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ABSTRACT

This paper describes a novel method for automat-
ically inserting filled pauses (e.gyM) into fluent
texts. Although filled pauses are known to serve a
wide range of psychological and structural functions
in conversational speech, they have not tradition-
ally been modelled overtly by state-of-the-art speech
synthesis systems. However, several recent sys-
tems have started to model disfluencies specifically,
and so there is an increasing need to create disflu-
ent speech synthesis input by automatically insert-
ing filled pauses into otherwise fluent text. The ap-
proach presented here interpolates Ngrams and Full-
Output Recurrent Neural Network Language Mod-
els (f-RNNLMSs) in a lattice-rescoring framework. It

is shown that the interpolated system outperforms
separate Ngram and f-RNNLM systems, where per-
formance is analysed using the Precision, Recall,
and F-score metrics.
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1. INTRODUCTION

In recent years, disfluent speech synthesis has
started to receive more attention [1, 2, 3, 13]. The
aim is to develop systems that produce convincing
disfluencies such as filled pauses (FPs), discourse
markers, repetitions, and restarts. It is well-known
that such phenomena serve a wide range of impor-
tant functions in conversational discourse. They
can indicate psychological states [11], structure dis-
courses [9], facilitate word recall [14], and improve
word recognition [15, 10, 12]. Given this, it is desir-
able to model them overtly in automatic speech syn-
thesis systems which seek to approximate a human-
like conversational style.

The broad motivations underlying research into
disfluent synthesis are closely related to those that
have prompted the development of emotional or ex-
pressive speech synthesis systems [20, 19, 17, 4, 5].

Both endeavours ultimately seek to create synthetic
speech that is able to convey a wider range of emo-
tional or psychological states, thereby producing
synthetic voices that can simulate certain charac-
ter and personality types more convincingly. The
main difference, however, is that while emotional or
expressive speech synthesis concentrates primarily
on modifying prosodic phenomena (such as pitch,
speech rate, voice quality, inter-lexical pause dura-
tion) [20, 19, 17, 4, 5], disfluent speech synthesis
additionally requires the augmentation of the (flu-
ent) input token sequence [13].

This paper contributes to this ongoing endeavour
by extending the basic approach to automatic FP-
insertion introduced in [13]. That paper focused on
the relatively simple task of inserting a single FP
(UH) into a fluent token sequence at an appropri-
ate Insertion Point (IP). By contrast, the current pa-
per describes a system that can inseuitiple FPs
in multiple IPs. Therefore the sentence 'l NEVER
LIKED GAMES'’ could be modified automatically
to becomeUM | NEVER LIKED UH GAMES'. In
addition, the new system has a Disfluency Parameter
(DP) that determines the degree of disfluency in the
output text. The DP takes a value in the raf@éd],
where 0 = maximally fluent and 1 = maximally dis-
fluent. Finally, while [13] used simple linear inter-
polation of word-level Ngram and RNNLM prob-
abilities to rerank the potential sentences, a more
robust lattice-based rescoring method is introduced
here. As a modelling technique, it has clear ad-
vantages since simple re-ranking strategies become
computationally inefficient when multiple FPs can
be inserted in multiple IPs.

The structure of this paper is as follows. Section
2 describes the lattice-based modelling framework,
and provides information about the training and test
data used. Section 3 gives the results for the vari-
ous FP-insertion systems compared using the Preci-
sion, Recall, and F-score metrics. Scores are given
at the sentence level for output containing all the in-
serted FPs, along with breakdowns for each separate



FP subtype. The main conclusions and directions for
future research are summarised in 4.

2. LATTICE-BASED LM INTERPOLATION

The lattice-based FP-insertion system developed
here is similar to those recently implemented for Au-
tomatic Speech Recognition (ASR) tasks in [7, 18].
In the context of ASR language models (LMs),
RNNLMs have become increasingly popular in re-
cent years due to their inherently strong generaliza-
tion performance. Specifically, Chen et al 2014 [7]
has shown that f-RNNLMs facilitate an efficient par-
allisation of training in a Graphics Processing Unit
(GPU) implementation. In addition, when used in a
lattice-rescoring framework, they give both Perplex-
ity and Word Error Rate improvements over stan-
dard RNNLMs. This is due in part to their use of an
unclustered ‘Full-Output’ architecture.

This framework can be adapted for the FP-
insertion task. There are five main stages in the mod-
ified process:

1. Create initial lattices in which each FP is acces-
sible from each word token (Figure 1)

Expand the initial lattices using an Ngram (6g)
Rescore the expanded lattices using an interpo-
lated LM with weighted Ngram and f-RNNLM
sub-components

. Output am-best list for each sentence (where
n = 10000)

Specify the desired degree of disfluency using
the DP and generate final 1-best disfluent
output
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Figure 1: Example Initial Lattice fom words and
3 FPs

2.
3.

After FP-insertion, the versions of senteri8é
the n-best list will have varying token counts since
they will contain different numbers of automatically
inserted FPs. All versions d with p tokens are
rank-ordered using the sentence-level interpolated
LM score, and the 1-best version is output. The
closed interval0,1] is divided equally between the
various 1-best outputs for differeptvalues. This
provides the DP that determines the degree of dis-
fluency. The impact of varying the DP parameter
is shown in Table 1. This example provides a con-
crete instance of the impact that the DP value has on
the resulting token sequences, and it illustrates the
graded nature of the different DIS-insertion outputs.

In particular, it shows how the perceived psycholog-
ical state of the (synthetic) speaker can be altered as
a fluent lexical sequence becomes increasingly dis-
fluent.

DP

0.00
0.25
0.50
0.75
1.00

Table 1: An example of the impact of DP values

on output disfluent token sequence

The LMs used in the experiments were trained on
20M words (1M sentences) of data from the Switch-
board, Fisher, and AMI corpora, as well as an un-
released corpus of British conversational telephone
speech [16, 8, 6]. Dev and Test sets were extracted
from different subsets of the same corpora, and they
comprised 7,365 sentences (145k words) and 6,910
sentences (139K words) respectively. Each sentence
in the scoring reference contained at least one FP,
and these FPs were removed to create the ‘fluent’
version of the test sets that were processed by the
FP-insertion systems. The purpose of the experi-
ments was to see whether the systems could insert
the same FPs into the same IPs as those found in
the scoring reference files. Seven FPs in total were
modelled overtly by the various FP-insertion sys-
tems: UH, UM, OH, UHUM, UHU, HM, andAH.
Information about the occerrence of these FPs in the
training data is given in Table 2.

Output Sentence

WELL | GUESS THEY WERE SAYING

WELL | GUESS THEY WERE SAYINGUM

UM WELL UH | GUESS THEY WERE SAYINGUM

UM WELL UH | GUESSHM THEY WERE SAYINGUM

UM WELL UH | GUESSHM THEY UH WERE SAYINGUM

#occs[%]
UH 213,924 [1.09%]
UM 200,499 [1.02%)]
OH 123,028 [0.63%)]
AH 69,288 [0.35%]
UHUM | 29,515 [0.15%]
UHU 16,180 [0.08%]
HM 3,456 [0.01%)]

Table 2: FP occurrence counts for the training

data (and % of training data)

As the counts in Table 2 indicate, the APlH and
UM occur most frequently in the training data. The
fact that some of the other FPs have relatively low
counts &30,000) facilitates the exploration of the
impact of data sparcity on the modelling of speech
disfluencies.

3. EXPERIMENTSAND RESULTS

Three FP-insertion systems were compared:
1. Ngram: a standard 6g built using the training
data; SRILM toolkit [21]; K-N discounting
2. f-RNNLM: a non-class-based f-RNNLM with



512 hidden layer nodes
3. Ngram+f-RNNLM: the 6g and f-RNNLM are
interpolated with a 50%-50% weighting in the
lattice-based framework described in section 2
The initial lattices (Figure 1) were expanded and

rescored using the Ngram, the f-RNNLM, and the
interpolated Ngram+f-RNNLM LMs. System per-
formance was evaluated using standard Precision,
Recall, and F-score metrics. The full range of
sub-component weightings was explored for the
Ngram+f-RNNLM system (e.g., 40%-60%, 60%-
40%), but the 50%-50% weighting gave the opti-
mal performance (as determined by the three met-
rics). Consequently, the 50%-50% weighting was
adopted for all the experiments reported in this pa-
per. The metric scores were also used to determine
the optimal DP value for the Dev data and Figure 2
shows the metric scores for the Ngram+f-RNNLM
system. The inverse relationship between Precision
and Recall/F-score is apparent, and a DP value of

0.5 achieves a desirable balance between these ex-

tremes. Similar patterns were obtained for all three

best F-score results for both the Dev and Test sets.
This suggests that the interpolated system combines
the complementary properties of the two component
LMs. Consequently, the Ngram+f-RNNLM system
is comparatively more robust than either the Ngram
or -RNNLM systems, and the latter two are benefi-
cially interpolated in the lattice-based framework.

Dev #occs[%] (ref/hyp) Test #occs[%] (ref/hyp)
UH 3660 [2.29%]| 6359 [3.97%]| 3658 [2.44%]| 6311 [4.10%]
UM 3331 [2.09%]| 4711 [2.94%]| 3392 [2.26%]| 4201 [2.73%]
OH 2035 [1.27%]| 3685 [2.30%]| 2083 [1.39%)]| 3538 [2.30%]
AH 1053 [0.66%]| 192 [0.12%)]| 348[0.23%]| 209 [0.14%)]
UHUM | 432[0.27%]| 73[0.46%)]| 423[0.28%] 92 [0.06%]
UHU 222 [0.14%] 8[0.00%]| 228[0.15%] 23 [0.01%]
HM 61 [0.04%)] 2[0.00%]| 55[0.04%] 0 [0.00%)]

Table 4: FP #occs for the Dev/Test reference

files (ref) and the Ngram+f-RNNLM system out-

put (hyp)

Table 4 gives the occurrence counts for both the
scoring reference files and the Ngram+f-RNNLM
system output hypotheses. These counts show that
the Ngram+f-RNNLM models the various FP sub-
types rather differently. There is a tendency to over-

systems, so the DP was set to 0.5 for all subsequent 9enerate the three most frequently occurring FPs

experiments.
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Figure 2. Precison, Recall, and F-score for
Ngram+f-RNNLM for Different DP Values
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Precision Recall F-score
(DeviTest) | (Dev/Test) | (Dev/Test)
Ngram 0.4170.44/05570.60]0.47]0.51
f-RNNLM 0.42|0.47 | 0.52| 0.57| 0.47| 0.51
Ngram+f-RNNLM | 0.43 | 0.47 | 0.55| 0.59| 0.48 | 0.52

Table 3: Dev and Test Sentence-level results for
the Ngram, f-RNNLM, and Ngram+f-RNNLM
systems

Table 3 shows that the Ngram+f-RNNLM system

obtained the best (sometimes joint best) sentence-

level Precision and Recall performance for every
case except the Recall results for the Test set. No-
tably, the Ngram+f-RNNLM system obtained the

(i.e.,UH, UM, OH). The overgeneration ranges from

17.4% to 76.9%. By contrast, the system undergen-
erates the less frequently occurring subtypes (e.g.,
AH, HM). Presumably this is a consequence of the
occurrence counts in the training data, which ensure
that the LMs associate higher likelihoods with fre-

quently occurring FPs. The patterns for all FP sub-
types are similar for the Dev and Test sets. Table 5
further illuminates this by giving the Precision, Re-

call, and F-score scores for the distinct FP subtypes.

Precision Recall F-score

(Dev/Test) | (Dev/Test) | (Dev/Test)
UH 0.4210.46]0.72]0.74] 0.53] 0.57
UM 0.42| 0.45| 0.56| 0.54| 0.48| 0.49
OH 0.48| 0.53| 0.70| 0.70| 0.57| 0.60
UHUM | 0.35| 0.58| 0.04| 0.09| 0.08| 0.16
UHU |0.25/0.81|0.01|0.06|0.02|0.11
HM 0.50| 0.00| 0.02| 0.00| 0.04| 0.00
AH 0.14| 0.12| 0.03| 0.08| 0.05| 0.10

Table 5: Individual FP Results for the Ngram+f-
RNNLM system

The scores in Table 5 show a fair amount of vari-
ation between the different FP subtypes. The scores
for the three most frequently occurring FPs are rel-
atively stable across the Dev and Test sets, achiev-
ing F-scores in the range 0.48-0.60. By contrast, the
scores for the less common FPs sometimes fluctu-
ate considerably (e.g., the Dev Precision iftvl is
0.50, while the Test Precision is 0.00). Once again,
this quantifies the impact of the data sparcity mani-
fest in Table 2.



4. CONCLUSION

In recent years, interest in emotional or expressive
speech synthesis has burgeoned. Dominant traits
such as extraversion, conscientiousness, agreeable-
ness, and openness are often considered to be essen-
tial to the creation of artificial personalities — and
FPs are commonly occurring phenomena in natural
conversational speech which convey important in-
formation about such traits. Consequently, this pa-
per has described a novel approach to the task of in-
serting FPs into otherwise fluent token sequences to
create disfluent input texts for speech synthesis sys-

tems. [10]

A lattice-based rescoring framework has been
presented which enables Ngram and f-RNNLM
LMs to be interpolated. This framework enables
multiple FPs to be inserted into multiple IPs. The ex-
periments involving seven FPs show that, using stan-
dard metrics, the Ngram+f-RNNLM system is more
robust than its constituent Ngram and f-RNNLM

sub-components since it combines ther complemen- [12]

tary tendencies.
Future research will focus on the modelling of

other (more structurally complex) disfluency types, [13]

such as discourse markers, repetitions and restarts.
It is also important to improve the way speech syn-

thesis systems cope with disfluent input texts, and, [14]

to this end, data mixing, better outlier detection, and
improved alignment methods will be explored.
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