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ABSTRACT

We describe our system for alignment of broadcast media cap-
tions in the 2015 MGB Challenge. A precise time alignment
of previously-generated subtitles to media data is important in
the process of caption generation by broadcasters. However,
this task is challenging due to the highly diverse, often noisy
content of the audio, and because the subtitles are frequently
not a verbatim representation of the actual words spoken. Our
system employs a two-pass approach with appropriately con-
strained weighted finite state transducers (WFSTs) to enable
good alignment even when the audio quality would be chal-
lenging for conventional ASR. The system achieves an f-score
of 0.8965 on the MGB Challenge development set.

Index Terms— MGB Challenge, broadcast media, align-
ment

1. INTRODUCTION

Automatic alignment of text to audio is an important and well-
studied problem. Forced alignment of words to speech data,
usually at the utterance level, is of course a standard step in
acoustic model training for Automatic Speech Recognition
(ASR) systems, but this approach has been extended to cases
where the available text may not be well-matched to the ac-
companying audio, or where timings are available only at a
very coarse level – the so-called lightly-supervised approach
to acoustic model training [1]. The use of such of techniques
has subsequently been widely reported for both ASR [2, 3, 4]
and TTS [5, 6] applications, in cases where large quantities of
in-domain text and audio resources are available, but where it
is not feasible to generate careful manual transcription of the
resources. However, the ability to produce good alignments
of audio and text resources, in the absence of utterance-level
timing and when the text is not a verbatim transcription, also
has immediate benefits in end-user applications such as lec-
ture transcription [7, 8], broadcast media captioning [9], par-
liamentary proceedings reporting [10], online video indexing
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[11] and e-book readers [12], to give some examples. In con-
trast with use for lightly-supervised training, in these appli-
cations, alignment systems typically must return align words
to all the speech, rather than simply being able to select only
regions of confident alignment.

Despite the range of work on lightly supervised alignment
reported in the literature, as far as we are aware, to date there
has been no means of evaluating competing alignment sys-
tems on common data. This motivated us to include a lightly-
supervised alignment task in the MGB Challenge [13], an offi-
cial challenge at ASRU 2015. The Challenge is an evaluation
focused on multi-genre TV broadcasts, where there is a par-
ticular need for automatic caption alignment so that subtitles
can be displayed to TV viewers on screen at the correct time.
For the evaluation, the captions supplied as input for the align-
ment task are human-generated captions as displayed on TV
when the material was originally broadcast, with the timings
removed. Alignment must be performed at the show-level;
shows are up to around one hour in duration.

From an acoustic modelling perspective, the data is ex-
tremely challenging, being highly diverse across genres with
respect to background noise levels, accents and speaking
styles (which include fast, natural conversations and dra-
matic, exaggerated speech). Although performance on genres
such as news and documentaries is relatively good, genres
such as drama and sport are much more difficult for ASR. As
we report in [13], a baseline ML-trained HMM-GMM ASR
system trained on 260 hours of in-domain audio data achieves
a Word Error Rate (WER) of over 50%. These difficulties ap-
ply to lightly-supervised alignment also, necessitating careful
system design. Additionally, the captions supplied frequently
differ from verbatim transcriptions for a range of reasons,
including the need to paraphrase or re-order to aid viewer
understanding, edits to reduce the amount of text displayed
when speech would be too fast for viewers to read, and the
result of errors in the original caption generation.

Because not all words in the caption text are actually
present in the audio, participating systems are not required to
supply timings for every word. Alignment scoring is therefore
composed of scores for precision (the proportion of supplied
word timings that are correct) and recall (the proportion of
words actually spoken that have correct timings supplied).



Timing is judged correct with reference to a 100ms window,
which is somewhat stricter than equivalent measures reported
in the literature. Precision and recall are combined to produce
the F-score, the final reported measure.

The system we propose for this task is designed to be ef-
ficient to run, so that it can be used in practical applications,
whilst ensuring that the alignment is robust to noisy or oth-
erwise difficult audio, and also to instances where the text
differs substantially from the speech. With these objectives in
mind, we use a two-pass system based using purely acyclic
WFST based decoding constraints.

2. BACKGROUND AND PREVIOUS WORK

A diverse range of techniques have been used for long au-
dio alignment. Typically, methods require previously-trained
ASR acoustic models in combination with a decoder. [11]
proposed an iterative approach whereby successive ASR
passes over the data aim to identify an increasing number
of reliable “islands of confidence” where the ASR output
matches the text. Successive iterations aim to refine the
alignment between anchors. The publicly-available SailAlign
toolkit [14] uses a similar method. Many approaches, for
example [7, 5, 14] start by training a biased language model
(LM) on the alignment text, possibly interpolated with a back-
ground LM, to be used in initial, and possibly subsequent,
ASR passes. The resulting transcript is aligned to the refer-
ence text with dynamic programming. Methods for alignment
in low-resource scenarios may train acoustic models from the
alignment audio [4, 6]; in multi-pass systems it is possible to
adapt acoustic models to the already aligned audio.

An alternative approach is to apply weaker constraints on
the acoustic model decoding: [8, 10] use a phonetic decod-
ing, which is matched to the original text by efficient dy-
namic programming of phoneme sequences (or grapheme se-
quences in the latter case). [12] avoids the need for ASR
models completely by performing dynamic time warping to
align with TTS output generated from the text. In the other
direction, it is possible to apply much stronger constraints on
the decoding: [2] used a factor automaton, which matches all
possible sub-strings of the original text, to constrain the de-
coder to produce, for each utterance, only contiguous strings
of words from the training text. This was found to signif-
icantly improve decoding efficiency and accuracy compared
to an equivalent n-gram LM. We found this approach to be
promising in previous experiments [6] and so used it is a start-
ing point the system described here.

3. ALIGNMENT SYSTEM

3.1. Alignment with WFSTs

In common with many other ASR systems, we use a WFST-
based decoder [15]. Transducers for the grammar, G, lexi-

con, L, context-dependency, C, and HMM-topology, H , are
composed to form a single transducer H ◦C ◦L ◦G with ap-
propriate determinisation and minimisation steps. The decod-
ing task is equivalent to finding the shortest path through the
transducer. In ASR applications, G is usually derived from an
n-gram LM; however, it may trivially be replaced by a trans-
ducer specific to the task.

Since we use hybrid DNN acoustic models (described be-
low), where the forward pass is computationally expensive
and difficult to cache, we aim to minimise the number of
passes over the data in order to limit the computation re-
quired. The final system operates with just two passes. In
the first pass, we adopt the method of [2] discussed briefly
above. Here, the complete text to align is converted into a lin-
ear factor transducer – one per audio file – where each word
is both a potential entry point and final exit state. This trans-
ducer matches all substrings of the original text. An example
is shown in Figure 1. We use a decoder provided by the Kaldi
toolkit [16]. For robustness, we allow inter-word insertions
– words spoken but not included in the text. The implemen-
tation is somewhat different to [2], where insertions are in-
cluded as self-loops in the grammar, in that we implicitly al-
low inter-word insertions through the use of a “short-pause”
(or “tee”) model implemented as part of the lexicon The in-
clusion of the short-pause model in the lexicon is a standard
approach in Kaldi; “#0” is used as a word-disambiguation
symbol that is matched purely to this model. In our system, it
models both silence and speech-shaped noise, and is therefore
able to absorb arbitrary spoken words not included in the text
with small cost.

The factor transducer approach has several advantages for
the MGB alignment task: the decoding has strong text-based
constraints, but only weak timing constraints – in the sense
that outputs for successive utterances are not constrained to
be in order, making it suitable for aligning long portions of
audio. Because of the linearity of the transducer, decoding is
significantly more efficient than using a 3-gram model trained
on the same text. The constraint that each complete utterance
must match substrings of the original text makes the decod-
ing highly robust to portions of the audio where the acoustic
models are poorly matched, due to high noise levels for ex-
ample, where decoding with a 3-gram could yield very high
error rate. Thus we can maximise alignment accuracy from
just a single pass through the data without need to align the
decoder output to the original text.

However, there are are number of limitations to the factor
transducer approach. Firstly, as noted by [2], the method per-
forms poorly on very short audio segments, where the con-
straints imposed by the linear G transducer are weak. Sec-
ondly, although the factor transducer is robust to word inser-
tions, deletions are much more problematic. Small deletions
– words included in the text but not actually spoken – can
be handled by the decoder simply by aligning them to very
short portions of audio between words. However, this means
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Fig. 1. Factor transducer for a short example text

that they cannot be detected as missing. Furthermore, it is
common in this task that there are longer deleted portions of
text caused, for example, by re-ordering within a dialogue to
increase viewer comprehension. In this situation, the factor
transducer method may be unable to align the correct words
on either side of the deleted region, causing alignment to fail
for the whole utterance.

When alignment is used for training purposes, these is-
sues may not be particularly important, since these segments
may simply be discarded; however, this is not possible when
alignment is the primary goal. We address the problems with
a second-pass alignment. Following alignment of the first-
pass output to the original text we resegment the data, extend-
ing and joining segments where there were missing words in
the first pass. Given an utterance, we use the text alignment to
identify the portion of text that could potentially be aligned to
it using a broad time window. We now create a factor trans-
ducer on the fly for the utterance in question. The new trans-
ducer includes optional word skips providing robustness to
deletions, which are removed from the decoder output. The
resulting transducer is illustrated in Figure 2. The word skips
are assigned a fixed prior probability, p, tuned on the devel-
opment data, which acts to penalise excessive word removal.
A similar design was used by [7], though with a standard lin-
ear transducer. The transducer creation and decoding were
implemented by means of extending a number of Kaldi tools.

As illustrated in Figure 2, the determinised version of this
new transducer is significantly larger than the original; pro-
portionally it is even larger after composition with the L and
C transducers. Although the size is of course limited by the
use of a short portion of text, we find that it is necessary
to use the skip penalty in conjunction with suitably-chosen
pruning factors for efficient decoding with this transducer. At
this stage, decoding is considerably less efficient that using
an equivalent n-gram transducer – however, the strong advan-
tage is that the second-pass output is guaranteed to consist of
complete strings from the original text, subject only to possi-

ble deletions. We use this as our final output, without further
text-to-text alignment.

3.2. Acoustic models

Our final acoustic models were trained on 640 hours of in-
domain speech data from the MGB Challenge training set of
broadcast multi-genre TV [13]. This data is itself obtained
using a lightly-supervised alignment, which we did not up-
date during system-building. We selected data with a ceil-
ing of word-level Matched Error Rate (MER) of 40%. GMM
acoustic models were trained on MFCC features using a stan-
dard Kaldi recipe that we made available to all challenge par-
ticipants. We trained DNNs with 6 hidden layers and 2048
units per layer to generate posterior probabilities over 28k
tied states derived from the GMM. The input features were
projected with MLLT, and a window of 9 frames was used.
We did not use speaker adaptation. One feature of training on
the data is that, because no ground-truth speech/non-speech
segmentation is available, and because the training is lightly-
supervised, it is inevitable that short-pause models will be
trained on significant quantities of spoken material. It there-
fore has ability to align to arbitrary speech, which as dis-
cussed in Section 3.1 above, happens to be useful for purpose
of alignment.

We found that, particularly in view of the large number
of tied states and the difficult nature of the acoustic data, it
was important for good ASR performance to generate a new
alignment of the training data with the fully-trained DNN and
train a new DNN completely from scratch on these new align-
ments. The final DNNs additionally had two iterations of se-
quence training applied [17].

We investigated these models for use in standard ASR, on
the transcription task of the MGB Challenge using a 4-gram
model, again trained according to the standard recipe. They
scored 30.5% WER on the development set and 32.0% on the
evaluation set, both with the supplied baseline segmentation.
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Fig. 2. Factor transducers with optional word deletions: (a) original version, (b) determinised version

It should be noted that this system is not particularly compet-
itive on the ASR task compared to other entries to the Chal-
lenge. We also trained preliminary acoustic models following
a quicker DNN recipe, on just 260 hours of speech (selected
according to an MER ceiling of 10%), which were used in
early system development experiments.

3.3. Other system features

To obtain pronunciations for words in the text, we use the
Combilex lexicon of British English1 [18, 19], which was
made available to all MGB Challenge participants. For words

1http://www.cstr.ed.ac.uk/research/projects/
combilex/

not in the lexicon we generated pronunciations automatically
with the Sequitur tool [20]. For the text-to-text alignment
required after the first pass decode, we use NIST’s SCLITE
tool2.

4. RESULTS

We first present development results on an internal test set of
media data, for which verbatim manual transcriptions were
not available. This was used during early stages of algorithm
development, to optimise pruning factors. As a proxy for
measuring system performance, we made the assumption that

2ftp://jaguar.ncsl.nist.gov/pub/



System MER Del RTF
Pass 1 FT (GMM) 27.6 16.5 0.186
Pass 2 n-gram (GMM) 57.8 15.8 1.844
Pass 1 FT (DNN) 20.1 13.6 0.720
Pass 2 FT+del (DNN) 6.9 5.4 1.488

Table 1. Development results on an internal test set where
verbatim transcriptions were not available. MER and the
deletion rate (“Del”) are calculated with reference to the sup-
plied captions text.

System Precision Recall F-score
Preliminary DNN AMs
Pass 1 FT 0.8816 0.7629 0.8180
+ force align 0.8290 0.7855 0.8066
Pass 2 FT+del 0.8679 0.8563 0.8620
Final DNN AMs
Pass 1 0.9009 0.8128 0.8546
Pass 2 FT+del 0.8856 0.9013 0.8934
Pass 2(b) FT 0.8896 0.8946 0.8921
Pass 2(b) FT+del 0.8928 0.9002 0.8965

Table 2. Results on the MGB Challenge development set.

the supplied text for alignment is approximately correct. Here
we show error rates with reference to this text. Results are
summarised in Table 1. To illustrate the benefits of the fac-
tor transducer (FT) approach, we first show results using our
initial GMM system trained using the baseline Kaldi recipe.
We compare this with a decode using a biased 3-gram trained
on the same transcription text. It can be observed that the
MER and real-time factor (RTF) for the decoding are sub-
stantially lower for the factor transducer method. Moving to
the preliminary DNN system, the speed advantage is lessened,
since we are forced to output posteriors for all tied states in
the DNN forward-pass, which is a significant portion of the
computation: this reduces the benefits of decoder optimisa-
tion somewhat. The MER is however, substantially reduced.
The second-pass decode with deletions allowed (FT+del) has
a significantly higher real-time factor, but reduces MER much
further. The system can, of course, easily be parallelised
within each pass.

In Table 2 we present results on the full MGB Challenge
development set using the official scoring package. The first
section of table shows results with the smaller, preliminary
acoustic models. It is interesting that applying a forced-
alignment (with the same models) to the output of the first
pass actually makes the F-score slightly worse. This appears
to be due to the reduction in precision caused by forcing times
to be output for every word in the text. However, the F-score
improves substantially after the second pass decoding with
the factor transducer, with deletions allowed. The second
pass decoding uses a skip probability p = 0.001, obtained

Skip prob, p Precision Recall F-score
0.0001 0.8665 0.8573 0.8619
0.001 0.8679 0.8563 0.8620
0.01 0.8700 0.8521 0.8610
0.05 0.8729 0.8463 0.8594
0.1 0.8732 0.8399 0.8562
0.2 0.8742 0.8292 0.8511

Table 3. Pass 2 results on the development set with varying
skip probability, using preliminary DNN AMs

through tuning on the development set. Table 3 gives results
with other values of p, showing that the F-score is relatively
insensitive to the choice.

The contrast between the first and second sections of Ta-
ble 2 illustrates the benefit of using the better acoustic mod-
els. There is substantial gain here, implying that we could
improve results of the proposed alignment algorithm still fur-
ther by using more competitive models. The italicised row of
the table shows the results of our primary entry to the Chal-
lenge. The system achieved an official F-score of 0.8773 on
the evaluation set, placing it second out of six entries to this
task.

In the final section of the table we show some results ob-
tained after the end of the Challenge evaluation period, fol-
lowing improvements to the text alignment used to generate
the utterance-specific text selection for the second pass. We
denote this by Pass 2(b). The improvements were designed
mostly to deal with particularly noisy audio where we ob-
served that a very poor first-pass can lead to erroneous text
alignments input to the second pass. These improved scores
are not reflected in our official results.

5. CONCLUSIONS

We have demonstrated an efficient algorithm for caption
alignment that is reasonably robust to challenging speech
data and when the captions are not necessarily well-matched
to the text. On the MGB Challenge task, it was found to
perform well when compared to other systems that attained
lower word error rates on the standard transcription task,
suggesting that the transducer-based constraints we used are
useful for this application.

To make this system more suitable for deployment at
scale, we will in future investigate the use of context-independent
DNNs. In the second-pass decoding, we also plan to use dy-
namic composition of the G transducer with the H ◦ C ◦ L
portion, in order to minimise the computation and memory
requirements of the transducer construction in this step.
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