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Abstract

Pitch movement is a large component of speech prosody, and
despite being directly modelled in statistical parametric speech
synthesis systems very flat intonation contours are still pro-
duced. We present an open-source fully data-driven approach
to pitch contour stylisation suitable for speech synthesis based
on the SLAM approach. Modifications are proposed based on
the Just Noticeable Difference in pitch and tailored to the need
of speech synthesis for describing the movement of the pitch.
In an anchored Mean Opinion Score (MOS) test using oracle
labels the proposed method shows an improvement over stan-
dard synthesis. Long Short-Term Memory Neural Networks
were then used to predict the contour labels, but initial exper-
iments achieved low prediction rates. We conclude that using
current linguistic features for pitch stylisation label mapping is
not feasible unless additional features are added. Furthermore
an open-source implementation is released.

Index Terms: HMM, TTS, LSTM, prosody, pitch contour,
speech synthesis

1. Introduction

Statistical parametric speech synthesis (SPSS) has long been
deemed to overtake unit selection as the synthesis method of
choice. SPSS is more flexible [1, 2] and has a smaller footprint
[3], however it is still not deemed as high quality as the best unit
selection systems [3]. Although recent technological advances
[4, 5] are closing the gap, there is one area in which SPSS is still
greatly lacking. Namely prosody. SPSS is known for having a
flat intonation with little prosodic variance, and this is notice-
able even in synthesis of neutral read speech. While unit selec-
tion will also falter in more advanced prosodic elements, it does
not have a comparable problem for neutral read speech as it will
always have “natural” pitch movements from the selected units.
SPSS, on the other hand, will deliver an averaged pitch con-
tour which will tend to be flat. Furthermore studies have shown
that current higher level linguistic features contribute little to
the overall perception of the system [6, 7], it is thus desirable to
investigate potential new features.

In this paper we present an extension of the Stylisation and
LAbelling of speech Melody (SLAM) method of Obin et al. [8]
more suitable for speech synthesis and initial attempts at pre-
dicting these from text. SLAM is a pitch contour stylisation
method and while the pitch contour is not the only relevant ele-
ment of prosodic intonation contours (other phenomena include
durations, pausing and energy), it is considered one of the main
essential elements and is, besides durations, the only prosodic
element directly modelled in SPSS systems [9].

Stylisation of pitch has been done before (e.g. [10, 11, 12,
13]), but in TTS most famously through the Tone and Break In-
dices (ToBI) labelling scheme [14]. However, the main advan-
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tage of SLAM over other methods is that it is a fully data-driven
method which requires no human labelling effort and works on
any segment length desired.

ToBI can be semi-automatically [15] or fully automatically
labelled [16, 17]. However, for automatic labelling, classifiers
are used and while reasonably accurate these do not match hu-
man annotator agreement [16]. Furthermore, the inventory set
is fixed and if it is to be used for a new language then the inven-
tory must be modified [18]. Stem-ML [12] can automatically
label data without the use of classifiers, however needs some
manual guidance on the inventory decision and boundary set-
tings [19]. Tilt [10, 20] can label data and infer the inventory,
however needs a detection algorithm to determine where an in-
tonational event happens. INTSINT [13] can label data and in-
fer an inventory without a detection algorithm, however the unit
size of each label is not clearly defined, except that some num-
ber of labels exist in each intonational phrase. For TTS, in order
to label our data we use phonemes as the unit size and it must be
clear to which label each phoneme belongs, and it is not clear
how INTSINT, currently, would guarantee this.

SLAM has none of the above limitations as the inventory
is derived from and defined by the data on any given unit size.
As such it lends itself easily to application in TTS as a label
can be related to each phoneme, although that label may not be
determined at the phoneme level. That SLAM can derive an
inventory set on any segment length desired is attractive, and
it can do this while still having a sufficiently small inventory
describing most of the data [8]. SLAM was, however, not de-
signed specifically with TTS in mind. As a consequence the
inventory cut-off points are not based on perceptually notice-
able differences and may fail to take into account the amount
of movement of the pitch. We here present an extension of the
method more suitable for TTS by taking into account the Just
Noticeable Difference (JND) of pitch and a more explicit mod-
elling of the movement of the pitch. This method is presented
in two versions, a standard and simplified.

This paper is therefore organised as follows. SLAM is sum-
marised in Section 2, our extension, JNDSLAM, presented in
Section 3. Section 4 shows evidence that INDSLAM can im-
prove SPSS and Section 5 present an initial attempt at predict-
ing INDSLAM labels before concluding in Section 6.

2. SLAM

SLAM provides a stylisation of the pitch of any given speech
segment. In this paper we focus solely on the syllable, however
the method is the same for any length of speech. From the raw
pitch values the speakers mean pitch is calculated over the entire
corpora. Then for each syllable the pitch values are smoothed
and all values are converted into semitone deviance from the
mean pitch. Note, in the implementation from [8] pitch is ex-
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Figure 1: A sample pitch contour. The starting value is High.
End is Very Low and a Very High extreme position exists in the
beginning of the segment.

tracted using SWIPE [21] and smoothed using LOWESS [22],
though in principle any methods can be used. In our case we
used the pitch tracker REAPER [23] instead of SWIPE.

Three values define the resulting stylisation:

e The starting level of the pitch relative to the mean

o The ending level of the pitch relative to the mean

e Any extreme position, its position in the segment and it’s
level.

Five levels, of 4 semitones size, for each position is defined
relative to the mean semitone.

Very High: 6 semitones or more above the mean.
High: 2-6 semitones above the mean.

Medium: -2 to 2 semitones around the mean.
Low: -2 to -6 semitones below the mean.

Very Low: -6 semitones or more below the mean.

Of these, extreme positions are the most involved. Start
and End is simply the level relative to the mean semitone value
of the pitch, but extremes are more relational. To determine
the presence of an extreme, the difference from the starting and
ending position to the most extreme (positive or negative) pitch
value in the segment is calculated. If the smallest of these dif-
ferences is more than 2 semitones, an extreme is present and its
level is determined. The position of the extreme is recorded as
in which third of the segment it appears in. Figure 1 illustrates a
sample smoothed pitch contour with an extreme position. With
a label for an unvoiced segment this results in a label set of 401
possible labels. Of the 401 possible labels, 311 were present in
our data (see below for corpora details). However, 14 of these
represent more than 95% of the data. This is higher than the
8 contours in the original study [8]. This is likely due to the
fact that our corpora is in English and the original authors use
French - the two languages likely differ in inventory naturally.
It does however demonstrate that the method is not language
specific as the relevant inventory is still small and within the
10-20 suggested as reasonable by SLAM’s original authors [8].

2.1. Corpora

Throughout this paper the corpora used was from a single US
English Female speaker. The corpora was recorded for the pur-
pose of speech synthesis and contains 641k syllables. This is
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Figure 2: SLAM would categorise Pitch 1 and 3 as the same.
Evidently Pitch 1 and 2 are more similar and JNDSLAM
catches this distinction by defining the end point in terms of
direction and strength of movement from the start.

over an order of magnitude larger than the test set used in [8]
which contained 43k syllables.

3. Just Noticeable Difference SLAM

For the use of SLAM in SPSS there are two issues. Firstly the
level categories do not necessarily represent a perceptually no-
ticeable difference in pitch. This is an issue as we are interested
in reproducing perceptually meaningful movements in SPSS.
We thus suggest to use the Just Noticeable Difference (JND)
in pitch as a perceptually meaningful categorisation, this is 1.5
semitone [24, 25]. By using categories of two JND in size we
ensure that from the mean value there is always at least 1 JND of
movement to the next level, this is a slightly smaller range than
the original SLAM’s size of 4 semitones. Secondly SLAM may
categorise pitch contours that are very similar as being quite
different due to the static nature of the End element. Figure 2 il-
lustrates the issue showing three pitch contours. Contour 1 and
2 are very similar, whereas contour 3 is different. However be-
cause contour 1 starts at 1.8 semitones above the mean and ends
at 1.9, and contour 2 goes from 1.95 to 2.05 they are classified
as being different (Medium to medium and medium to high).
Thus contour 2 and 3 are being classified as the same and 1 as
different. This is not ideal as in TTS we wish to capture the
movement of the pitch in order to recreate it. The proposal is
therefore to define the End position as the movement relative to
the Start position, with movement levels following the categori-
sation. A similar issue exists with extreme positions around the
category borders, and we propose to simply define any extremes
as being present if the smallest difference to the Start or End is
above the JND, whether it is positive or negative and its position
in the segment. Just Noticeable Difference SLAM (JNDSLAM)
thus stylise a pitch with the following three values:

e The starting position of the pitch relative to the mean

o The direction and strength of movement of the pitch rel-
ative to the starting position

e Any extreme value as determined by the JND and its po-
sition in the segment

With the following five positional and movement levels (ex-
cept for extreme which is either positive or negative):
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Figure 3: Mean Opinion Score results for Oracle synthesis of
voices using SLAM. Standard = Standard HMM system, SLAM
= Original SLAM, JND = JNDSLAM, S-JND = Simplified
JNDSLAM, Sp = Label split as three elements, Si = Label as
single element.

e Very High/Up: 3 JND’s or more above the mean/of
movement.

e High/Up: 1 to 3 JND above the mean/of movement.

e Medium/Straight: -1 to 1 JND around the mean/of move-
ment.

o Low/Down: -1 to -3 JND below the mean/of movement.

e Very Low/Down: -3 or more JND below the mean/of
movement.

Another benefit of removing the levels for the extremes is a
large reduction of the label set from 401 to 176 labels, of these
169 are present in the data and 23 represent 95% of the data.
While this is larger than the 10-20 suggested in [8] we consider
this a good thing as it shows we’ve managed to unify many
labels which have not been used much together and also get a
label set with more meaningful labels.

3.1. Simplified JNDSLAM

While INDSLAM provides labels better suited for TTS, initial
experimentation with prediction (see Section 5 for more detail)
revealed two potential issues. Firstly, no extremes were pre-
dicted. These are also rare in the data with only one extreme
containing label in the 20 most frequent labels of INDSLAM.
Secondly few Very High/Low/Up/Down labels are predicted
since those are fairly rare in the data. This suggests the task may
be too complex and to alleviate this INDSLAM was simplified.
The simplification consists of not determining the position of
any extreme and to only have positions and movements above
and below 1 JND. Resulting in the following stylisation:

e The starting position of the pitch relative to the mean
(High/Medium/Low).

e The direction of movement of the pitch relative to the
start (Up/Straight/Down).

o Any extreme position (Positive/None/Negative).

While this simplification does remove granularity necessary for
good analysis of pitch contours for phoneticians (if that is your
interest we recommend the full INDSLAM), it is likely to be
beneficial to TTS as it simplifies the prediction task and intro-
duces less variables for the classifier to predict. This is evi-
dent as it reduces the label set to just 28 labels all of which are
present in the data. Furthermore, 19 labels represent 95% of the

data, and 10 labels with extremes are in the top 20 as opposed
to 1 for INDSLAM.

4. Oracle Synthesis Evaluation

To evaluate the effects of using SLAM labels for voice train-
ing, and to see if any improvements are obtained from JND-
SLAM and its Simplified version, HMM voices were trained.
The labels were used as part of the linguistic context informa-
tion, added at the syllable level and for each phone the label of
its syllable and the preceding and following syllable was used.
Thus their effect is on the decision tree context clustering stage
of voice training. For the original SLAM algorithm the label
was treated as one entity, however for both Simplified and stan-
dard INDSLAM a second HMM voice was also trained. It is
likely that some elements of the SLAM labels are more impor-
tant for different clusterings and so splitting them may be ben-
eficial, furthermore as sentences tend to have an overall falling
pitch the starting position is likely to follow this pattern whereas
the other elements may be more independent. It also has an ef-
fect on prediction of the features as they may be predicted sep-
arately which should be a simpler task (see Section 5). To do
this the label was decomposed into its three elements (starting
position, direction of movement and extreme value) and each of
these were used as separate context features. In total six voices
were trained, all on the same Female US English corpora de-
scribed earlier. A standard unmodified HMM, one using the
original SLAM, two (as one label or split) using JNDSLAM
and two using Simplified INDSLAM. 20 utterances were held
out from voice training and used for the test. These were syn-
thesised using each voice, and using each of the SLAM methods
the sentences were labelled and these Gold standard labels were
used in synthesis. This constitutes what we call Oracle synthesis
and represent the upper bound for how well an automatic system
can do using these labels. Using crowdsourcing each sentence
from each system was evaluated 20 times in an anchored mean
opinion score (MOS) test, for a total of 400 evaluations of each
system.

4.1. Anchored MOS

An anchored MOS test is slightly different from a standard
MOS test. In a standard test participants hear only samples from
the systems used and the MOS scores become relative within
those systems. To mitigate this, natural speech is often added
as a topline system and to act as an anchor-point on the scale.
In an anchored MOS test subjects are given samples of speech
corresponding to each of the 5 levels of the scale. This make the
results relative to the anchor samples and less relative between
the systems. The benefit is that if we use the same anchor sam-
ples we can compare results from different tests, however, we
may see less differences between systems unless these are also
important relative to the anchors.

4.2. Results and Discussion

The results are summarised in Table 3. All SLAM based sys-
tems score higher than the Unmodified HMM system, but only
the Simplified algorithm is significantly better. Both versions
of INDSLAM receives higher scores than the original SLAM
and while these differences are not significant the tendency is
clear and consistent. There is no difference between the split
and single label HMM'’s suggesting that splitting the labels had
no positive nor negative effect. It is notable that simplifying
the label set improved MOS. The reason for this is quite likely



that with a reduced set each label provides more information to
base clustering around. To see how far up the tree, and thus
how important the labels are, we looked at where in the deci-
sion tree the contour related questions enter for the Simplified
JND with each label separate. For the 1f0 tree contour questions
were present at the very top of each of the HMM states tree,
accounting for 42% of the questions in the first 5 levels of the
trees. Questions also appear in the 5 first levels of the duration,
all of the mixed excitation and most of the mcep trees. Clearly
the labels are useful in the build process. This also suggests
that pitch is not entirely independent from the other streams,
something which has also been noted in [26, 27], and it is thus
important to model pitch well not only to get the correct pitch
but also to improve other elements of the system.

S. Predicting JNDSLAM

That the labels yield an improvement over the unmodified
HMM is encouraging. However, in the standard TTS situation
we do not have access to the acoustics to derive the labels, these
must be predicted. In an initial investigation into predicting the
labels Long Short Term Memory Neural Networks (LSTM) [28]
were used. These were chosen as it is a modern machine learn-
ing method, which also has the added benefit of being useful as
an SPSS system [4] making potential later integration easier.

To predict INDSLAM a standard linguistic feature set was
used similar to that of HTS [9]. The hope being that, while
these features are not sufficient for direct prediction of pitch
movement as evidenced by the flat SPSS intonation, by using an
intermediate representation which yields a good acoustic model
and a simpler task (i.e. Simplified INDSLAM), these features
would be sufficient for acceptable prediction. In earlier studies
using automatic ToBI prediction this approach has had a mixed
success [6, 18]. These studies use much smaller amounts of la-
belled data and our increased dataset could mitigate this. Labels
were predicted either in full form or as its three separate parts.
The bidirectional LSTM consisted of four layers. A sparse in-
put layer, a forwards LSTM layer, a backwards LSTM layer
and an output layer. If the labels were predicted in full directly,
the output layer was a sparse output layer, however if predicted
in parts, a multidistribution output layer was used. This layer
consisted of three sublayers, one for each element of the la-
bel. Four LSTM’s were trained on 577k syllables with 32k for
testing and 32k for tuning (5% each of the full corpora). We
included one simple baseline of picking the most likely label
for each method. Table 1 summarise the results. The over-
all prediction rates are above the baseline in all cases, showing
that we do indeed capture some of the prosodic variation in the
speech. The best overall performance is Simplified INDSLAM
predicted as one label with 25.2% correct.

5.1. Prediction Discussion

While the prediction accuracy is low, it is still possible that
prediction yields reasonable contours despite this, as in [18].
However, when informally listening to output samples two ten-
dencies arise. Directly predicting the labels yields more move-
ment but also ask for a generally low starting point whereas pre-
dicting the labels individually yields a better starting point but
less movement. Predicting more movement but in the wrong
place is likely to annoy listeners and predicting less movement,
i.e. flatter prosody, is already an issue in TTS. It is thus clear
that current linguistic features are not useful for predicting pitch
contour labels, and we therefore leave a synthesis evaluation of
predicted labels as future work to be done after better prediction

Start Direction | Extreme | Overall

JNDSLAM
Baseline | 32.7% 31.5% 69.8% 10.7%
Single 40.3% 38.8% 76.8% 18.1%
Split 39.9% 38.0% 75.4% 15.9%

Simplified
Baseline | 32.7% 37.7% 69.8% 13.3%
Single 46.7% 42.0% 76.0% 25.2%
Split 46.3% 46.5% 75.4% 22.2%

Table 1: Prediction accuracy of the LSTM’s for each element of
the label.

is obtained. The reason for why these features are not so useful
is probably down to the fact that very few word level and above
features are used, and those which are have little effect [6].

There are two strategies that we would like to investigate
in the future. On the one hand, as JNDSLAM is an automatic
method we are not limited to the use of data from one speaker, it
is thus possible to obtain information from multiple speakers of
the same accent to generate accent based pitch contour predic-
tors. On the other hand, we believe a fruitful future approach
would be to ensure prosody exists over simply no prosody as
noted in [18]. For this purpose a lexicon-based approach could
be useful. Just as words contain a set of phonemes with ac-
cent and contextual variation, they also have a standard prosody.
That could be encoded and supplied to the HMM’s models dur-
ing synthesis time.

6. Discussion and Conclusion

We have presented a fully automatic pitch contour stylisation
method suitable for speech synthesis. It builds upon the SLAM
system of [8] by taking into account the JND of pitch difference,
recasting end position as direction of movement and extreme
positions as relative to its strength. We’ve called this JND-
SLAM and have also presented a simplified version'. MOS
results show that all versions of SLAM provide an improve-
ment over the standard HMM system, particularly the Simpli-
fied version, however splitting the label had no effect. Further-
more, initial exploration of INDSLAM prediction shows fairly
low overall accuracy. That we cannot predict prosodic labels
from text using the current linguistic features highlights the
need for research into new potential features that are capable of
this. Other work has noted the unimportance of current higher
level features [6, 7, 29], and this work adds to a growing body
of evidence that current linguistic features are insufficient. We
have shown that INDSLAM has the potential to impact synthe-
sis quality if used correctly, and have proposed several possible
solutions to this which involve both improvements to the auto-
matic prediction methods, but also a potential offline encoding
of “neutral” contours in the dictionary.

JNDSLAM has been presented as a means to improve stan-
dard TTS systems, however it also has other potential applica-
tions. In applications such ASR and Voice Cloning where the
correct pitch values are available, these stylisations could pro-
vide evidence for a variety of prosodic events. Furthermore cur-
rent TTS systems are unresponsive to requests for specific pitch
contoursand JNDSLAM provides a means to request specific
contours. This has potential uses in dialogue systems where
we know what we wish to emphasise, whether we are asking a
questions etc., phenomena which has specific prosodic realisa-
tions which can be supported by the TTS system.

A liberally licensed C++ implementation is freely available at
https://github.com/RasmusD/JNDSLAM
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