatenation boundaries necessary – might lead to signal distortions

Unit Size in Concatenative Synthesis

- Phones, Allophones in Parametric Synthesis; small inventory (40-50), high flexibility
- Diphones, concatenation in stationary phase; n=allophones²; few phonotactic restrictions due to concatenation across word boundaries
- Demisyllables, suitable for languages with less complex syllable structure (e.g. Japanese)
- For German: 5500 demisyllables necessary
- Useful: hybrid approach of diphones, triphones, demisyllables, affixes, to cover long term coarticulatory effects and typical devoicing effects, nasal/lateral releases with minimum inventory
- In limited domains, larger units may be useful (words, phrases)

Unit Selection Synthesis the ultimate step in datadriven synthesis

- Currently "State of the Art"
- In between "slot-and-filler"-systems and traditional concatenative systems
- Very high naturalness, esp. in limited domains
- Philosophy:
 - "the best unit is the natural utterance"
 - Avoid manipulation by introducing more variants of each unit
 - "Choose the best unit to modify the least"

Unit Selection

Foreach possible phone sequence in the database matching the desired synthesis output

Compare desired features with unit features and contextual features }

Determine optimal unit sequence by a sum of weighted cost:

- Unit cost (duration deviation, reduction, pitch deviation...)
- Transition cost (matching phonetic/prosodic

Synthesis Algorithm

Edge direction

Cost Terms

- Unit Cost:
 - Position
 - Intonation
 - Reduction
 - Duration
- Transition Cost:
 - Spoken consecutively in original recording
 - Phonetic and prosodic context

Corpus-based approaches and Unit Selection

- No objective method available to determine weighting of cost function
- Extensive listening tests necessary in order to tune cost function
- If large units are preferred, restricted to limited domains
- Hybrid unit sizes possible (first search words, then syllables, segments...)