
PUNCTUATED TRANSCRIPTION OF MULTI-GENRE BROADCASTS USING ACOUSTIC
AND LEXICAL APPROACHES

Ondřej Klejch, Peter Bell, Steve Renals

Centre for Speech Technology Research, University of Edinburgh, Edinburgh EH8 9AB, UK
o.klejch@sms.ed.ac.uk, {peter.bell,s.renals}@ed.ac.uk

ABSTRACT

In this paper we investigate the punctuated transcription of
multi-genre broadcast media. We examine four systems,
three of which are based on lexical features, the fourth of
which uses acoustic features by integrating punctuation into
the speech recognition acoustic models. We also explore the
combination of these component systems using voting and
log-linear interpolation. We performed experiments on the
English language MGB Challenge data, which comprises
about 1,600h of BBC television recordings. Our results
indicate that a lexical system, based on a neural machine
translation approach is significantly better than other systems
achieving an F-Measure of 62.6% on reference text, with a
relative degradation of 19% on ASR output. Our analysis of
the results in terms of specific punctuation indicated that us-
ing longer context improves the prediction of question marks
and acoustic information improves prediction of exclamation
marks. Finally, we show that even though the systems are
complementary, their straightforward combination does not
yield better F-measures than a single system using neural
machine translation.

Index Terms— punctuation, speech recognition, neural
machine translation, rich transcription

1. INTRODUCTION

Automatic speech recognition (ASR) systems typically pro-
cess a stream of audio to produce transcripts which are un-
cased and without punctuation marks or sentence boundaries.
However, casing and punctuation are very important for tran-
script readability, as well as for further natural language
processing such as summarization, information extraction or
machine translation. In this paper we explore a number of
approaches for the punctuated transcription of multi-genre
broadcast recordings, using broadcast media data obtained
from a wide range of BBC television programmes that was
used in the first MGB Challenge [1].

We addressed three principal research questions:

1. Is acoustic context necessary to predict punctuation?

2. Does the provision of longer context information in
a punctuation prediction model improve the recall or
precision by enabling long distance dependencies to
be modelled? (For instance modelling the relation of
sentence-initial “Wh” words with [?]? And if so, how
can this context be effectively modelled?

3. Can we improve recall and precision through the auto-
matic combination of different systems for punctuation
prescription?

In this paper we investigate four methods of punctua-
tion prediction using both lexical and acoustic features. The
lexically-based methods are based on statistical language
modelling using n-grams, word-based punctuation labelling
using a recurrent neural network, and a novel approach de-
rived from neural machine translation (NMT). To incorporate
acoustic data we have explored an ASR-based approach in
which punctuation marks are appended to the lexicon and
“consume” audio. We also combine these approaches using
voting and log-linear interpolation. We performed exper-
iments on both reference and ASR-generated transcripts,
analysing system performance across the five different punc-
tuation marks that we predict. Our results indicate that the
NMT-based approach results in the best performing systems
(based on the F-Measure combination of precision and recall).

2. RELATED WORK

Automatic sentence boundary detection and punctuation
have now been explored for over 20 years. Stolcke and
Shriberg published some pioneering papers using n-gram
language models to predict sentence boundaries in speech
transcripts [2, 3]; a similar language modelling approach
was used by Beeferman et al [4] to insert commas in pre-
segmented sentences. Chen [5] presented an approach in
which punctuation prediction was integrated into the speech
recognition decoder, combining both acoustic and lexical
features to predict a range of punctuation marks.

Since then there has been a wide range of approaches to
the problem which may be categorized in terms of the way
punctuation marks are modelled, and the features used for the
prediction.



2.1. Statistical punctuation models

There are three main approaches to modelling punctuation
marks. First, punctuation marks may be treated as inter-word
events, predicted using statistical language models [2, 3, 4, 6,
7] or by finite state or hidden Markov models [8, 9]. In both
cases these are trained from a corpus of punctuated text, and
the Viterbi algorithm is used to obtain the most probable se-
quence of words and punctuation marks. Second, transcript
punctuation can be viewed as a word labeling task, in which
a punctuation label is assigned to each word. A variety of
methods have been used for this approach, in which punctu-
ation is treated as a classification task, including maximum
entropy modeling [10], boosting [11, 12], conditional random
fields [13, 14] and neural networks [9, 15, 16, 17].

Finally, transcript punctuation can be viewed as a mono-
lingual machine translation problem in which the source is
unpunctuated text and the target is punctuated text. Phrase-
based statistical machine translation approaches have been
used in this way [18, 19, 20].

2.2. Features for automatic punctuation

All the above methods can potentially use different types of
features for punctuation: most published approaches either
use purely lexical features or attempt to combine acoustic and
lexical features. The most commonly used lexical features
for punctuation prediction are n-gram statistics obtained from
the language model, but part-of-speech tags [15] and syntax
information from a sentence parse tree [14] have also been
used. Acoustic features for transcript punctuation are usually
suprasegmental prosodic features, often pause duration [9],
but also features relating to phoneme duration, fundamental
frequency, and energy [3, 6, 9, 11, 21].

3. SYSTEMS

We have implemented and evaluated four systems for punc-
tuated transcription based on (1) n-gram language modelling,
(2) word labeling using recurrent networks, (3) a variant of
neural machine translation, and (4) automatic speech recog-
nition treating punctuation marks as additional words.

3.1. Language modeling

To use an n-gram statistical language model trained on a large
corpus for punctuation annotation [3, 4, 6, 7], we constructed
a hyper-string weighted finite state acceptor (WFSA) which
is a compact representation of the search space of all possible
punctuation marks (see Fig. 1 for an example). The hyper-
string WFSA was composed with a weighted finite state
transducer (WFST) representing a statistical language model,
which adds weights to all possible sequences of words and
punctuation marks. The best punctuation is then obtained by
selecting the lowest cost path in the composed transducer [7].

0 1GOOD 2

<FULL_STOP>

<COMMA>

<QUESTION_MARK>
<EXCLAMATION_MARK>

<DOTS>

<eps>

3MORNING 4

<FULL_STOP>

<COMMA>

<QUESTION_MARK>
<EXCLAMATION_MARK>

<DOTS>

<eps>

Fig. 1. Example of hyper-string WFSA for string ”GOOD
MORNING”

Since this method uses finite context it cannot model those
cases in which longer context is needed for the prediction of
punctuation marks – for instance when indicative words for
an end of sentence punctuation mark appear at the beginning
of the sentence. Experiments have indicated that simply in-
creasing the n-gram context does not increase the punctua-
tion accuracy [7]. Additionally, this method is vulnerable to
data sparsity – smoothed language models do not predict well
punctuation marks for sequences that were not seen in the
training data.

3.2. Word labeling

The word labeling approach is based on a classifier which
maps lexical input to a punctuation mark label for each word.
If a recurrent network is used for classification then it is possi-
ble to incorporate arbitrary context. Tilk and Alümae [16, 17]
developed word labeling systems using unidirectional and
bidirectional long short-term memory (LSTM) neural net-
works [22]. In this paper we used the Punctuator 2 sys-
tem [17], which uses a bidirectional LSTM network with an
attention layer to predict the punctuation mark (or no punctu-
ation) for each word. Although this method is able to model
long distant lexical context, it assumes that the generated
punctuation marks are independent – i.e. there is no prior
sequence model of punctuation labels.

3.3. Neural Machine Translation

The LSTM systems discussed above map an input sequence
to a label, using the hidden state of the recurrent network
to learn the context. To address the problem of label in-
dependence, recurrent neural networks can also be used for
sequence-to-sequence mapping using an encoder-decoder ar-
chitecture [23]. This architecture, typically with an atten-
tion layer, has been used successfully for machine transla-
tion [24, 25], where it is often referred to as neural machine
translation (NMT). We apply NMT for punctuation by map-
ping from a high dimension input sequence (the sequence of
words) to a low dimension label sequence (the sequence of
punctuation marks – including blank). This is in contrast
to previous applications of statistical phrase based machine
translation to punctuation [18, 19, 20], in which unpunctuated



text is mapped to punctuated text. Mapping to the punctuation
marks only is much more efficient, because the output layer
of the neural network is smaller by several orders of magni-
tude and the punctuation process cannot introduce new lexical
errors.

3.4. Automatic Speech Recognition

The previously described systems are purely text based and
thus cannot model acoustic information or speech prosody,
which has a strong relation to punctuation, for instance when
predicting [!]. Therefore we implemented an automatic
speech recognition system which treats punctuation marks as
additional words, with a one “phoneme” pronunciation, with
a unique phoneme assigned to each type of punctuation mark.
The resultant punctuation aware speech recognition system
may be used in two ways: first, it may be used directly to
decode a stream of words including punctuation marks from
the recorded audio; second, it may be used indirectly to repro-
cess an initial transcription generated by a non-punctuation
aware ASR system. In the indirect case, punctuation marks
can be included in a transcription by decoding the corre-
sponding audio with an HCLG1 decoding graph constructed
by composing a language model with a hyper-string WFSA
constructed using the initial decoding.

4. SYSTEM COMBINATION

The systems described above are potentially complementary,
hence we also evaluated two methods of system combination:
voting and log-linear interpolation.

4.1. Voting

The most straightforward method of system combination is
voting. We used per token voting in which a hyper-string
WFSA is created from all hypotheses and weights are as-
signed to arcs according to the agreement between the sys-
tems. The resulting sequence of punctuation marks corre-
sponds to the path with the highest per token agreement. We
considered several voting schemes: uniform weight, precision
per system weight and precision per system per token weight.
We used the last one, because it yielded the best results (based
on F-Measure).

4.2. Log-linear interpolation

Since the language modeling and word labeling approaches
can be represented as WFSTs, and an n-best list from the
NMT approach can be also represented as a WFST, a log-
linear interpolation of them corresponds to a composition of
the corresponding transducers. Even though an n-best list

1HCLG denotes the composition of the following WFSTs: acoustic HMM
(H), context (C), lexicon (L), and language model (G).

LM train dev
full stop [.] 62 694 524 669 807 7 204
comma [,] 39 095 545 418 883 5 222

question mark [?] 14 378 702 111 622 1 549
exclamation mark [!] 10 116 835 74 135 1 102

three dots [...] 4 622 695 8 288 553
All Tokens 775 338 349 8 767 781 92 622

Table 1. Number of occurrences of punctuation marks in the
LM training data, and in the transcripts of the acoustic train-
ing and dev sets..

from NMT significantly prunes the search space, it is not a
limiting factor for log-linear interpolation, because the oracle
per segment F-Measure of the NMT n-best list is on the same
level as the oracle per segment F-Measure of the combination
of all single systems. Therefore, we can use this composition
for ASR in the same way as above (Section 3.4).

5. EXPERIMENTS

We performed experiments using the MGB Challenge data [1]
which contains 1 600 hours of recorded television pro-
grammes for acoustic model training. In addition to tran-
scripts for lightly-supervised acoustic model training, the
MGB training data also includes segment time marks and
word matching error rate (MER) measurements [1]. Because
the transcripts, which were obtained from broadcast subtitles,
contain considerable insertion, deletion, and substitution er-
rors, the MER indicates how well the transcript corresponds
to the audio (given a trained acoustic model). The MGB
Challenge data also contains 650 millions words of BBC sub-
titles for language model training, to which we refer as LM
data.

Since the provided preprocessed subtitles do not contain
punctuation marks we used the raw subtitles, which were nor-
malized using our internal text normalization pipeline and
aligned to the preprocessed subtitles in order to obtain the
correct time boundaries and MER for each segment. In these
experiments we predicted five punctuation mark types: full
stop [.], comma [,], question mark [?], exclamation mark
[!] and three dots [...]. Table 1 summarizes the number
of occurrences of punctuation marks in the different datasets.
We repeated the same process with the MGB development
dataset (referred to as dev). As this dataset contains human
verbatim transcriptions, we aligned the normalized raw subti-
tles with the verbatime transcriptions. Since the raw subtitles
do not always match the verbatim transcription, we used only
a subset of the dev set where they matched perfectly for eval-
uation, referred to as sdev.

We performed experiments on both reference text and
ASR output with a word error rate (WER) of 31.6% on the
dev set of the MGB challenge, and 29.0% on our subset. We



full stop comma exclamation mark question mark three dots TOTAL SLOT
0

20

40

60

80

100

F-
M

ea
su

re

F-Measure by system and punctuation mark on reference

Punctuator Kaldi LM NMT voting log-linear segment oracle token oracle

Fig. 2. F-Measure of punctuation marks on reference.

PPL P R F1
3-gram 101.97 55.55 55.86 55.71
4-gram 103.36 56.57 55.94 56.25
5-gram 101.97 56.59 55.92 56.25

Table 2. Impact of the n-gram length to perplexity (PPL),
precision (P), recall(R) and f-measure (F1).

used the oracle segmentation in all the following experiments.
Below we describe the training procedure of the punctuation
systems.

Statistical language model: We trained an n-gram lan-
guage model with Kneser-Ney interpolation [26] on the pro-
vided LM data and interpolated it with an n-gram language
model trained on the transcripts of the acoustic training data.
We observed that using a context beyond trigram did not sig-
nificantly help with the transcript punctuation accuracy [7]
(see Table 2 for comparison), therefore we used a trigram lan-
guage model in all following experiments. We refer to this
system as LM in the results.

Word labeling: We used Punctuator 2 [17] (https://
github.com/ottokart/punctuator2) as a labeling
approach. The system uses gated recurrent unit networks [27]
and an attention layer [24]. We trained the system on the LM
data using the suggested setting of hidden layer size 256 and
learning rate 0.02. We monitored the system’s performance
after each epoch on dev data, keeping the best performing
system for later use. We refer to this system as Punctuator in
the results.

Neural machine translation: We used the NMT ex-
ample from blocks.examples (https://github.com/
mila-udem/blocks-examples) for our NMT ap-
proach. The hidden layer size was 512 and we trained using
AdaDelta [28] with dropout [29]. We monitored F-Measure
on the dev set every 5 000 iterations, keeping the best per-
forming model for later use. We used a beam search with

a beam size of 6 for decoding. Although the length of the
output is known in advance, we were not able to improve the
performance of the system by constraining it to output a se-
quence of punctuation marks of the given length. Therefore,
we allowed the system to output a sequence of punctuation
marks of arbitrary length, padding it with spaces or trimming
it when necessary. We refer to this system as NMT in the
results.

Automatic speech recognition: We trained an ASR sys-
tem using the Kaldi speech recognition toolkit [30] using the
training data from MGB challenge with MER < 10% (216
hours) to ensure that the inserted punctuation marks actually
appeared in the audio. We assigned a different pronunciation
to each punctuation mark and ensured that the phonemes cor-
responding to different punctuation marks were not tied to the
same state.

We trained a GMM model using fbank+pitch features us-
ing the baseline recipe from the MGB Challenge (http://
mgb-challenge.org). We then trained a DNN model us-
ing 6 hidden layers each with 2048 sigmoid units, which were
initialized using RBM pre-training [31] and trained using the
frame-wise cross-entropy objective function. Additionally,
trained an Adaptive softmax system by reusing the hidden lay-
ers from a previously trained unpunctuated DNN on the MGB
Challenge data with MER ≤ 30% without punctuation (538
hours), and then retrained only a punctuation-aware softmax
layer using cross-entropy, followed by sequence training us-
ing the sMBR objective function [32]. Results on the dev set,
our subset when evaluated without punctuation marks, and
on our subset when evaluated with punctuation marks are re-
ported in Table 3. Since Adapted softmax + sMBR achieved
the best results, we used this system in all further experiments.
We refer to this system as Kaldi in the results.

We also explored the impact of using punctuation marks
in acoustic modeling. We trained a GMM AM, DNN AM and
Adapted softmax AM (MER ≤ 10) with and without punc-



full stop comma exclamation mark question mark three dots TOTAL SLOT
0

20

40

60

80

100

F-
M

ea
su

re

F-Measure by system and punctuation mark on ASR output

Punctuator Kaldi LM NMT voting log-linear segment oracle token oracle

Fig. 3. F-Measure of punctuation marks on ASR output.

dev sdev- sdev+
GMM baseline 48.59 46.33 51.93
DNN baseline 36.74 33.32 41.36
Adapted softmax 34.72 31.44 39.75
Adapted softmax + sMBR 33.43 30.44 39.14

Table 3. WER without punctuation on the official dev set, our
dev subset and WER with punctuation on our dev subset.

trained with punctuation? yes no
GMM baseline 48.59 48.93
DNN baseline 36.74 36.39
Adapted softmax 34.72 34.62

Table 4. Comparison of systems when trained with or without
punctuation marks.

tuation marks. From the results in Table 4. We may observe
that a GMM AM trained with punctuation marks achieves
a reduced WER of 0.3% absolute, but both DNN systems
trained with punctuation marks had higher WERs (0.1–0.3%
absolute).

6. RESULTS

In this section we report results using F-Measure on the refer-
ence transcript (Figure 2) and on the ASR output (Figure 3).
The results are summarized in Table 5. Furthermore, we use
paired bootstrap resampling for significance testing [33].

Single systems: Overall, NMT is significantly the best
system with F-Measure of 63% followed by LM with F-
Measure of 56%, Kaldi with F-Measure of 54% and Punctu-
ator with F-Measure of 43% on reference transcriptions. On
ASR output, NMT is also performs best with an F-Measure
of 51% followed by Kaldi and LM with F-Measures of 48%
LM, and Punctuator with F-Measure of 28%. The biggest

problem of Punctuator system is very low recall – over three-
quarters of the errors are deletions. The biggest problem of
the remaining systems is disambiguation between punctua-
tion marks – each of three systems has a substitution error
of 45–50%. Except for the [...], which was very difficult
to predict for all systems, we observe that most insertion
errors were caused by full stops, deletion errors by commas,
and substitution errors by confusing other punctuation marks
with full stop. When we consider only the binary classifica-
tion of whether a punctuation mark is present (called SLOT
in Figure 2 and Figure 3), NMT achieves F-Measure of 87%,
LM achieves F-Measure of 84%, Kaldi achieves F-Measure
of 83% and Punctuator achieves F-Measure 58%.

Acoustic information improves the prediction of [!]. We
compared Kaldi with the systems using only lexical features:
using paired bootstrap resampling we show that Kaldi is sig-
nificantly better in the prediction of exclamation marks than
others system with p = 0.982 for NMT, p = 0.963 for LM
and p > 0.999 for Punctuator. All systems can accurately
detect a slot for [!], but systems using statistical language
models are more likely to confuse [!] with [.].

To show that using longer context improves the predic-
tion of question marks we compare the systems using LSTMs
– NMT and Punctuator – with systems using statistical lan-
guage models – LM and Kaldi. Using paired bootstrap re-
sampling we show that both systems using LSTMs are sig-
nificantly better in the prediction of question marks with p >
0.998. All systems are good in finding a slot for question
mark, but systems using statistical language models are more
likely to confuse question mark with full stop. However, us-
ing longer context harms the performance of the systems more
than using finite context when there is a mismatch between
reference and ASR output because there is a higher chance of
error in a longer context. The relative degradation of systems
on ASR output is 34% for Punctuator, 19% for NMT, 14% for
LM and 11% for Kaldi.



447

1637
428

323

4956

149

2572

LM
Punctuator

Kaldi

515

855

282

1075

4888 931
2718

LM
Punctuator

NMT

263

1767

612

233

534

239

6994

LM NMT

Kaldi

910

1224

1155

540

4739
2494

Punctuator

NMT

Kaldi
Punctuator Kaldi LM NMT

Fig. 4. Venn diagrams showing mutual agreement of systems on correctly predicted punctuation marks. Each diagram shows
the relations between 3 out of 4 systems.

Punctuator Kaldi LM NMT voting log-linear
REF ASR REF ASR REF ASR REF ASR REF ASR REF ASR

full stop 36.26 26.40 65.45 63.27 65.73 62.78 70.38 64.77 69.80 64.80 70.08 66.14
comma 55.32 37.25 41.94 26.68 45.98 30.42 57.34 38.05 57.36 37.13 52.50 35.14
exclamation mark 12.01 3.03 32.70 32.04 28.82 13.05 28.03 9.69 30.19 29.00 25.62 29.40
question mark 44.59 18.27 36.59 25.16 39.40 23.35 63.62 42.68 58.42 26.93 69.16 44.59
three dots 1.16 0.73 1.44 2.53 7.83 3.39 - - - 0.77 - 0.38
TOTAL 42.61 28.07 54.39 48.40 55.70 48.05 62.63 50.94 62.40 51.71 61.65 52.61
SLOT 57.56 39.33 83.21 77.92 84.08 73.02 87.03 74.41 87.16 78.92 85.08 78.58

Table 5. Results of the systems on reference (REF) and ASR output (ASR).

System Combination: To explore the limits of system
combination, we computed the segment oracle and token ora-
cle F-Measure of the combined systems. Note, that the com-
putation of oracle is ambiguous depending on whether substi-
tution or deletion errors are preferred. Since deletion errors
have less effect on the readability of the transcript, we prefer
them in this paper. Even though oracle experiments showed
that the systems are complementary, voting and log-linear in-
terpolation of systems using reference transcripts did not out-
perform NMT. This might be explained by the low mutual
agreement of the systems on correctly predicted punctuation
marks (see Figure 4), which causes the correct system to be
outvoted by other systems. This is due to the simplicity of
the used system combination methods and we want to evalu-
ate more complex system combination methods in the future
(e.g., [34]). On the other hand, log-linear interpolation on
the ASR output is significantly better than NMT system with
(p = 0.999), which we hypothesize is due to the ability of the
Kaldi system to recover from errors in the ASR output.

7. CONCLUSIONS

In this paper we evaluated four systems for punctuated tran-
scription, three of which were based on lexical features, the
fourth of which used acoustic features by integrating punctu-
ation into the speech recognition acoustic models. We also

explored the combination of these component systems us-
ing voting and log-linear interpolation. In contrast to previ-
ous works, which had usually focused on full stop, comma
and question mark, we also predicted exclamation marks and
three dots in order to capture expressivity of broadcast speech.
Among the single systems, an NMT-based system achieved
the significantly best F-Measure of 63% on reference with
19% degradation on ASR output. We observed that using
acoustic information significantly improves the prediction of
exclamation marks and longer context significantly improves
the prediction of question marks. However, we observed that
systems using longer context harms the prediction more than
finite context on ASR output. Finally, we observed that even
though the systems are complementary, straightforward com-
bination using voting or log-linear interpolation does not yield
any improvement, because there is low mutual agreement be-
tween systems on correctly predicted punctuation marks.

In the future work we plan to extend the NMT based sys-
tem for transcript punctuation to incorporates acoustic input
features, and to explore the robustness of these approaches
across domains and languages.

8. ACKNOWLEDGMENTS

This work was supported by the H2020 project SUMMA, un-
der grant agreement 688139.



9. REFERENCES

[1] Peter Bell, MJF Gales, Thomas Hain, Jonathan Kilgour,
Pierre Lanchantin, Xunying Liu, Andrew McParland,
Steve Renals, Oscar Saz, Mirjam Wester, and Philip C
Woodland, “The MGB challenge: Evaluating multi-
genre broadcast media recognition,” in ASRU, 2015.

[2] A. Stolcke and E. Shriberg, “Automatic linguistic seg-
mentation of conversational speech,” in ICSLP, 1996,
pp. 1005–1008.

[3] Andreas Stolcke, Elizabeth Shriberg, Rebecca A Bates,
Mari Ostendorf, Dilek Hakkani, Madelaine Plauche,
Gökhan Tür, and Yu Lu, “Automatic detection of sen-
tence boundaries and disfluencies based on recognized
words.,” in ICSLP, 1998.

[4] Doug Beeferman, Adam Berger, and John Lafferty,
“Cyberpunc: A lightweight punctuation annotation sys-
tem for speech,” in ICASSP, 1998.

[5] C Julian Chen, “Speech recognition with automatic
punctuation.,” in Eurospeech, 1999.

[6] Ji-Hwan Kim and Philip C Woodland, “The use of
prosody in a combined system for punctuation gener-
ation and speech recognition.,” in Interspeech, 2001.

[7] Agustin Gravano, Martin Jansche, and Michiel Bacchi-
ani, “Restoring punctuation and capitalization in tran-
scribed speech,” in ICASSP, 2009.

[8] Yoshihiko Gotoh and Steve Renals, “Sentence boundary
detection in broadcast speech transcripts,” 2000.

[9] Heidi Christensen, Yoshihiko Gotoh, and Steve Renals,
“Punctuation annotation using statistical prosody mod-
els,” in ISCA Workshop on Prosody in Speech Recogni-
tion and Understanding, 2001.

[10] Jing Huang and Geoffrey Zweig, “Maximum entropy
model for punctuation annotation from speech,” in IN-
TERSPEECH, 2002.

[11] Jáchym Kolář, Jan Švec, and Josef Psutka, “Auto-
matic punctuation annotation in Czech broadcast news
speech,” SPECOM, 2004.

[12] Jáchym Kolář and Lori Lamel, “Development and eval-
uation of automatic punctuation for French and English
speech-to-text.,” in Interspeech, 2012.

[13] Wei Lu and Hwee Tou Ng, “Better punctuation pre-
diction with dynamic conditional random fields,” in
EMNLP, 2010.

[14] Nicola Ueffing, Maximilian Bisani, and Paul Vozila,
“Improved models for automatic punctuation prediction
for spoken and written text.,” in Interspeech, 2013.

[15] Eunah Cho, Kevin Kilgour, Jan Niehues, and Alex
Waibel, “Combination of NN and CRF models for joint
detection of punctuation and disfluencies,” in Inter-
speech, 2015.

[16] Ottokar Tilk and Tanel Alumäe, “LSTM for punctuation
restoration in speech transcripts,” in Interspeech, 2015.

[17] Ottokar Tilk and Tanel Alumäe, “Bidirectional recurrent
neural network with attention mechanism for punctua-
tion restoration,” in Interspeech, 2016.

[18] Stephan Peitz, Markus Freitag, Arne Mauser, and Her-
mann Ney, “Modeling punctuation prediction as ma-
chine translation.,” in IWSLT, 2011.

[19] Eunah Cho, Jan Niehues, and Alex Waibel, “Segmen-
tation and punctuation prediction in speech language
translation using a monolingual translation system.,” in
IWSLT, 2012.

[20] Joris Driesen, Alexandra Birch, Simon Grimsey, Saeid
Safarfashandi, Juliet Gauthier, Matt Simpson, and Steve
Renals, “Automated production of true-cased punctu-
ated subtitles for weather and news broadcasts,” in In-
terspeech, 2014.

[21] Madina Hasan, Rama Doddipatla, and Thomas Hain,
“Noise-matched training of CRF based sentence end de-
tection models,” in Interspeech, 2015.

[22] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[23] Ilya Sutskever, Oriol Vinyals, and Quoc Le, “Sequence
to sequence learning with neural networks,” in NIPS,
2014.

[24] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio, “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[25] Rico Sennrich and Barry Haddow, “Linguistic input
features improve neural machine translation,” arXiv
preprint arXiv:1606.02892, 2016.

[26] Reinhard Kneser and Hermann Ney, “Improved
backing-off for m-gram language modeling,” in
ICASSP, 1995.

[27] Junyoung Chung, Caglar Gülçehre, Kyunghyun Cho,
and Yoshua Bengio, “Gated feedback recurrent neural
networks,” arXiv preprint arXiv:1502.02367, 2015.

[28] Matthew D Zeiler, “ADADELTA: an adaptive learning
rate method,” arXiv preprint arXiv:1212.5701, 2012.



[29] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout:
a simple way to prevent neural networks from overfit-
ting.,” Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[30] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukáš
Burget, Ondr̆ej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlı́ček, Yanmin Qian, Petr Schwarz, Jan
Silovský, Georg Stemmer, and Karel Veselý, “The Kaldi
speech recognition toolkit,” in ASRU, 2011.

[31] Geoffrey Hinton, “A practical guide to training re-
stricted Boltzmann machines,” Momentum, vol. 9, no.
1, pp. 926, 2010.

[32] Karel Vesely, Arnab Ghoshal, Lukas Burget, and Daniel
Povey, “Sequence-discriminative training of deep neural
networks.,” in Interspeech, 2013.

[33] Philipp Koehn, “Statistical significance tests for ma-
chine translation evaluation.,” in EMNLP, 2004.

[34] Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton, “Adaptive mixtures of local ex-
perts,” Neural Computation, vol. 3, no. 1, pp. 79–87,
1991.


