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Abstract

This paper studies cross-lingual acoustic modelling in the context of subspace Gaussian mixture

models (SGMMs). SGMMs factorize the acoustic model parameters into a set that is globally shared

between all the states of a hidden Markov model (HMM) and another that is specific to the HMM

states. We demonstrate that the SGMM global parameters are transferable between languages, particularly

when the parameters are trained multilingually. As a result, acoustic models may be trained using

limited amounts of transcribed audio by borrowing the SGMM global parameters from one or more

source languages, and only training the state-specific parameters on the target language audio. Model

regularization using `1-norm penalty is shown to be particularly effective at avoiding overtraining and

leading to lower word error rates. We investigate maximum a posteriori (MAP) adaptation of subspace

parameters in order to reduce the mismatch between the SGMM global parameters of the source and

target languages. In addition, monolingual and cross-lingual speaker adaptive training is used to reduce the

model variance introduced by speakers. We have systematically evaluated these techniques by experiments

on the GlobalPhone corpus.

Index Terms

acoustic modelling, subspace Gaussian mixture model, cross-lingual speech recognition, regulariza-

tion, adaptation

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Manuscript received -; revised -

Liang Lu, Arnab Ghoshal and Steve Renals are with University of Edinburgh, UK; email: {liang.lu, a.ghoshal,

s.renals}@ed.ac.uk

The research was supported by EU FP7 Programme under grant agreement number 213850 (SCALE), and by EPSRC

Programme Grant EP/I031022/1 (Natural Speech Technology).

September 2, 2013 DRAFT



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. X, 2013 1

I. INTRODUCTION

Large vocabulary continuous speech recognition systems rely on the availability of substantial resources

including transcribed speech for acoustic model estimation, in-domain text for language model estimation,

and a pronunciation dictionary. Building a speech recognition system from scratch for a new language thus

requires considerable investment in gathering these resources. For a new language with limited resources,

conventional approaches to acoustic modelling normally result in much lower accuracy. There has been

extensive amount of work to improve the accuracy of speech recognizers in low-resource conditions,

focusing on estimating models from limited amounts of transcribed audio in the target language [1]–[5]

or when a pronunciation dictionary is not available [6]–[8]. This paper studies cross-lingual acoustic

modelling with the objective of porting information from one or more source language systems which

are built using larger amounts of training data, in order to build a system for a target language for which

only limited amounts of transcribed audio are available. However, owing to differences such as different

sets of subword units, sharing the knowledge among multiple languages is not a straightforward task. The

main approaches to cross-lingual acoustic modelling, discussed below, include the use of global phone

sets, cross-lingual phone/acoustic mapping, cross-lingual tandem features and the use of KL-divergence

HMMs.

Schultz and colleagues [1], [2], [9], [10] investigated the construction of language-independent speech

recognition systems by pooling together all the phoneme units, as well as the acoustic training data,

from a set of monolingual systems. The resultant multilingual acoustic model may be used to perform

transcription directly, or may serve as a seed model to be adapted to the target language [1], [9]. However,

an important problem with this approach is that the number of phone units grows as the number of

languages to be covered increases. This may lead to inconsistent parameter estimation and, consequently,

degradation in accuracy [11], especially in case of context-dependent modelling. To overcome this

problem, instead of using a universal phone set, a set of universal speech attributes may be used which

represent similar sounds across language than phone units [12]. The fundamental speech attributes which

can be viewed as a clustering of phonetic features, such as voicing, nasality and frication, can be modelled

from a particular source language and shared across many different target languages. In practice, a bank

of detectors using neural networks [12], for instance, may be employed to extract the universal attributes.

Rather than constructing a global phone set, the mismatch of phone units between source and target

languages may be addressed by a direct cross-lingual mapping between phones or between acoustic

models. Both knowledge-based [3], [4] and data-driven [13], [14] approaches have been investigated.
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Given a cross-lingual mapping, either the target acoustic model is derived from the source acoustic

model, or the transcription of target speech is performed using the mapped source acoustic model [14].

Tandem features, based on phone posterior probability estimates, were originally proposed to improve

monolingual speech recognition [15], but they have also proven effective in the cross-lingual setting. In

this approach, multi-layer perceptrons (MLPs), trained using source language acoustic data, are used to

generate MLP phone posterior features for the target language [5], [16]–[20]. In addition, the training

data of the target language may also be used to adapt the MLPs to fit the target system better [5]. Recent

advances in using MLPs with multiple hidden layers (deep neural networks, DNNs) [21] have shown

great promise for DNN-based cross-lingual acoustic modelling [22].

KL-divergence HMM based acoustic modelling [23] is a recently proposed approach which has shown

good performance in low-resource conditions [24], [25]. In this framework, a global phone set is first

obtained by manually mapping the phones in the different languages to a common phone set (for example,

IPA or X-SAMPA). A multilingual MLP phoneme classifier is trained using the data from all the source

languages. For the target language system, the phoneme posterior features are extracted given the MLP.

Each HMM state is parameterised by a multinomial distribution, and the model is estimated by minimizing

the KL-divergence between the posterior features and HMM state multinomial coefficients. The benefits of

this approach are that the multilingual information can be explored by the MLP classifier and the number

of multinomial parameters is much smaller than conventional GMMs which is particularly suitable for

low-resource speech recognition.

The recently proposed subspace Gaussian mixture model (SGMM) [26] enjoys a particular advantage

in cross-lingual modelling [27], [28]. In an SGMM, the emission densities of a hidden Markov model

(HMM) are modelled as mixtures of Gaussians whose parameters are constrained to a globally shared set

of subspaces. In other words, the SGMM factorizes the acoustic model parameters into a globally-shared

set that does not depend on the HMM states and a state-specific set. Since the global parameters do not

directly depend on the phone units, they may be shared between languages without sharing phones. This

multilingual model subspace may be used to estimate models for a new language with limited training

data [27], and in this case, only state-dependent parameters need to be estimated while the model subspace

can be fixed. This reduces the amount of training data required to train the recogniser and is especially

suitable for speech recognition in low-resource conditions.

In this paper, we organise our previous findings on cross-lingual SGMMs for low-resource speech

recognition [28], [29] and extend them with additional experiments and analysis. In particular, we

investigate the speaker subspace for cross-lingual speaker adaptive training and show that:
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Fig. 1. Model structure of a SGMM acoustic model, with total J HMM states, and each has Kj sub-states. Each sub-state is

modelled by a GMM with I components, whose parameters are derived from Φi = {Mi,Ni,wi,ΣΣΣi} and (vjk,v
(s)) using

Eq. (2) and (3), and for covariance ΣΣΣjki = ΣΣΣi.

• while the accuracy of conventional speech recognizers degrades significantly in low-resource con-

ditions, a cross-lingual SGMM acoustic model can achieve a substantial improvement in accuracy,

since a large proportion of the model parameters can be estimated using the training data of source

languages;

• building systems with limited training data may lead to numerical problems in the estimation and

overfitting, as we observed in cross-lingual SGMMs. We demonstrate that `1-norm regularization is

an effective way to improve the robustness of model estimation and to achieve increased recognition

accuracy;

• a potential mismatch may exist between the training data from the source and target languages

owing to phoneme characteristic, corpus recording conditions and speaking style. This may reduce

the improvements in accuracy obtained by sharing the SGMM subspace parameters in cross-lingual

SGMMs. To address this issue, maximum a posteriori (MAP) adaptation is investigated to adapt the

subspace parameters towards the target system;

• with limited amounts of training data, the number of speakers may be too small to estimate the

speaker subspace directly for speaker adaptive training. However, the model structure naturally lends

itself to cross-lingual speaker adaptive training, in which the speaker subspace is estimated from the

source language and applied to the target language.
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II. SUBSPACE GAUSSIAN MIXTURE MODELS

In conventional hidden Markov model (HMM) based speech recognisers, the emitting states are

modelled by Gaussian mixture models (GMMs) with parameters estimated directly from the training

data. However, in a subspace Gaussian mixture model (SGMM), the GMM parameters are inferred using

a set of model subspaces that capture the correlations among the triphone states and speaker variability.

In the SGMM acoustic model [26], the HMM state is modelled as:

p(yt|j, s) =

Kj∑
k=1

cjk

I∑
i=1

wjkiN (yt|µµµ(s)jki,ΣΣΣi) (1)

µµµ
(s)
jki = Mivjk + Niv

(s) (2)

wjki =
exp wT

i vjk∑I
i′=1 exp wT

i′ vjk
(3)

where yt denotes the D-dimensional feature vector at time t, j is the HMM state index, k is a sub-state

[26], i is the Gaussian index, and s denotes the speaker. vjk ∈ RS is the phone vector (also referred

to as the sub-state vector), where S denotes the phonetic subspace dimension; v(s) ∈ RT is referred

to as the speaker vector, and T denotes the speaker subspace dimension. The matrices Mi, Ni and the

vectors wi span the model subspaces for Gaussian means and weights respectively, and ΣΣΣi is the i-th

globally shared covariance matrix. Specifically, the columns of Mi are a set of basis vectors spanning the

phonetic subspace and vjk models the corresponding Gaussian mean as a point in this space, while the

columns of Ni are a set of bases spanning the speaker subspaces and v(s) models the contribution from

speaker s as a point in this space. In other words, the model factorizes the phonetic- and speaker-specific

contributions to the Gaussian means.

Figure 1 shows the structure of an SGMM acoustic model. We can divide the total set of parameters

into two sets, the globally shared parameters Φi = {Mi,Ni,wi,ΣΣΣi} and the state-dependent parameters

(vjk, cjk). The sub-state weights cjk are not shown in the figure to reduce clutter. The speaker vector

v(s) is used to adapt the model to speaker s. For each Gaussian component, the parameters are derived

from both the globally shared and state-dependent parameter sets. This model is quite different from the

conventional GMM based acoustic model, as a large portion of the parameters are globally shared between

states (Table I). The number of state-dependent parameters (vjk, cjk) is relatively small if we use a low

dimensional model space. This allows the model to be trained with less training data, since the number

of active parameters in an SGMM acoustic model can be much smaller that its GMM based counterpart

[26]. In addition, since the globally shared parameters Φi do not depend on the model topology, they
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TABLE I

THE NUMBER OF PARAMETERS OF AN SGMM ACOUSTIC MODEL. Q DENOTES THE TOTAL NUMBER OF SUB-SATES. A

LARGE PORTION OF THE TOTAL PARAMETERS, E.G. MORE THAN 60% FOR SYSTEMS IN [30], ARE GLOBALLY SHARED.

Type globally shared state dependent

Mi Ni wi ΣΣΣi vjk cjk

#Parm IDS IDT IS ID(D + 1)/2 QD Q

Total I(D(D + 1)/2 + DS + DT + S) Q(D + 1)

may be estimated by tying across multiple systems or by using out-of-domain data, which inspires its

application in multilingual and cross-lingual speech recognition [27], [28], discussed in Section III.

A. Maximum likelihood model estimation

Compared to conventional GMM based acoustic modelling, it is more complex to train an SGMM-

based system. The parameters to be estimated for an SGMM may be split into the state-independent

parameters Φi and the state-dependent parameters (vjk, cjk), as well as the speaker vector v(s). Since

they depend on each other, no closed form solution is available for the global optimum. However, using

the maximum likelihood (ML) criterion, they can be updated iteratively by employing the expectation-

maximization (EM) algorithm [26]. For instance, the auxiliary function used in EM for sub-state vector

vjk is

Q(vjk) = −0.5vTjkHjkvjk + vTjkgjk + const, (4)

where Hjk and gjk are an S×S matrix and an S-dimensional vector capturing the sufficient statistics for

the estimation of vjk, and const denotes the independent constant value. If the matrix Hjk is invertible,

the update formula is readily available as

vjk = H−1jk gjk. (5)

A more numerically stable algorithm for this estimation is given in [26] in case Hjk is poorly conditioned.

Similarly, the auxiliary function to update the phonetic subspace Mi is

Q(Mi) = Tr(MT
i ΣΣΣ−1i Yi)− 0.5Tr(ΣΣΣ−1i MiQiM

T
i ) + const (6)

where Yi and Qi are sufficient statistics defined as{ Yi =
∑

jkt γ̃jki(t)ytv
T
jk

Qi =
∑

jk γjkivjkv
T
jk

, (7)
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where γ̃jki(t) denotes the Gaussian component posterior for acoustic frame yt, and γjki =
∑

t γ̃jki(t).

If Qi is invertible, we can obtain

Mi = YiQ
−1
i . (8)

Again, a more numerical stable algorithm is given in [26], and also refer it for the estimation of Ni, wi,

ΣΣΣi, cjk and v(s).

B. Regularized model estimation

Standard maximum-likelihood (ML) estimation of SGMMs can result in overfitting when the amount

of training data is small [28]. This problem is most acute for the state-dependent vectors vjk — unlike

the globally shared parameters Φi, they are only trained on those speech frames which align with the

corresponding sub-state. To overcome this problem, we proposed a regularized ML estimate for the state

vectors [30] in which penalties based on the `1-norm and `2-norm of the state vectors, as well as their

linear combination (the elastic net [31]), were investigated. Regularization using the `1-norm penalty was

found to be best suited in cross-lingual settings where the amount of target training data is very limited

[28]. With an `1-norm penalty, the auxiliary function for sub-state vector estimation becomes:

v̂ = arg max
v
Q(v)− λ||v||`1 , λ > 0, (9)

where λ is the global penalty parameter (we have dropped the subscripts on v for brevity).

Intuitively, the `1-norm penalty performs an element-wise shrinkage of v towards zero in the absence

of an opposing data-driven force [31], which enables more robust estimation. The `1-norm penalty also

has the effect of driving some elements to be zero, thus leading to a form of variable selection which

has been used in sparse representation of speech features [32], [33], as well as compressed sensing [34].

For the case of cross-lingual SGMMs, the `1-norm penalty can be used to select the relevant basis in

Mi according to the amount of available data to estimate vjk while avoiding overtraining. However, the

solution of the auxiliary function is not readily available for the `1-norm penalty, since the derivative

of the auxiliary function is not continuous. We have previously applied the gradient projection based

optimization approach [35] to obtain the solution [30]. The idea of regularization can also be applied

to other types of parameters in SGMMs. In fact, while doing MAP adaptation of Mi using a Gaussian

prior, as described in section IV, if we set the prior mean to be 0 and the row and column covariances

to the identity matrix I, then the MAP adaptation is equivalent to `2-norm regularization of Mi.
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Fig. 2. An example of multilingual estimation of the globally shared parameters Φi where we tie them across two source

language system A and B.

III. MULTILINGUAL MODEL ESTIMATION

One of the main barriers preventing acoustic knowledge being shared across different languages is

the mismatch of phone units between languages. Conventional methods tackle this problem by using

global phone units or through the use of tandem features. However in an SGMM acoustic model the

globally shared parameters Φi do not depend on the HMM topology, and hence are independent of the

definition of the phone units. Therefore, when using SGMMs for cross-lingual acoustic modelling, the

phoneme unit mismatch problem is to some degree bypassed, since we can estimate the globally shared

parameters using multilingual training data by tying the globally shared parameters across the available

source language systems.

Figure 2 demonstrates an example of the multilingual SGMM system in which source language systems

A and B may have different phone units and HMM topologies, provided that the acoustic feature

parameterisation and the dimensionality of model subspace are the same. By training a multilingual

SGMM system in this way the accuracy for each of the source languages may be improved [27], and the

multilingual globally shared parameters can be ported to a new target language system with limited
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training data [27], [28]. In an SGMM the globally shared parameters typically account for a large

proportion of the total number of parameters (Table I). The reuse of the globally shared parameters

across languages thus significantly reduces the required amount of acoustic training data — only the

state dependent parameters (vjk, cjk) need be estimated from target language data.

Using multiple source language systems to estimate the globally shared parameters Φi involves some

modifications in the SGMM training procedure. However, these modifications are minor and relatively

simple, since given Φi each source language system is independent — therefore the statistics for each

source language system can be accumulated in the standard fashion using either the Viterbi alignment

or the Baum-Welch algorithm. In each iteration, the corresponding statistics are then summed across

languages to update the globally shared parameters. The state dependent parameters (vjk, cjk) are updated

in the standard fashion, for each language separately. Consider Mi: for the system of Figure 2, after

obtaining the statistics for each source language system (Y
(a)
i ,Y

(b)
i ) and (Q

(a)
i ,Q

(b)
i ), the final statistics

are obtained simply by

Yi = Y
(a)
i + Y

(b)
i , Qi = Q

(a)
i + Q

(b)
i . (10)

Then Mi can be updated as usual (8). A similar approach can be used to update Ni,wi and ΣΣΣi using

the multilingual data. To build a cross-lingual SGMM system, these parameters are ported into target

language system directly, and only the state dependent parameters vjk and cjk are estimated using the

(limited) in-domain training data. Our previous experimental results [28] indicate that this approach can

significantly reduce the word error rate (WER) in low-resource conditions.

IV. MAP ADAPTATION OF MODEL SUBSPACE

In a cross-lingual SGMM system for a target language with limited acoustic training data, the globally

shared parameters are trained using source language data. This may introduce a mismatch with the target

language system because of differences in phonetic characteristics, corpus recording conditions, and

speaking styles. Since the amount of training data may not be sufficient to allow the global parameters to

be updated using ML, the mismatch may be alleviated by an adaptation approach based on the maximum

a posteriori (MAP) criterion. In particular, we have studied the adaptation of Mi using MAP [29].

In ML estimation of the phonetic subspace [26], the auxiliary function for Mi is given by (6). If a

prior term is introduced, then the auxiliary function becomes:

Q̃(Mi) = Q(Mi) + τ logP (Mi), (11)
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where P (Mi) denotes the prior distribution of matrix Mi, and τ is the smoothing parameter which

balances the relative contributions of the likelihood and prior. Although any valid form of P (Mi) may

be used, in practical MAP applications a conjugate prior distribution is often preferred for reasons of

simplicity. We set P (Mi) to be a Gaussian distribution which is conjugate to the auxiliary function

Q(Mi).

A. Matrix variate Gaussian prior

The Gaussian distribution of random matrices is well understood [36]. A typical example of its

application in speech recognition is maximum a posteriori linear regression (MAPLR) [37] for speaker

adaptation, in which a matrix variate prior is used for the linear regression transformation matrix. The

Gaussian distribution of a D × S matrix M is defined as:

logP (M) = −1

2

(
DS log(2π) +D log |ΩΩΩr|+ S log |ΩΩΩc|

+ Tr
(
ΩΩΩ−1r (M− M̄)ΩΩΩ−1c (M− M̄)T

))
, (12)

where M̄ is a matrix containing the expectation of each element of M, and ΩΩΩr and ΩΩΩc are D × D

and S × S positive definite matrices representing the covariance between the rows and columns of M,

respectively. | · | and Tr(·) denote the determinant and trace of a square matrix. This matrix density

Gaussian distribution may be written as:

Vec(M) ∼ N (Vec(M̄),ΩΩΩr ⊗ΩΩΩc), (13)

where Vec(·) is the vectorization operation which maps a D × S matrix into a DS × 1 vector, and ⊗

denotes the Kronecker product of two matrices. In this formulation, only ΩΩΩr ⊗ΩΩΩc is uniquely defined,

and not the individual covariances ΩΩΩr and ΩΩΩc, since for any α > 0, (αΩΩΩr,
1
αΩΩΩc) would lead to the same

distribution. This is not of concern in the current application to MAP adaptation. Figure 3 illustrates the

concept of using the Gaussian prior to adapt the model subspace Mi. In this case, the auxiliary function

for MAP adaptation is:

Q̃(Mi) ∝ Tr
(
MT

i ΣΣΣ−1i Yi + τMT
i ΩΩΩ−1r M̄iΩΩΩ

−1
c

)
− 1

2
Tr
(
ΣΣΣ−1i MiQiM

T
i + τΩΩΩ−1r MiΩΩΩ

−1
c MT

i

)
. (14)

September 2, 2013 DRAFT



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTION ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. X, 2013 10
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ΣΣΣi

ΣΣΣjki

µµµjki

wjki

i = 1, . . . , Ii = 1, . . . , I

k = 1, . . . , Kj

j = 1, . . . , J

M̄i

ΩΩΩr ΩΩΩc

Fig. 3. MAP adaptation of Mi in SGMM acoustic model. (M̄i,ΩΩΩr,Ωc) denote the hyper-parameters of the Gaussian prior

P (Mi), in which the mean M̄i is indexed by I while the covariances ΩΩΩr and ΩΩΩc are global.

B. Prior distribution estimation

To apply MAP, the prior distribution P (Mi) for each Mi, should be estimated first. This requires the

estimation of the mean matrices M̄i, and the row and column covariances ΩΩΩr and ΩΩΩc. Given a set of

samples generated by P (Mi), the ML estimation of the mean, and the row and column covariances,

is described by Dutilleul [38]. This is used with some heuristic rules for cross-lingual SGMMs [29],

in which, the MAP formulation is based on the assumption that the multilingual estimate of the global

subspace parameters serves a good starting point, which has been empirically verified earlier [28]. To

apply MAP adaptation, we set these multilingual parameters to be the mean of the prior P (Mi) and

update both the state-specific vjm and the global Mi. With a sufficiently large value of τ in (11), we

can shrink the system back to the cross-lingual baseline, whereas τ = 0 corresponds to the ML update.

The covariance matrices for each P (Mi) are set to be global in order to reduce the number of hyper-

parameters in the prior distributions. In [29], we compared different forms of the two covariance matrices

(ΩΩΩr,ΩΩΩc) and the experimental results indicated that using the identity matrix I for ΩΩΩr and ΩΩΩc worked

well. Using this configuration, MAP adaptation of Mi is equivalent to applying `2-norm regularization

by setting the multilingual estimate as the model origin. In this case, the auxiliary function (14) will

become

Q̃(Mi) ∝ Tr
(
MT

i ΣΣΣ−1i Yi + τMT
i M̄i

)
− 1

2
Tr
(
ΣΣΣ−1i MiQiM

T
i + τMiM

T
i

)
. (15)

The solution can be obtained in [29], [39]. In this work, this configuration is adopted in the MAP
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adaptation experiments.

V. EXPERIMENTS AND RESULTS

We performed cross-lingual speech recognition experiments using SGMMs on the GlobalPhone corpus

[10]. GlobalPhone contains around 20 languages including Arabic, Chinese and a number of European

languages, with read newspaper speech from about 100 native speakers per language. Recordings were

made under relatively quiet conditions using close-talking microphones. Acoustic conditions may vary

within a language and between languages, hence acoustic mismatches may affect the performance of

cross-lingual systems. In these experiments, German (GE) was used as the target language, and Spanish

(SP), Portuguese (PT), and Swedish (SW) as the source languages. Table II describes the data for each

language used in the experiments in terms of the number of phonemes and speakers, and the amount of

available audio.

To investigate the effect of limited acoustic training data, we constructed two randomly selected training

subsets of the target language German data each containing 1 hour (8 speakers) and 5 hours (40 speakers)

of data, with 7–8 minutes of recorded speech for each of the selected speakers. We used these data subsets,

in addition to the full 14.8 hours (referred to as 15 hours) of German training data, as the three target

language training sets in the following experiments.

A. Baseline monolingual systems

We constructed baseline systems using the three training sets (1h / 5h / 15h) in a monolingual fashion,

using conventional GMM and SGMM acoustic modelling. The systems were built using the Kaldi speech

recognition toolkit [40]. We used 39-dimensional MFCC feature vectors for the experiments. Each feature

vector consisted of 13-dimensional static features with the zeroth cepstral coefficent and their delta and

delta-delta components. Cepstral mean and variance normalization (CMN/CVN) was then applied on a

per speaker basis. The GMM and SGMM systems shared the same decision tree to determine the tied

state clustering used for context-dependent phone modelling; therefore, the differences in recognition

accuracies of the GMM and SGMM systems are purely due to the different parameterisation of the

GMMs. In the SGMM systems, we set the number of UBM Gaussians I = 400, and phonetic subspace

dimension S = 40 for 15 hour training data case, whereas we use S = 20 when the training data is limited

to 1 hour and 5 hours. Since the estimation of UBM model does not require the labels, we estimated

it on the whole training dataset and use it for all German SGMM systems. Table III shows the word

error rates (WERs) of baseline systems. As expected, the WERs for both the GMM and SGMM systems
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TABLE II

NUMBERS OF PHONES AND SPEAKERS, AND THE AMOUNT OF TRAINING DATA (HOURS) FOR EACH OF THE 4 LANGUAGES

USED IN THIS PAPER.

Language #Phones #Speakers Train/hours

German (GE) 44 77 14.8

Spanish (SP) 43 97 17.2

Portuguese (PT) 48 101 22.6

Swedish (SW) 52 98 17.4

increase significantly as the amount of training data is reduced. The monolingual SGMM system has a

significantly lower WER than the monolingual GMM system for each of the three training conditions.

There is a large difference between the WERs achieved on the development (dev) and evaluation (eval)

sets in Table III. This is due to the language model that we used. In [28] we used a trigram language model

obtained with an earlier release of the GlobalPhone corpus, and achieved accuracies on the development

dataset that were comparable to these on the evaluation dataset. Here, we interpolated that previously

used language model with one estimated on the training corpus, and we obtained a significant reduction

in WER on the development dataset (e.g. 24.0% in [28] to 13.0% for SGMM system with 15 hour

training data). But the improvements disappear on the evaluation dataset which indicates that the text

in the training set matches the text of the development set better than that of the evaluation dataset.

In the cross-lingual acoustic modelling presented in this paper we observe similar trends on both the

development and evaluation sets (as will be shown in Section V-G), so the linguistic variation between

training, development, and evaluation sets is not a confounding factor.

B. Cross-lingual system configuration

Each cross-lingual SGMM used the same context dependent tied state clustering as the corresponding

monolingual SGMM trained on the same data set. Sharing global parameters between source languages,

together with the constraints imposed by the structure of the SGMM, leads to better parameter estimates

with limited amounts of training data. This also allows bigger models to be trained, either using more

context-dependent tied states [27], or using a model with the same state clustering, but with more substates

per state. We do the latter in this paper. In both cases, the combination of improved parameter estimation

and bigger models, is predicted to lead to lower WER.

The UBM was the same as the one that was used to train the globally shared parameters Φi on the
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TABLE III

WERS OF BASELINE GMM AND SGMM SYSTEMS USING 1 HOUR, 5 HOUR AND 15 HOUR TRAINING DATA

System 1 hour 5 hour 15 hour

dev eval dev eval dev eval

GMM 23.2 34.1 18.5 28.0 15.4 24.8

SGMM 20.4 31.4 14.9 24.9 13.0 22.1

#states 831 1800 2537

source language(s). This is important, since the globally shared parameters correspond to the segmentation

of the acoustic space as determined by the UBM [26]. First, we train Φi for the source language systems in

either a monolingual or a multilingual fashion. We then ported the shared parameters to the corresponding

cross-lingual SGMM system. In the baseline SGMM systems, all the parameters in equations (1–3) were

updated: the sub-state vectors vjm and the globally shared parameters Φi. In a cross-lingual system,

however, only the sub-state vectors vjm were re-estimated, with the globally shared parameters fixed

unless stated otherwise.

C. Cross-lingual experiments: baseline

The baseline results of the cross-lingual systems are shown for 1h, 5h, and 15h training data (Figures 4–

6). We contrast the shared parameters Φi obtained from each of the source language systems, as well as

the tied multilingual system. In these initial experiments, we do not use the speaker subspace Ni. The

dimension of sub-state vectors is set to be S = 20. With 1 hour training data, we achieved a relative WER

reduction of up to 17% by reusing the globally shared parameters from source language systems trained

in either a monolingual or multilingual fashion, demonstrating that out-of-domain knowledge can be used

to improve significantly the accuracy of a target language system. In addition, we also observe that the

system with multilingually trained subspace parameters “w/Mul” in Figure 4 results in considerably lower

WERs compared with the other cross-lingual systems derived from a single source language. This may

be because that there is much larger amount of training data in the multilingual system, and furthermore,

the linguistic differences and corpus mismatch may be averaged out by the multilingual estimation which

alleviates the mismatch between the multilingual parameters and target language system.

We observed a similar trend in the 5 hour training data case (Figure 5), although in this case the WER

reduction is smaller (up to 10% relative) which is expected as the amount of training data increases. In

order to evaluate if the cross-lingual frameworks can achieve improvement when the target training data
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GMM baseline
SGMM baseline, S=20
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Fig. 4. WER of baseline cross-lingual systems, 1h training data, tested on the development dataset. Only the lowest WER of

SGMM baseline system by tuning the number of sub-states is given for clarity.

is more abundant, we carried out the experiments using the entire 15 hour training data. Since we can

draw the conclusion from the previous experiments that the multilingual Φi perform better than their

monolingual counterparts, we only use the multilingual parameters for the cross-lingual setups. Results

are shown in Figure 6 where the dimensions of sub-state vectors were set to be S = 40. In this case, the

cross-lingual SGMM system still reduces the WER by 8% relative (1% absolute).

D. Cross-lingual experiments: with regularization

With limited amounts of training data, it is often necessary to limit the dimensionality of the state

vectors vjk, since increasing the phonetic subspace dimension S increases the number of both global and

state-specific parameters. When the global parameters Φi are trained on separate data, state vectors of
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SGMM baseline, S=20
Cross lingual: w/SW, S=20
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Cross lingual: w/Mul, S=20

Fig. 5. WER of baseline cross-lingual systems, 5h training data, tested on the development dataset. Only the lowest WER of

SGMM baseline system by tuning the number of sub-states is given for clarity.

larger dimensionality may be used. Comparing figures 4 and 7, we see that for the cross-lingual system

trained on 1 hour of speech using a phonetic subspace dimension of S = 40 lowers the WER compared

to a subspace of dimension S = 201.

Figure 7 also compares the standard ML update with a more conservative one that “backtracks” to

the previous parameter values if the auxiliary function decreases due to the update. Models trained using

both these criteria are found to have larger WER when the number of substates is increased, showing

1In [28], we used a preliminary version of Kaldi toolkit that was used in [26] and faced numerical instability when building

the baseline system without regularization. We did not have that experience using a more recent version of Kaldi (revision 710).
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Fig. 6. WER of baseline cross-lingual systems, 15h training data, tested on the development dataset.

that the models tend to overtrain when using very small amounts of training data. However, when the

state vectors are estimated with the `1-norm regularization, the updates are more stable and allow models

with a larger number of substates to be trained leading to lower WER overall. In fact, the WER of

15.5% achieved by the cross-lingual SGMM trained on 1 hour of speech using `1-norm regularization is

comparable to the GMM baseline with the entire 15 hour training data.

Figure 8 shows the results with 5 hour training data. Not surprisingly, the difference between the

regularized model and the one without regularization is smaller than that seen when training on 1 hour

of data. However, when the number of sub-states is very large, regularization still helps to avoid model

overfitting and results in a small gain in terms of accuracy. Again, the more conservative update with
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Cross lingual: w/Mul, S=20
Cross lingual: w/Mul, S=40
Cross lingual: w/Mul + backtrack, S=40
Cross lingual: w/Mul + regularization, S=40

Fig. 7. WER of regularized cross-lingual systems, 1h training data, tested on the development dataset. “Cross-lingual: w/Mul,

S = 20” corresponds to the best results of the same system by tuning the number of sub-states that is shown in Fig. 4.

backtracking did not work better than the regularized update. After increasing the amount of training

data to be 15 hours, we did not obtain improvement by applying the `1-norm regularization as shown in

Figure 6. This agrees with our previous experience of using `1-norm regularization for SGMMs [30] on

a different task.

E. Cross-lingual experiments: with MAP adaptation

As discussed above, if Φi is estimated from out-of-domain data, then there may be a mismatch between

the target language system and these parameters. One approach to address this mismatch is via MAP

adaptation of Φi. We applied MAP adaptation of Mi to the systems “w/Mul, S=40” and “w/Mul +

regularization, S=40” to the 1h and 5h training data conditions (Figures 9 and 10). As stated in section
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Fig. 8. WER of regularized cross-lingual systems, 5h training data, tested on the development dataset. “Cross-lingual: w/Mul,

S = 20” corresponds to the best results of the same system by tuning the number of sub-states that is shown in Fig. 5.

IV, the two covariance matrices ΩΩΩr and ΩΩΩc are set to be the identity matrix I. For the 1h training data

case, we set smoothing parameter used in equation (11) τ = 500. By using MAP adaptation, we obtained

a small reduction in WER (2% relative) compared to the regularized system. The improvement is not

comparable to our previous results [29] since the baseline is much stronger here. When we applied MAP

adaptation to the baseline without regularization, we did not observe a reduction in WER when the

number of sub-states was large. This may be because the sub-state vectors vjk are not well estimated

due to overfitting and hence we not have sufficient and accurate statistics for equation (7) to adapt Mi.

In the 5h training data case (Figure 10), we did not observe any reduction in WER using MAP

adaptation for both systems with and without regularization, even though the amount of adaptation data
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Fig. 9. WER of MAP-adapted cross-lingual systems, 1h training data, tested on the development dataset.

was increased. When applying MAP adaptation, the likelihood on the training data increased, but the

higher WER suggests that it overfits to the training data. We increased the smoothing term τ but this

resulted in moving the adapted system closer to the baseline with no gain being observed. This may

further demonstrate that the multilingual parameters are more robust and match the target training data

well. We also did not achieve gains by using MAP adaptation of Mi in the 15h training data case.

For the 15h training data case, we investigated the update of the globally shared parameters Φi. We

updated wi and Mi to maximize the likelihood for the target language system. While this resulted in

lower WER for models with fewer sub-states, the WER increased for larger models (Figure 11). This is

not unexpected since the multilingual estimation of wi and Mi would be expected to be more accurate

and robust than the monolingual estimate. Although updating Mi and wi increases WERs compared

with keeping them fixed at the multilingually estimated values, the results are similar to (and in some
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Cross lingual: w/Mul, S=40
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Fig. 10. WER of MAP-adapted cross-lingual systems, 5h training data, tested on the development dataset.

cases slightly better than) the monolingual system (Figure 6). This indicates that a better initialization of

the iterative ML updates of the subspace parameters (i.e. the multilingually trained parameters) finally

does not make a substantial difference. We also carried out the experiments where ΣΣΣi were updated, and

similar results were obtained to the ML updates of Mi and wi.

F. Cross-lingual experiments: with speaker subspace

Our final set of experiments concerned speaker adaptive training using the speaker subspace for cross-

lingual SGMM systems for the 1h, 5h, and 15h training data cases (Figures 12–14). In the 1h training

data case, there are only 8 speakers in the training set, which is not sufficient to train the speaker subspace

Ni on a per speaker basis for our baseline SGMM system. We trained Ni on a per utterance basis for
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Fig. 11. WER of cross-lingual systems with global parameter update, 15h training data, tested on the development dataset.

the baseline but did not observe an improvement. However, we can estimate Ni in multilingual fashion

by tying it across the source language system similar to the other globally shared parameters. We then

rebuilt the target system “w/Mul + regularization, S=40” using the resultant speaker subspace. Results are

given in Figure 12. Here the dimension of speaker vector was set to be T = 39. We can see that for the

regularized system, using the multilingual Ni results in significant gains when the number of sub-states is

relatively small. The gains, however, vanish as we further increased the number of sub-states. The system

without regularization is more prone to overtraining when using speaker subspace adaptive training.

In the 5h training data case, there are 40 speakers in the training set, enough to estimate Ni from the

in-domain data. This system is referred as “w/Mul + regularization + mono SPK, S=40” in Figure 13.
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Fig. 12. WER of baseline (above) and regularized (below) cross-lingual systems using speaker subspace, 1h training data,

tested on the development dataset.

For the system using the multilingual speaker subspace Ni, we refer it as “w/Mul + regularization +

multi SPK, S=40”. In both systems, T = 39. We can see that both systems achieve large reductions in

WER when the number of sub-states is small — again, the gains vanish when using a large number of

sub-states. In addition, the multilingual speaker subspace Ni achieves a similar WER to the monolingual

one. This indicates that the speaker information from the out-of-domain data can fit the target system

well.

We did not observe notable WER differences between using either a monolingual or a multilingual

speaker subspace in the 15h training data case (Figure 14), as for the 5h training data case. Just as with

1 hour and 5 hours of training data, using the speaker subspace lowers the WER for smaller model sizes,
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Cross lingual: w/Mul + regularization, S=40
Cross lingual: w/Mul + regularization + multi_SPK, S=40
Cross lingual: w/Mul + regularization + mono_SPK, S=40

Fig. 13. WER of regularized cross-lingual systems using speaker subspace, 5h training data, tested on the development dataset.

but the difference between the adaptively trained and unadapted models vanishes when using a very

large number of substates. Although the speaker adaptive training does not provide an overall reduction

in WER, it provides a practical advantage: it is computationally cheaper to use a smaller model with

speaker subspace than a larger model without it. In the future, we plan to investigate using feature space

(constrained) MLLR for cross-lingual speaker adaptive training as a comparison to the results using the

speaker subspace.

G. Cross-lingual experiments: summary

Table IV summarizes the results on the development and evaluation datasets with 1h training data. We

observed a similar trend of results on both datasets. The lowest WER on the evaluation set (26.7%) was
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Fig. 14. WER of cross-lingual systems using speaker subspace, 15h training data, tested on the development dataset.

achieved by using multilingual parameter estimation with regularization, followed by speaker subspace

adaptive training. This is significantly better than the GMM and SGMM baseline using the same training

data (34.1% and 31.4%) and it is only 2% worse than the GMM baseline using the entire 15h training

dataset (24.8%). Hence, by leveraging the out-of-domain data, the cross-lingual SGMM system can

mitigate increases in WER arising from limited training data.

Table V summarizes the WERs of systems with 5h training data on both the development and evaluation

datasets. Using multilingual parameter estimation and `1-norm regularization, the cross-lingual system

obtains 12.7% on the development dataset and 22.1% on the evaluation dataset, a reduction of about 2%

absolute compared to the speaker adaptively trained SGMM baseline using a monolingual subspace.
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TABLE IV

RESULTS OF CROSS-LINGUAL SGMM SYSTEMS WITH 1 HOUR TRAINING DATA ON THE DEVELOPMENT (DEV) AND

EVALUATION DATASET (EVAL).

System Dev Eval

GMM baseline 23.2 34.1

SGMM baseline 20.4 31.4

Cross-lingual: w/SP, S = 20 18.8 32.4

Cross-lingual: w/PO, S = 20 17.9 30.9

Cross-lingual: w/SW, S = 20 18.0 31.0

Cross-lingual: w/Mul, S = 20 16.8 29.3

Cross-lingual: w/Mul + `1, S = 40 15.5 26.9

+speaker subspace 15.3 26.7

TABLE V

RESULTS OF CROSS-LINGUAL SGMM SYSTEMS WITH 5 HOUR TRAINING DATA ON THE DEVELOPMENT (DEV) AND

EVALUATION DATASET (EVAL).

System Dev Eval

GMM baseline 18.5 28.0

SGMM baseline 14.9 24.9

+speaker subspace 14.6 24.7

Cross-lingual: w/SP, S = 20 15.4 26.5

Cross-lingual: w/PO, S = 20 14.6 25.2

Cross-lingual: w/SW, S = 20 14.6 25.4

Cross-lingual: w/Mul, S = 20 13.4 24.5

Cross-lingual: w/Mul + `1, S = 40 12.7 22.1

A summary of the results using the entire 15h training data is given in Table VI. In this condition, the

cross-lingual system outperformed the baseline with speaker subspace adaptive training by 0.4% absolute

on the development dataset and they achieved around the same accuracy on the evaluation dataset.

VI. CONCLUSIONS

In this paper, we have studied cross-lingual speech recognition using SGMM acoustic models in

low-resource conditions. We first present a systematic review of the techniques used to build the cross-

lingual SGMM system. We then carried out a set of experiments using the GlobalPhone corpus with

three source languages (Portuguese, Spanish, and Swedish), using German as the target language. Our
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TABLE VI

RESULTS OF CROSS-LINGUAL SGMM SYSTEMS WITH 15 HOUR TRAINING DATA FOR DEVELOPMENT (DEV) AND

EVALUATION DATASET (EVAL).

System Dev Eval

GMM baseline 15.4 24.8

SGMM baseline 13.0 22.1

+speaker subspace 12.4 21.5

Cross-lingual: w/Mul + `1, S = 40 12.0 21.6

results indicate that the globally shared parameters in the SGMM acoustic model can be borrowed from

the source language system. This leads to large reductions in WER when the amount of target language

acoustic training data is limited (e.g. 1 hour). In addition, estimating the globally shared parameters using

multilingual training data is particularly beneficial. We observed that the cross-lingual system using the

multilingual parameters outperforms other cross-lingual systems using the monolingual parameters.

Our results also demonstrate the effectiveness of regularization using an `1-norm penalty for the state

vectors. With a limited amount of training data, regularization is able to improve the numerical stability

of the system, enabling the use of a model subspace of higher dimension and with more sub-state vectors.

The benefits were demonstrated by experimental results using 1 hour and 5 hour training data in our study,

in which substantial reductions in WER were obtained by using a higher dimensional model subspace

together with regularization.

We also investigated the MAP adaptation of the model subspace, and cross-lingual speaker adaptive

training using a speaker subspace. In both cases, however, they did not achieve further WER reduction

on top of the multilingual parameter estimation and regularization in the low-resource settings accord-

ing to our experimental results. In addition, we compared speaker adaptive training using monolin-

gual and multilingual speaker subspaces and obtained comparable recognition accuracy in 5 hour and

15 hour training data conditions. This may indicate that the speaker subspace may also be portable

across languages. Finally, the software and recipe for this work can be found in the Kaldi toolkit —

http://kaldi.sf.net, released under the Apache License v2.0.
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