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ABSTRACT

Join cost calculation has so far dealt exclusively with acous-
tic speech parameters, and a large number of distance metrics
have previously been tested in conjunction with a wide variety
of acoustic parameterisations. In contrast, we propose here to
calculate distance in articulatory space. The motivation for
this is simple: physical constraints mean a human talker’s
mouth cannot “jump” from one configuration to a different
one, so smooth evolution of articulator positions would also
seem desirable for a good candidate unit sequence. To test
this, we built Festival Multisyn voices using a large
articulatory-acoustic dataset. We first synthesised 460 TIMIT
sentences and confirmed our articulatory join cost gives ap-
preciably different unit sequences compared to the standard
Multisyn acoustic join cost. A listening test (3 sets of
25 sentence pairs, 30 listeners) then showed our articulatory
cost is preferred at a rate of 58% compared to the standard
Multisyn acoustic join cost.

Index Terms— speech synthesis, unit selection, electro-
magnetic articulography, join cost

1. INTRODUCTION

Over the past ten years or so, attention within the speech syn-
thesis research community has become increasingly focussed
upon statistical parametric acoustic modelling methods, with
work first based mainly on the hidden Markov model (HMM)
[1] or Classification and Regression Tree clustering [2] for
example, but more recently on a widening array of machine
learning models. Deep neural networks (DNNs) (e.g. [3,
4, 5, 6]) have in particular become very popular, but other
models such as random forests [7] or linear dynamic models
[8] have also appeared. This is understandable, as statistical
parametric methods promise robust and fully flexible speech
synthesis with a voice building process that may be largely
automated. Statistical parametric speech synthesis (SPSS)
methods have indeed already demonstrated impressive per-
formance in terms of intelligibility and consistency in numer-
ous studies. At the same time, however, it is recognised that
the quality of statistical parametric voices requires further im-
provement in terms of naturalness. Zen et al. [1], for example,
pointed to three major factors that degrade the quality of the
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speech synthesised by SPSS methods: vocoding, accuracy of
acoustic models, and over-smoothing.

In contrast to SPSS methods, speech from the leading al-
ternative synthesis method, unit selection waveform concate-
nation [9], can demonstrate a very high degree of natural-
ness. Unit selection aims to “join” pre-recorded fragments
of human speech back together with minimal signal process-
ing. To build a unit selection voice, a single speaker is first
recorded uttering a large number of phonetically diverse sen-
tences. These utterances are then chopped up into “units”,
with accurate labelling in terms of phone timings and linguis-
tic structure, to give the voice unit database. To synthesise a
new utterance, the unit database is searched to find the best
sequence of candidate units to match the desired target se-
quence. Errors may sometimes occur in selecting and joining
units, which lead to spurious glitches, but in the majority of
cases the process can work well. We therefore find that, with
sufficient care in constructing and using the unit database, the
synthetic speech can sound extremely similar to the original
human speaker. For these reasons, and especially where CPU
and memory constraints are not a significant concern, unit se-
lection is still prevalent in most high quality commercial sys-
tems, and thus remains a very relevant synthesis technique.

Searching the unit selection voice database for the ideal
candidate unit sequence is typically done with a variant of a
Viterbi search, guided by two cost functions: the target and
join costs respectively. The join cost is responsible for pre-
dicting how well two pre-recorded units of speech will join
together in sequence, seeking to avoid any perceptible discon-
tinuities. All of the previous work of which we are aware has
concentrated on calculating join cost functions in the acous-
tic domain. These join costs typically have subcomponents
to measure three types of (mis-)match across a potential join
point: f0, energy/loudness, and spectral match.

Previous work to improve join costs has largely taken f0
and energy matching as fixed, and looked primarily at spectral
matching. We can discern three main themes in this work: i)
trying different acoustic parameterisations; ii) trying different
distance metrics; iii) trying to tailor acoustic join cost calcu-
lation to maximally correlate with human perception of the
obtrusiveness of unit joins (e.g. [10, 11, 12, 13]). Stylianou
and Syrdal [12] started with a perceptual test using human lis-
teners to derive join discontinuity detection rates for a range
of synthetic stimuli. They then evaluated 13 different objec-
tive distance measures with respect to their ability to predict
the detection rates derived from the human listener ratings.



The criteria they used to classify these distances included
detection rate, the Bhattacharyya measure of distribution
separability, and receiver operating characteristic curves. In
their results, Kullback-Leibler distance between power spec-
tra gave the highest detection rate, followed by Euclidean
distance calculated for mel-frequency cepstral coefficients
(MFCCs). Vepa and King [13] also used a similar approach
of collecting human judgements of join discontinuities to cor-
relate objective join cost scores with, but also looked at join
smoothing too. They used MFCCs, line spectral frequencies
(LSFs) and multiple centroid analysis (MCA) coefficients
as spectral representations. The metrics they used to cal-
culate distance were: Euclidean, absolute, Kullback-Leibler
and Mahalanobis distance, in addition to a method based on
the Kalman filter. They tested three smoothing regimes: no
smoothing, linear interpolation smoothing, and Kalman filter-
based smoothing. They found the LSF spectral representation
gave the best results, and that simple linear smoothing was
preferable overall to both no smoothing and Kalman filter-
based smoothing. Wouters and Macon [10] again used a
similar approach of comparing a variety of the most com-
mon acoustic parameterisations (e.g. FFT- and LPC-derived
cepstra and LSFs, both with and without various frequency-
warping functions) and distance metrics (Euclidean distance,
weighted Euclidean distance, Mahalanobis distance etc.).
They concluded distance metrics using frequency warping
performed better than those without, and that little advantage
is conferred by using weighted distances or delta features.
More generally, they concluded that the modest correlations
observed with human ratings (0.66 maximum) indicates there
is significant room left for improvement, and therefore the
problem is far from solved.

Despite the fact that human speech is by its very nature
articulated and generated within the vocal tract, only a small
fraction of prior synthesis work (here we specifically mean
concatenative and statistical parametric synthesis) has actu-
ally sought to exploit articulatory data as part of the synthesis
process. As one relatively rare example, we have previously
worked on including articulation into SPSS [14, 15], with the
aim of both improving acoustic modelling and also introduc-
ing articulatory control over synthesis. In this paper, we pro-
pose articulation might also serve a useful purpose in unit se-
lection synthesis, as an alternative to the usual acoustic join
cost calculation. The motivating principle for this is simple:
when a human speaks, their mouth is subject to physical con-
straints and cannot jump from one position to another. There-
fore, when selecting units during Viterbi search for concate-
nation, we hypothesise it is reasonable to prefer a sequence
of units which results in smooth evolution of mouth configu-
rations. This paper aims to test this hypothesis. Specifically,
using a large corpus of articulatory-acoustic speech data, we
build three unit selection voices with the following join cost
functions: i) standard acoustic baseline, ii) articulatory, and
iii) combined articulatory and acoustic join costs. Note it is
only the spectral subcost that is substituted, and the voices in
all three cases are identical in every other way (including f0

and energy subcost functions, and their weighting in the total
join cost). We use these voices to investigate how calculating
join costs in the articulatory domain compares to a standard
spectral join cost function, both in terms of the unit sequences
selected and also in terms of subjective preferences in a lis-
tening test. As far as we know, this is the first work where an
articulatory join cost is employed for unit selection.

We shall first describe our method in Section 2, and then
present our results in Section 3. Finally, we shall summarise
the conclusions we draw from these results in Section 4.

2. METHOD

This paper seeks to evaluate how an articulatory join cost
compares to a standard spectral join cost by answering two
core questions. First, we must establish whether and how the
unit sequence that is selected when using an articulatory join
cost differs from the standard voice. Second, assuming we in-
deed find significant differences, we then want to test whether
there is any difference in listener preference between them.

We have used the Festival Multisyn [16] unit se-
lection engine to perform these experiments, building voices
using the mngu0 [17] articulatory-acoustic data set. This
data comprises over 1200 utterances with articulatory data
recorded in parallel with the acoustic waveform using electro-
magnetic articulography (EMA) (a Carstens AG500 [18, 19]).
The sentences contained in mngu0were selected from a large
corpus of news text containing hundreds of thousands of sen-
tences using a greedy text selection algorithm to ensure pho-
netic diversity. Therefore, though mngu0 may be smaller
than typical selection voice databases, it is the largest single-
speaker articulatory corpus of which we are aware, and its
speech data is in principle well-suited to unit selection voice
building. We have used a subset of the articulatory data avail-
able in mngu0: x- and y-coordinates of 6 coils (upper and
lower lips, jaw, and three points on the tongue) moving in the
midsagittal plane.

The standard join cost in Multisyn has subcomponents
for F0, energy and spectral distance. The spectral component
uses Euclidean distance of 12 MFCCs. The MFCCs are z-
score normalised during voice building, so this is equivalent
to Mahalanobis distance.

In addition to the standard join cost, we implemented two
further join costs which use the mngu0 articulatory data: an
articulatory join cost, and an articulatory-acoustic one. For
the articulatory join cost, we substituted the spectral compo-
nent for one which calculates Euclidean distance of the 12
EMA coordinates. We retained the F0 and energy subcom-
ponents (and regardless refer to this as the “articulatory join
cost” for convenience), since the EMA data contains no infor-
mation pertaining to pitch or loudness. For the articulatory-
acoustic one, we appended the 12 EMA coordinates to the
MFCC vector used in the spectral subcost, again using Eu-
clidean distance. In both cases, all features were z-score nor-
malised during voice building. Apart from differences in the
join cost calculation, the voices were identical in every way.



2.1. Unit sequence comparison

To compare the unit sequences that result from using the three
join costs described above, we synthesised the 460 sentences
contained in MOCHA TIMIT [20]. We chose this set of sen-
tences since they were purpose-designed to be phonetically
diverse, so ensuring the unit selection process would be ap-
plied to a wide variety of contexts. These sentences are also
of a reasonably consistent and short length, making them suit-
able for use in the listening test below.

We compared the unit sequences synthesised using the
three voices using two basic metrics. First, for a given pair
of sentences, we counted the number of selected unit differ-
ences (unit difference count). This indicates the extent to
which the different join costs affect which units are selected
for concatenation. The second measure we used is the join ra-
tio. In unit selection, units may be selected which were con-
tiguous in the original utterance in the voice database, which
means there is no real join between them. The join ratio is
the number of true joins divided by the total number of possi-
ble joins (i.e. N − 1, where N is the number of units) in the
utterance.

2.2. Listener preference

We performed three preference tests to compare the three join
cost types:

1. acoustic versus articulatory

2. acoustic versus articulatory-acoustic

3. articulatory versus articulatory-acoustic

We recruited 30 listeners, who were each presented with
25 pairs of stimuli for each of the three comparisons (though
1 participant failed to complete tasks 2 and 3 alas). The lis-
tening test was conducted in purpose-built perceptual test-
ing booths using headphones and under controlled conditions.
Participants were native speakers of English, mostly drawn
from the student population, and were paid for taking part.

The stimuli for the test were drawn from the 460 TIMIT
sentences synthesised as described in Section 2.1. We wanted
to ensure only utterances with a good number of unit sequence
differences were included in the preference tests. To achieve
this, we looked at the per-sentence counts of unit differences
between i) the acoustic join cost and the articulatory join cost,
and ii) the acoustic join cost and the articulatory-acoustic join
cost. We identified the sets of sentences in these two groups
with greater than 70% units different from the sentences syn-
thesised using the acoustic join cost. These sets contained 134
and 52 sentences respectively. We then found the intersection
of these two sets (since we wanted to use the same sentences
in each preference test), which contained 42 sentences. We
ruled out some of these by inspection. First, we discarded sen-
tences with errors in front-end processing, including: pauses
inserted inappropriately by the phrasing module; faulty lexi-
cal entries or letter-to-sound rule application (e.g. words “cor-
sage” and “mirage”); and inappropriate vowel reduction (e.g.

weak verses strong forms of words such as “for” or “to”). In
addition, longer sentences were less preferred. Using these
criteria, we identified 25 utterances to test1.

3. RESULTS
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Fig. 1: Unit sequence differences as a percentage of the to-
tal number of units in the utterance. Differences are calcu-
lated with respect to the unit sequence obtained using the
standard acoustic join for the articulatory join cost (top) and
articulatory-acoustic join cost (bottom).

Fig. 1 summarises the unit sequence differences when us-
ing the articulatory and articulatory-acoustic join costs, com-
pared to the acoustic join cost. This is presented as a his-
togram of per-sentence unit difference counts, expressed as a
percentage of total number of units in each sentence. We see
that on average 61.6% of selected units differ in the case of
the articulatory join cost, and in some cases up to 100% of
selected units are different. For the articulatory-acoustic join
cost, this is somewhat less at an average of 50.7%, which is
perhaps understandable. In both cases, the results confirm that
the selected unit sequences differ significantly when using the
articulatory join costs.

Fig. 2 explores the effect of articulatory join cost cal-
culation on join ratio. For the articulatory join cost (top),
we see that the join ratio tends to be increased. This means
that a greater number of true joins are being made, which is
a very interesting observation. This is not the case for the
articulatory-acoustic join cost (bottom), which tends to give
around the same, or perhaps slightly fewer, true joins.

Fig. 3 summarises the listening test results. We see both
join costs which use articulation are preferred, with statistical
significance, to the standard acoustic join cost (e.g. 58% in
the case of the purely articulatory join cost). There is a small,
though statistically significant, preference for the articulatory-
acoustic join cost compared to the articulatory join cost, but
this effect is weak.

1All stimuli and preference test responses available for download at
http://dx.doi.org/10.7488/ds/1315

http://dx.doi.org/10.7488/ds/1315
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Fig. 2: Histograms of per-sentence change in join ratio
(%-absolute change compared with the standard Multisyn
acoustic join cost) for the articulatory join cost (top) and
articulatory-acoustic join cost (bottom).
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Fig. 3: Overall join cost preferences (with 95% CI)

Figs. 4 and 5 investigate preferences in more depth, show-
ing per-sentence and per-listener preferences respectively.
Fig. 4 shows, as is typical for unit selection, that the effect
is not uniform, and while some sentences (the majority) are
improved by the articulatory join cost, some sentences are
perceived as worse. Fig. 5 shows listeners fall into roughly
three groups. In the middle, there is a group who either
cannot perceive any difference or have no clear preference
for the articulatory join cost over the standard acoustic one.
To the right, we see a group of listeners who can consis-
tently distinguish them and tend to prefer the articulatory join
cost. On the left however, we see one listener who seems to
consistently prefer the standard acoustic join cost.

We have observed the articulatory join cost tends to give
more frequent joins (Fig. 2), and is also significantly preferred
to the acoustic one (Fig. 3). To better understand the relation-
ship between these observations, we can look at how average
listener preference varies with join ratio. Doing so for the
preference test between the articulatory and baseline acous-
tic join costs, we find correlations of 0.45 and -0.35 respec-

test sentence number (sorted by preference)
6 10 20 16 4 3 24 15 9 14 1 5 18 19 12 25 7 8 11 13 23 22 2 17 21

p
re

fe
re

n
c
e

 f
o

r
a

rt
ic

u
la

to
ry

 j
o

in
c
o

s
t 

(%
)

0

20

40

60

80

100
breakdown of preference according to sentence

Fig. 4: Sorted per-sentence preference rates (articulatory cost)
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Fig. 5: Sorted per-listener preference rates (articulatory cost)

tively. So, while increasing the number of joins tends to result
in worse listener scores for the acoustic cost, the opposite is
true for the articulatory cost. This is a further very interesting
difference between the two, with the behaviour of the artic-
ulatory cost arguably far more preferable. It must be noted
though that these correlations are calculated on the basis of
just 25 stimuli. In future, it will be imperative to test this
observation again in a larger listening test.

4. CONCLUSION

In this paper, we have proposed that computing join costs in
the articulatory domain may be beneficial for unit selection
synthesis. We have tested this by building voices using an
articulatory-acoustic data set, and comparing three join costs:
a standard acoustic join cost, an articulatory equivalent, and
a combined articulatory-acoustic cost. By synthesising and
analysing 460 TIMIT sentences, our results have confirmed
that articulatory join cost calculation gives markedly different
selected unit sequences. Preference test results have shown
that the articulatory join cost was in fact preferred (58%),
which is all the more interesting since our results also showed
the articulatory join cost typically results in a significantly
higher join rate in the synthetic speech. We conclude that ar-
ticulatory join costs are promising, warranting further work in
future. There is much that remains to be done, such as testing
different join cost lengths, deltas, or weightings, and certainly
to test other larger unit selection voices. For the latter, given
the difficulty in recording large articulatory data sets, evalu-
ating a voice for which articulator positions are not recorded
but instead estimated from the acoustic signal alone ([21, 22])
is the highest priority in our view.
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