UNSUPERVISED CROSS-LINGUAL KNOWLEDGE TRANSFER IN DNN-BASED LVCSR

Pawel Swietojanski, Arnab Ghoshal and Steve Renals

Centre for Speech Technology Research, University of Edinburgh, Edinburgh EH8 9AB

p.swietojanski@sms.ed.ac.uk, {a.ghoshal,s.renals}@ed.ac.uk

ABSTRACT

We investigate the use of cross-lingual acoustic data to ini-
tialise deep neural network (DNN) acoustic models by means
of unsupervised restricted Boltzmann machine (RBM) pre-
training. DNNs for German are pretrained using one or all
of German, Portuguese, Spanish and Swedish. The DNNs are
used in a tandem configuration, where the network outputs are
used as features for a hidden Markov model (HMM) whose
emission densities are modeled by Gaussian mixture models
(GMMs), as well as in a hybrid configuration, where the net-
work outputs are used as the HMM state likelihoods. The
experiments show that unsupervised pretraining is more cru-
cial for the hybrid setups, particularly with limited amounts
of transcribed training data. More importantly, unsupervised
pretraining is shown to be language-independent.

Index Terms— Cross-lingual ASR, Deep Neural Net-
works, RBM pretraining, GlobalPhone

1. INTRODUCTION

In cross-lingual speech recognition, knowledge from one
or more languages is used to improve speech recognition
for a target language that is typically low-resourced. A
number of techniques for cross-lingual acoustic modelling
have been published including the use of: global phone sets
[1, 2]; multilingual posterior features in tandem [3, 4] and
Kullback-Liebler hidden Markov model (KL-HMM) sys-
tems [5]; subspace Gaussian mixture models (SGMMs) with
a shared multilingual phonetic subspace [6, 7]; and cross-
lingual bootstrapping with unsupervised training of the target
language [8]. These approaches rely on transcribed audio data
for building automatic speech recognition (ASR) systems in
some source languages that may or may not be linguistically
related to the target language. These approaches assume that
only a small volume of transcribed target language audio
is available, and in some cases the target language audio is
assumed to be entirely untranscribed [2, 8].

Here we are concerned with building acoustic models
with limited amounts of transcribed audio. We also assume
that we have untranscribed audio in the chosen language, as
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well as in other languages. The key question that we address
is how to usefully employ these untranscribed acoustic data
for speech recognition of the target language. We consider
this in the context of deep neural network (DNN) acoustic
models for the target language, which can take advantage
of the untranscribed audio using unsupervised pretraining
techniques. We use layer-wise restricted Boltzmann ma-
chine (RBM) initialisation of a DNN [9], an unsupervised
procedure, in which a deep generative model of the acoustic
data is estimated and used to initialise the weights of the
DNN, which are then refined using supervised training on
transcribed acoustic data in the target language. The gener-
ative model may be of acoustics in the same language (in-
domain) or a different language (out-of-domain). Through
these experiments we aim to develop a better understanding
of cross-lingual knowledge transfer, as well as unsupervised
pretraining.

We use the DNNGs in both tandem and hybrid configura-
tions. In tandem systems, DNNs are used to generate discrim-
inative features, based on a linear transformation of either the
network outputs—posterior features [10]—or the outputs of
a narrow hidden layer—-bottleneck features [11]. These fea-
tures are then usually concatenated with some standard acous-
tic features, for example, mel-frequency cepstral coefficients
(MFCC) or perceptual linear prediction (PLP) coefficients,
and used as the feature vector in an HMM-GMM system. In
a hybrid system, the trained DNN is used to provide scaled
likelihood estimates for the states of an HMM [12]. Due
to computational constraints, earlier uses of hybrid systems
were limited to estimating scaled likelihoods for monophone
states using multi-layer perceptrons (MLPs) with two layers
[13] and recurrent networks [14]. More recently DNNs with
up to 9 layers have been used with outputs corresponding to
both monophone states [15] and context-dependent tied states
[16]. The principal modelling and algorithmic difference to
previous systems is the use of RBM pretraining [9].

Previous uses of neural networks in cross-lingual acoustic
modelling have mainly focussed on tandem approaches that
require transcribed data in source languages. Examples in-
clude: the direct use of posterior features obtained from a
source language network [17]; the use of cross-lingual bot-
tleneck features [3]; training/initialising a neural network us-
ing transcribed source language acoustics, then retraining the



network with transcribed target language acoustics, using a
phoneset mapping where necessary [18, 4]; and posterior fea-
tures derived from networks trained to estimate articulatory
features [19]. To the best of our knowledge, this is the first
work where unlabeled acoustic data from a different language
is successfully used to improve speech recognition accuracy.

2. DNNS FOR ASR

DNNSs are L-layer MLPs with a softmax output layer, which
we train to classify the input acoustics into classes corre-
sponding to HMM states. After training, the output of the
DNN is an estimate of the posterior probability P(y|o;) of
each state y given the acoustic observations o; at time ¢t. The
computation performed by the network may be written as:

w = o(Wiu_1 + by), forl<l<L
exp(WLuL_1 + bL)
Zg exp(Wrur_1 +byp)’

where w; is the input to the [ + 1-th layer, with ug = o;; W,
is the matrix of connection weights between [ — 1-th and [-
th layers; b; is the additive bias vector at the I-th layer; and
o(x) = 1/(1 4+ exp(—=x)) is a sigmoid non-linearity, also
known as the activation function.

We use stochastic gradient descent to train DNNs, min-
imising a negative log posterior probability cost function over
the set of training examples O = {oy,...,0r}:

T
0" = arg min E0)~ arg min — Zlog P(yi|oy),

t=1

P(ylos) =

where 6 = {W1,..., Wy, by,..., b} is the set of param-
eters of the network, and y, is the most likely state at time ¢
obtained by a forced-alignment of the acoustics with the tran-
script. While training deep networks directly results in a diffi-
cult optimization problem, an unsupervised pretraining phase
using greedy layer-wise training of RBMs [9] or stacked au-
toencoders [20] have been shown to give good results. More
recently, supervised layer-wise training with early stopping
was shown to achieve comparable or better results than unsu-
pervised pretraining on a relatively large speech recognition
task [21]. For our investigation of unsupervised cross-lingual
pretraining, RBMs were a natural first choice due to their pre-
vious successful application in speech recognition [15, 16].

RBMs are bipartite undirected graphical models, with
a set of nodes corresponding to observed random variables
(also called visible units) and a set of nodes corresponding
latent random variables (or hidden units), that only allow in-
teractions between the two sets of variables (that is, between
the visible and hidden units) but not within each set of nodes.
The joint probability of the visible units v and hidden units h
is defined as:

1 _
L By,
h,v

P(v,h) =

where 7}, ,, is the normalising partition function. Visible units
are real-valued for speech observations and binary-valued
otherwise; hidden units are always binary-valued.

In the case of binary visible units, we have a Bernoulli-
Bernoulli RBM whose energy function is:

Fgg(v,h) = —vI'Wh — b?v —a’h,

and for real-valued visible units we use a diagonal covariance
Gaussian-Bernoulli RBM whose energy function is given by:

1
Egp(v,h) = —vI'Wh — F(v— b)" (v —b) —a’h.

W is a symmetric weight matrix defining interactions be-
tween vectors v and h while b and a are additive bias
terms. RBM pretraining maximises the likelihood of the
training samples using the contrastive divergence algorithm
[9]. When multiple layers have to be initialised the parame-
ters of the given layer are frozen and its output is used as the
input to the higher layer which is optimised as a new RBM.
This procedure is repeated until the desired number of layers
is reached.

When used in tandem configuration [10], the DNN out-
puts correspond to posterior probabilities of the context-
independent phones in the language (in our case, 44 for Ger-
man). The outputs are Gaussianized by taking logarithms,
decorrelated using principal components analysis (PCA), and
concatenated with MFCCs. The PCA step also reduces the
dimensionality from 44 to 25 (this guaranteed keeping at least
95% of variance—on average it was 98%), producing a com-
bined 64-dimensional feature for the HMM-GMM acoustic
model. In the hybrid setup, the outputs correspond to tied
triphone states. Depending on the amount of training data
used, the number of tied triphone states may vary from a
few hundred to a few thousand (roughly 550 to 2500 in our
case). To obtain scaled likelihoods, the posterior probability
estimates produced by the network were divided by the prior
probabilities [12].

3. EXPERIMENTS

For testing cross-lingual knowledge transfer in DNNs, we
use the GlobalPhone corpus [22]. The corpus consists of
recordings of speakers reading newspapers in their native lan-
guage. There are 19 languages from a variety of geographi-
cal locations: Asia (Chinese, Japanese, Korean), Middle East
(Arabic, Turkish), Africa (Hausa), Europe (French, German,
Polish), and Americas (Costa Rican Spanish, Brazilian Por-
tuguese). There are about 100 speakers per language and
about 20 hours of audio material. Recordings are made under
relatively quiet conditions using close-talking microphones;
however acoustic conditions may vary within a language and
between languages.

Our setup is similar to that reported in [7]. We use Ger-
man as our in-domain language and we simulate different de-
grees of available resources by selecting random 1 and 5 hour



Table 1. Word error rates (%) for HMM-GMM systems on
GlobalPhone German development set.

Training Features Amount of training data
15hr Shr 1hr
ML MFCC 16.17 18.40 23.11
ML LDA+MLLT | 15.53 1841 2231
fBMMI+BMMI | LDA+MLLT | 15.19 18.19 21.53

subsets of the total 15 hours of labeled training speech data.
When using the 1 and 5 hour subsets, the entire 15 hours of
audio from the training set were used for the RBM-based un-
supervised pretraining. We contrast this with RBM pretrain-
ing using unlabeled acoustic data from three other languages:
Portuguese (26 hours), Spanish (22 hours) and Swedish (22
hours), as well as with pretraining using all the languages (85
hours).

3.1. Baseline results

Before discussing the results on GlobalPhone, it is important
to note that the results reported in various sources (for ex-
ample, [1, 3, 7, 23]) are not directly comparable. This pri-
marily because of the differences between LMs, which are
much more significant than other differences, such as the use
of MFCC vs PLP features. Following previous work [7], we
use LMs that were included in an earlier release of the cor-
pus, but are not available in later releases. The differences
between the results reported here and those in [7] are due to
the fact that we found it beneficial to interpolate the provided
LM with one trained on the training transcripts.

We build standard maximum-likelihood (ML) trained
HMM-GMM systems, using 39-dimensional MFCC features
with delta and acceleration coefficients, on the full 15-hour
training set for GlobalPhone German, as well as the 5-hour
and 1-hour subsets, using the Kaldi speech recognition toolkit
[24]. The number of context-dependent triphone states for
the three systems are 2564, 1322 and 551, respectively, with
an average of 16, 8 and 4 Gaussians, respectively, per state.
The word error rates (WER) of the different baselines are
presented in Table 1.

Since the tandem systems use phone posteriors obtained
using a window of 9 frames, we compare them with a base-
line system where 9 frames (4 on each side of the current
frame) of 13-dimensional MFCCs are spliced together and
projected down to 40 dimensions using linear discriminant
analysis (LDA). We also use a single maximum likelihood
linear transform [25] on the features thus obtained using
LDA. The combined system is referred to as LDA+MLLT.
We compare the hybrid setup to a HMM-GMM system that
uses both model and feature-space discriminative training
using boosted maximum mutual information (BMMI) esti-
mation [26], referred to as fBMMI+BMMI in Table 1.

3.2. DNN configuration and results

For training DNNSs, our tools utilise the Theano library [27],
which supports transparent computation using both CPUs and
GPUs. We use 12 PLP coefficients and the energy term ap-
pended with the delta and acceleration coefficients for a 39-
dimensional acoustic feature vector. The features are globally
normalised to zero mean and unit variance, and 9 frames (4
on each side of the current frame) are used as the input to the
networks. The choice of PLP features was initially motivated
by the desire to have information that is complementary to
MFCC:s for the tandem configuration.

The initial network weights (both for RBM pretraining,
and when no pretraining was done) were chosen uniformly at
random: w ~ U[—r,r], where r = 44/6/(n; + n;41) and
n; is the number of units in layer j. We choose the pretrain-
ing hyper-parameters as follows: learning rate for Bernoulli-
Bernoulli RBM is 0.08, and for Gaussian-Bernoulli RBM in
the input layer it is 0.005. Mini-batch size is 100. Fine-
tuning is done using stochastic gradient descent on 256-frame
mini-batches and an exponentially decaying schedule, learn-
ing at a fixed rate (0.08) until improvement in accuracy on
cross-validation set between two successive epochs falls be-
low 0.5%. The learning rate is then halved at each epoch
until the overall accuracy fails to increase by 0.5% or more,
at which point the algorithm terminates. While learning, both
RBM and DNN gradients were smoothed with a first-order
low-pass momentum (0.5).

In the tandem setup, the networks are up to five layers
deep since the tandem systems were not found to improve in
terms of WER with deeper networks (Fig. 2). The networks
have 1024 hidden units per layer, which was found to outper-
form 512 hidden units and to have similar WER to 2048 hid-
den units. In contrast, the hybrid system benefits from deeper
architectures (Fig 3), as well as wider hidden layers with 2048
units, even when fine-tuning using just 1 hour of transcribed
speech (Fig. 1).

We find that the hybrid systems provide lower WER than
the corresponding tandem systems. Additionally, and perhaps
most importantly, unsupervised RBM pretraining is found to
be language-independent. Pretraining is found to be more ef-
fective for hybrid systems than for tandem systems, and the
effect is most pronounced when the hybrid systems are fine-
tuned using limited amounts of transcribed data. In fact, with
1 hour of transcribed speech the hybrid system only outper-
formed the baseline HMM-GMM system when pretraining
was done. However, for both the tandem and hybrid con-
figurations, we see no correlation between the amount of data
used for pretraining (which varied between 15 and 85 hours)
and the WER obtained by the fine-tuned system.

For the different DNN configurations shown in figures 2
and 3, we pick the ones with the lowest WER on the develop-
ment set and use them to decode the evaluation set. The re-
sults are shown in in tables 2 and 3. For the different amounts
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Fig. 1. German development set WERs for hybrid systems with different sizes of hidden layers (512, 1024 and 2048 hidden

units) for the three training sets.

Table 2. Tandem system WER results on German eval set

System description Amount of training data
15hr Shr 1hr
ML using LDA+MLLT | 24.53 27.56 34.08
DNN random initialised | 22.05 25.10 31.84
DNN pretrained on GE | 21.39 24.60 30.91
DNN pretrained on PO | 21.21 2443  31.29
DNN pretrained on SP 21.48 2423 30.74
DNN pretrained on SW | 21.62 24.44  30.52
DNN pretrained on All | 21.48 2449  30.98

Table 3. Hybrid system WER results on German eval set

System description Amount of training data
15hr Shr 1hr
fBMMI+BMMI using LDA+MLLT | 24.13 27.08 33.11 ‘
DNN random initialised 21.52  25.03 3354
DNN pretrained on GE 20.09 2278  28.70
DNN pretrained on PO 20.00 22.44  28.79
DNN pretrained on SP 20.03 22.64 2840
DNN pretrained on SW 20.20 22.89 2892
DNN pretrained on All 20.14 22770 28.72

of training data, the best HMM-GMM, tandem, and hybrid
results are summarised in figure 4.

4. DISCUSSION

In this work we examined the usability of unlabeled data
from one or more languages to improve recognition accu-
racy of a different, possibly low-resourced, language in a
fully unsupervised fashion. These experiments suggest that
unsupervised RBM-based initialisation of DNNs is language-
independent, allowing hybrid setups to be built from as little
as 1 hour of labelled fine-tuning data. This simple approach
reduces the cost of building an ASR system in a new language

by not only requiring less transcribed data, but less amount of
data to be collected in the first place.

One may think of cross-lingual speech recognition as an
exercise in judicious application of prior knowledge, whether
in the linguistic sense of mapping between phonesets, or in
the statistical sense of sharing model parameters between lan-
guages. Unsupervised pretraining of DNNS fits in this frame-
work. In fact, Erhan et al. [28] explain unsupervised pre-
training as “an unusual form of regularization” that restrict the
subsequent supervised (and discriminative) learning to points
of the parameter space corresponding to a better generative
model of the data. Our results strongly suggest that RBM-
based unsupervised pretraining is able to learn characteristics
of human speech that are largely language-independent. It is
possible, even likely, that this characteristic will be demon-
strated by other unsupervised pretraining techniques as well,
for example, pretraining using stacked autoencoders [20]

While pretraining is seen to be language-independent, no
clear pattern emerges when going from 15 to 85 hours of data
for pretraining. This raises two questions that have not been
sufficiently addressed in literature: what makes some data
suitable for unsupervised pretraining, and what are sufficient
amounts of suitable pretraining data. It is possible that cross-
corpus variability offset gains from pretraining on a mixture
of languages; it is also possible that more data is simply not
necessary. Better embeddings of the data may be obtained by
imparting domain knowledge: for example, pretraining and
fine-tuning in a speaker-adaptive fashion may be helpful in
a cross-lingual setting. Finally, our approach is complimen-
tary to other cross-lingual ASR approaches, and it is easy to
imagine combining cross-lingual DNNs and SGMMs using
the tandem approach.

5. REFERENCES

[1] T Schultz and A Waibel, “Language independent and language
adaptive acoustic modeling for speech recognition,” Speech
Communication, vol. 35, pp. 31-51, 2001.



24 . 24
== LDA+MLLT 1h baseline ot
+vvoo GE_1h_nopre ¥ b
—— GE_1h_pGE .
23 —+— GE_1h_pPO N 2

—&— GE_1h_pSP B S
—#— GE_1h_pSW

22 —k— GE_1h_pGE+PO+SP+SW| | 2 S ‘
= = LDA+MLLT 5h baseline == fBMMI+BMMI LDA+MLLT 1h baseline
=i == d 0 GE_1h_nopre
g g —6— GE_1h_pGE
o2l . & 21 —4— GE_1h_pPO
B IRTTIIRTERITE X 2 —&— GE_1h_pSP
—#— GE_1h_pSwW
20. —fe— GE_1h_pGE+PO+SP+SW
1 + = = fBMMI+BMMI LDA+MLLT 5h baseline

18 i i i i i i i
1 2 3 4 5 6 7 8 9
#hidden layers #hidden layers
(a) Tandem German lh labeled data (a) Hybrid German 1h labeled data
S e : 185 ; ; ; ; ;
= = LDA+MLLT 5h baseline = = fBMMI+BMMI LDA+MLLT 5h baseline
== LDA+MLLT 15h baseline SrErmImEEIT TS e = fBMMI+BMMI LDA+MLLT 15h baseline
18 “0 GE_5h_nopre 1 18r +1i0 GE_5h_nopre 1
—6— GE_5h_pGE —— GE_5h_pGE
—+— GE_5h_pPO —+— GE_5h_pPO
17.5 —A— GE_5h_pSP N s —A— GE_5h_pSP 1
= GE_5h_pSW | ——#— GE_5h_pSW
IT - CUTRRRI, : o —de— GE_5h_pGE+PO+SP+SW | | 17k —— GE_5h_pGE+PO+SP+SW |

x 165 x 165 .
w w
2 2
16 .
15,5 e e
15f .
145 L I I
1 2 3 4 5 5
#hidden layers #hidden layers
(b) Tandem German 5h labeled data (b) Hybrid German 5h labeled data
16 : . 16 ! ! ! ! !
\ == LDA+MLLT 15h baseline + = = fBMMI+BMMI LDA+MLLT 15h baseline
+roreo GE_15h_nopre ++ooeo GE_15h_nopre
15.5 —©— GE_15h_pGE i 15.5r —e— GE_15h_pGE 1

—&— GE_15h_pPO
—&— GE_15h_pSP —&— GE_15h_pSP
—w#— GE_15h_pSW —w— GE_15h_pSW
—f— GE_15h_pGE+PO+SP+SW —sk— GE_15h_pGE+PO+SP+SW

—8— GE_15h_pPO

T

=

o
T
T

15

[N
»
N
>
o
T
i

WER [%]
=
N
WER [%]
=
»

135
13} 1
125} 4
12 i i i
1 2 3 4 5 5
#hidden layers #hidden layers
(c) Tandem German 15h labeled data (c) Hybrid German 15h labeled data

Fig. 2. Tandem HMM-GMM setup. Results on devset. Fig. 3. Hybrid setup. Results on devset.



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

WER [%]

40

38

361

34r

32r

Tandem GMM 1h pSW

301

fBMMI+BMMI LDA+MLLT GMM 1h

Hybrid 1h pSP

281

fBMMI+BMMI LDA+MLLT GMM 5h

261

fBMMI+BMMI LDA+MLLT GMM 15h

Tandem GMM 5h pSP

241

Hybrid 5h pPO

22

Tandem GMM 15h pPO

Hybrid 15h pPO

20

Fig. 4. A summary of results on the evaluation set.

T Schultz and A Waibel, “Experiments on cross-language
acoustic modeling,” in Proc. Eurospeech, 2001.

F Grézl, M Karafidt, and M Janda, “Study of probabilistic
and bottle-neck features in multilingual environment,” in Proc.
IEEE ASRU, 2011.

S Thomas, S Ganapathy, and H Hermansky, “Multilingual
MLP features for low-resource LVCSR systems,” in Proc.
IEEE ICASSP, 2012.

D Imseng, H Bourlard, and PN Garner, “Using KL-divergence
and multilingual information to improve ASR for under-
resourced languages,” in Proc. IEEE ICASSP, 2012.

L Burget, P Schwarz, M Agarwal, P Akyazi, K Feng,
A Ghoshal, O Glembek, N Goel, M Karafiat, D Povey, A Ras-
trow, RC Rose, and S Thomas, “Multilingual acoustic model-
ing for speech recognition based on subspace Gaussian mixture
models,” in Proc. IEEE ICASSP, 2010.

L Lu, A Ghoshal, and S Renals, “Regularized subspace Gaus-
sian mixture models for cross-lingual speech recognition,” in
Proc. IEEE ASRU, 2011.

NT Vu, F Kraus, and T Schultz, “Cross-language bootstrap-
ping based on completely unsupervised training using multi-
lingual A-stabil,” in Proc. IEEE ICASSP, 2011.

G Hinton, S Osindero, and Y Teh, “A fast learning algorithm
for deep belief nets,” Neural Computation, vol. 18, pp. 1527—
1554, 2006.

H Hermansky, DPW Ellis, and S Sharma, “Tandem connec-
tionist feature extraction for conventional HMM systems,” in
Proc. IEEE ICASSP, 2000.

F Grézl, M Karafiat, S Kontar, and J Cernock}?, “Probabilistic
and bottle-neck features for LVCSR of meetings,” in Proc.
IEEE ICASSP, 2007.

H Bourlard and N Morgan, Connectionist Speech
Recognition—A Hybrid Approach, Kluwer Academic, 1994.

S Renals, N Morgan, H Bourlard, M Cohen, and H Franco,
“Connectionist probability estimators in HMM speech recog-

nition,” IEEE Transactions on Speech and Audio Processing,
vol. 2, no. 1, pp. 161-174, 1994.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

AlJ Robinson, “An application of recurrent nets to phone prob-
ability estimation,” [EEE Transactions on Neural Networks,
vol. 5, no. 2, pp. 298-305, 1994.

A Mohamed, GE Dahl, and G Hinton, “Acoustic modeling
using deep belief networks,” [EEE Transactions on Audio,
Speech, and Language Processing, vol. 20, no. 1, pp. 14-22,
2012.

GE Dahl, D Yu, L Deng, and A Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” [EEE Transactions on Audio, Speech & Lan-
guage Processing, vol. 20, no. 1, pp. 30-42, 2012.

A Stolcke, F Grézl, M-Y Hwang, X Lei, N Morgan, and D Ver-
gyri, “Cross-domain and cross-language portability of acoustic
features estimated by multilayer perceptrons,” in Proc. IEEE
ICASSP, 2006.

S Thomas and H Hermansky, “Cross-lingual and multistream
posterior features for low resource LVCSR systems,” in Proc.
Interspeech, 2010.

O Cetin, M Magimai-Doss, K Livescu, A Kantor, S King,
C Bartels, and J Frankel, “Monolingual and crosslingual com-
parison of tandem features derived from articulatory and phone
MLPs,” in Proc IEEE ASRU, 2007.

Y Bengio, P Lamblin, D Popovici, and H Larochelle, “Greedy
layer-wise training of deep networks,” in Advances in Neural
Information Processing Systems 19 (NIPS’06), pp. 153-160.
MIT Press, 2007.

F Seide, G Li, X Chen, and D Yu, “Feature engineering
in context-dependent deep neural networks for conversational
speech transcription,” in Proc. IEEE ASRU, 2011.

T Schultz, “GlobalPhone: a multilingual speech and text
database developed at Karlsruhe University,” in Proc. ICLSP,
2002.

P Lal, Cross-Lingual Automatic Speech Recognition using
Tandem Features, Ph.D. thesis, The University of Edinburgh,
2011.

D Povey, A Ghoshal, G Boulianne, L Burget, O Glembek,
N Goel, M Hannemann, P Motlicek, Y Qian, P Schwarz,
J Silovsky, G Stemmer, and K Vesely, “The Kaldi speech
recognition toolkit,” in Proc. IEEE ASRU, December 2011.

R Gopinath, “Maximum likelihood modeling with Gaussian
distributions for classification,” in Proc. IEEE ICASSP, May
1998, vol. 2, pp. 661-664.

D Povey, D Kanevsky, B Kingsbury, B Ramabhadran, G Saon,
and K Visweswariah, “Boosted MMI for model and feature-
space discriminative training,” in Proc. IEEE ICASSP, 2008,
pp- 4057-4060.

J Bergstra, O Breuleux, F Bastien, P Lamblin, R Pascanu,
G Desjardins, J Turian, D Warde-Farley, and Y Bengio,
“Theano: a CPU and GPU math expression compiler,” in Proc.
SciPy, 2010.

D Erhan, Y Bengio, A Courville, P-A Manzagol, P Vincent,
and S Bengio, “Why does unsupervised pre-training help deep
learning?,” Journal of Machine Learning Research, vol. 11,
pp. 625-660, February 2010.



