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Abstract
Speech sound disorders (SSD) are the most common communi-
cation impairment in childhood, and can hamper social devel-
opment and learning. Current speech therapy interventions rely
predominantly on the auditory skills of the child, as little tech-
nology is available to assist in diagnosis and therapy of SSDs.
Realtime visualisation of tongue movements has the potential
to bring enormous benefit to speech therapy. Ultrasound scan-
ning offers this possibility, although its display may be hard to
interpret. Our ultimate goal is to exploit ultrasound to track
tongue movement, while displaying a simplified, diagrammatic
vocal tract that is easier for the user to interpret. In this pa-
per, we outline a general approach to this problem, combining
a latent space model with a dimensionality reducing model of
vocal tract shapes. We assess the feasibility of this approach us-
ing magnetic resonance imaging (MRI) scans to train a model
of vocal tract shapes, which is animated using electromagnetic
articulography (EMA) data from the same speaker.
Index Terms: Ultrasound, speech therapy, vocal tract visuali-
sation

1. Introduction
Speech sound disorders (SSD), whereby a speaker has difficulty
producing a given speech sound of their native language clearly
and distinctly, are the most common communication impair-
ment in childhood. Approximately 6.5% of all UK children
are affected. Having an SSD can affect a child’s confidence,
and may introduce a barrier to communicating with peers and
teachers. This in turn can bring a detrimental effect on learning,
as well as social interaction and development. Though speech
therapy interventions for SSDs are available, they typically rely
heavily on auditory skills; clients must listen to the sounds they
produce and try to modify them. This can be problematic where
a client does not have strong auditory skills, as is often the case
in children with an SSD. Technology to assist in treating SSDs
is currently limited. For external, labial articulation a simple
mirror is useful, while electropalatography (EPG) can give vi-
sual feedback of tongue contact with the roof of the mouth. But
crucially, visual feedback of other articulation within the oral
cavity is not currently an option during speech therapy. The
Ultrax project (http://www.ultrax-speech.org) is a
three year project that aims to address this lack and provide a
means to give visual feedback of articulation within the mouth
in real time, which will provide a valuable aid in the assessment,
diagnosis and treatment of SSDs.

For live feedback, it will be necessary to obtain measure-
ments of articulation within the mouth in realtime and then dis-
play this to the user in a simple and intuitive way. Of the var-
ious techniques for capturing intraoral articulation, ultrasound
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Figure 1: Typical midsagittal ultrasound image of the tongue.

is arguably the most promising. By placing a standard medi-
cal probe under the chin it is possible to capture tongue move-
ments in a relatively cheap, convenient, and minimally invasive
way. However, though ultrasound has for several years provided
tongue movement data for research purposes, several drawbacks
mean a raw ultrasound display may not be well suited as a
speech therapy tool for children. Fig. 1 gives an example snap-
shot of the tongue. In addition to the potential image quality
problems indicated, a critical drawback is the lack of landmarks
to provide context for the tongue contour. It is not possible to
see passive articulators, such as the hard and soft palate or the
teeth. Nor is there even any indication as to which is the front
or back of the tongue. Such limitations mean a raw ultrasound
display can be difficult to interpret. The goal of Ultrax is to use
ultrasound not only to capture the movements of the tongue,
but to provide an enhanced, diagrammatic display to the user
featuring detail not visible in ultrasound data itself.

Previous work on extracting tongue contours from ultra-
sound data would seem most relevant to this topic. The most
well known example is probably EdgeTrak [1], which uses an
active contour algorithm that minimises “internal” and “exter-
nal” error functions that measure contour smoothness and align-
ment to contrast edges in the image respectively. Another recent
and interesting example uses deep belief networks (DBNs) [2].
However, neither of these approaches are in fact suitable for Ul-
trax. Although EdgeTrak is useful for semi-automating the pro-
cess of tongue contour labelling by human experts, it requires
too much human intervention and supervision to serve as a fully
automatic realtime tongue tracker. Though the DBN approach
reportedly runs in realtime with human-like performance, it re-
quires significant amounts of labelled training data beforehand.
It is also unclear how it scales to speaker-independent labelling.
Most crucially, however, both approaches were developed to la-
bel tongue contours for research purposes, whereas Ultrax re-
quires realtime visualisation of more of the vocal tract: more of
the tongue than may be visible in ultrasound image data, as well
as other landmarks such as the passive articulators.

We thus require additional data to build a vocal tract (VT)



Figure 2: At the heart of our approach is a latent space model

model that may be animated in realtime. A prime candidate
source for this extra anatomical data is magnetic resonance
imaging (MRI). A good example of work that has used MRI
data to build an animatable VT model is that of Badin et al.
[3]. They used MRI and computerised tomography (CT) data
together with “guided” principal components analysis (PCA) to
build a model of VT shapes that may be animated, or driven,
by movements of a handful of fleshpoints on a subject’s artic-
ulators recorded using electromagnetic articulography (EMA)
data. This work is similar to the goals of Ultrax—although our
end goal is to animate a VT display using ultrasound data—and
we have also chosen to use EMA data initially. There are sev-
eral reasons for this. Practically, we can proceed with data that
is already available [8, 9], and thus avoid waiting to acquire
MRI and ultrasound data matched for subject. More impor-
tantly, EMA arguably offers a simpler articulatory representa-
tion, in contrast to high dimensional ultrasound image data. It
has already been shown that whole tongue and VT contours can
be predicted with considerable accuracy from a small number
of fleshpoints[3, 4, 5]. Therefore, EMA data offers a simplifi-
cation that allows us to build a proof-of-concept system. The
separate problem of dealing with high dimensional ultrasound
data is thus put aside for now.

In the remainder of this paper, Section 2 gives a general
overview of the approach we propose. Section 3 describes the
prototype we have built using this approach. In Section 4 we
present an experimental evaluation of this prototype.

2. Overview of proposed approach
There are two main components at the heart of our approach
to a realtime animated midsagittal VT display. The first is a
dimensionality-reducing model of midsagittal VT shapes. The
role of this model is to map from a small number of control pa-
rameters to a representation of a snapshot VT configuration that
may in turn be displayed to a user. This could be a linear model,
similar to the PCA described by [3] for example, or nonlinear,
as in [5] where radial basis function (RBF) networks predicted
whole tongue contours from a small number of fleshpoints.

The second component is a latent space model. For a full
understanding of this family of models, the reader may refer to
the large body of tutorial material available (e.g. [6] provides
excellent, easily-accessible coverage). Here, we aim just to
convey the basic principles, as depicted in Fig. 2. Such mod-
els maintain a probability distribution over hidden variables at
each time t. These are termed hidden variables because they
cannot be directly observed or measured, but can only be in-
ferred. The evolution of the hidden state from time t− 1 to t is
governed by an arbitrary function F , designed by the modeller
to impart any knowledge about the behaviour of the system of
hidden variables. In lieu of any more sophisticated knowledge,
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Figure 3: Hand-traced contours for MRI scan of [S] phone.

the identity transform may be used, which implies the hidden
state is expected to stay the same through one time step (though
added noise means the state can evolve smoothly over time).

The hidden state is related to the observable variables via a
second function H . As indicated in Fig. 2, we propose to use
the hidden state to represent the set of control parameters of the
dimensionality-reducing VT shape model, hence H takes the
form of this mapping model. In addition, though, H must also
include the extra step of transforming the mapped VT shape to
match the vector form of the observation data for a given time
frame. For example, to drive the animation using EMA data,
points corresponding to the EMA coil locations used must be
selected in the mapped VT shape. To use ultrasound data, the
mapped VT shape must likewise be converted to the same rep-
resentation of features that may be extracted from an ultrasound
image. There are many possible ways this might be achieved,
but using EMA fleshpoints is conceptually simpler, and offers a
way at this initial stage to establish the viability of our proposed
approach to animating a VT display with articulatory data. Fi-
nally, having implemented suitable F and H mappings, stan-
dard recursive Bayesian estimation algorithms can perform state
estimation for a given sequence of articulatory observations. In
principle, this yields the optimum state sequence to match the
articulatory observations, but by using the VT model above we
can in effect animate the entire VT display.

There are many variants of latent space model to choose
from: for a linear VT shape model, a simple Kalman filter will
suffice; if either F or H are nonlinear, we can use the Un-
scented Kalman Filter [7]; moving beyond Gaussian state or
observation distributions would require a particle filter, and so
on. Thus, model choice depends largely on how F and H are
implemented.

3. Vocal tract model
Here, we describe our first implementation of the general ap-
proach outlined above. Since the aim was to pilot the approach
in a similar way to [3, 4] (i.e. with speaker-dependent EMA and
MRI), we could use the publicly available mngu0 corpus [8, 9].
This contains 3D MRI scans for 28 phones, and around 1300
utterances recorded using EMA for the same subject, with coils
on the upper and lower lips (UL & LL), the lower incisor (LI),
and three coils on the tongue (T1, T2 & T3, from tip to dorsum).

3.1. Contour extraction

The first step was to parameterise a range of VT configu-
rations. We selected the midsagittal slices from the mngu0
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Figure 4: Contours extracted from mngu0 MRI overlaid (left),
and those normalised by hard palate position (right).

3D MRI scans, and traced selected contours using a custom-
designed graphical user interface (GUI). Fig. 3 indicates the
hand-labelled contours for a scan of example phone [S]. We
chose to trace the outline of several structures (though not all
are used here): the upper and lower lips; the jaw, chin and neck;
the hard palate, soft palate and velum; the tongue and epiglot-
tis; and the rear pharynx wall. The tracing process was semi-
automated using an algorithm based on Gradient Vector Flow
[10], which allowed to place a spline roughly in the vicinity of
the curve to be traced in our custom GUI and then automati-
cally “attract” the spline to the curve. Though this made la-
belling faster, hand-tweaking of spline points was often needed
to achieve a perfect match. No constraint was imposed on the
number of spline points that could be used for a given curve,
but care was taken to maintain consistent start and end points in
different scans. This was often difficult. For example, it proved
easy to identify a consistent landmark to anchor one end of the
pharynx wall, but for some articulations it was hard to differen-
tiate the tip of the tongue from the mouth floor.

In addition, we labelled three reference points that could be
located relative to the skull reasonably reliably, indicated by the
two straight lines in Fig. 3. These reference points offer one
way to perform head-movement correction to normalise away
slight changes in head pose between different scans.

3.2. Normalisation

The raw contour data was normalised in two important ways.
First, the splines were “resampled” to find a fixed number of
spline points on each contour, in order to make modelling eas-
ier. Second, all splines were shifted to correct for changes in
head pose. We evaluated two methods for this. For the first,
we automatically adjusted the hard palate in each frame to min-
imise the translation and rotation relative to a selected reference
palate (in terms of least squares error), then adjusted all other
splines in that frame accordingly. The effect of this can be seen
by comparing the plots in Fig. 4. The second method was sim-
ilar, but used two of the available reference points to translate
and rotate each set of contours. Following informal empirical
evaluation, we decided to use the palate-based method.

3.3. Dimensionality reducing vocal tract shape model

To begin simply, we implemented a linear dimensionality-
reducing VT model using PCA, applied to the normalised con-
tours shown in Fig. 4 (x- and y-coordinates of 132 spline points
in total). This is similar to [3], though simpler in fact, since they
employed a step-wise “guided” PCA to derive linear compo-
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Figure 5: Scatter plot of sample EMA points shifted and rotated
to MRI coordinate space “by eye”.

nents corresponding to biomechanically plausible movements
(or “degrees of freedom”) of individual articulators. For our ap-
plication though, independent control over individual articula-
tors is less important, so we chose to begin with a linear model
where coordinated movements of articulators may be effected
by a single principal component (PC) vector1.

3.4. Achieving EMA-driven animation

The final step needed to animate the PCA VT shape model was
to match the EMA data to the VT shapes. First, the EMA coil
coordinates needed to be translated into the MRI coordinate sys-
tem. A scatter plot of EMA points at multiple instances of the
28 phones was overlaid on a selected MRI image. These were
adjusted to find a reasonable match by eye, thus identifying a
suitable translation of the EMA data into the MRI coordinate
space, as indicated in Fig. 5. Note this could not be performed
exactly since EMA does not give the exact coordinates of the
fleshpoint to which a coil is attached, due to the construction
of the coils. This unfortunately may have introduced error, but
was difficult to avoid. Second, to use the mapping within the
latent space model, we needed to identify points on the VT con-
tours corresponding to the EMA coil locations on the subject’s
articulators. For this we overlaid a phone-specific scatter plot
of EMA points onto each corresponding set of VT shape con-
tours, and labelled points on those contours to match the EMA
positions. This was again done by eye, and is a further potential
source of error. These points were appended to the vectors of
contour spline points prior to the PCA described in Section 3.3.

With our initial implementation of the H mapping in Fig.
2 complete, we opted to use the simple identity transform for
F . Since both these are linear, we could then use a standard
Kalman filter to animate the VT display.

4. Evaluation
Evaluating the system described above is unfortunately not
straightforward. Whereas [4] or [5] had a large set of tongue
contours available for evaluation purposes, the only ground-
truth data available here are the coordinates of the 6 EMA coils.
Our objective evaluation is thus limited to comparing the EMA
coil positions with the corresponding points on the VT contours
identified in Section 3.4. We first evaluated the effect of varying
hidden state size (i.e. number of PCA components). Fig. 6 gives
results in terms of root mean square (RMS) error expressed in
millimetres, calculated over 20 test utterances. Generally, in-
creasing the hidden state size reduces the error, reaching ap-
proximately zero when the hidden state size is twelve. This

1see http://homepages.inf.ed.ac.uk/korin/ultraxis2012 for video vi-
sualising selected principal components, as well as natural utterances.



0

1

2

3

4
R

M
S

E
 (

m
m

)

 

 

0 2 4 6 8 10 12
0

1

2

3

4

R
M

S
E

 (
m

m
)

Number of hidden state dimensions

 

 

UL

LL

LI

T1

T2

T3

Figure 6: The effect of varying hidden state dimensionality on
the performance of tracking each EMA coil.
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Figure 7: The effect of varying hidden state dimensionality on
the accuracy of “held-out” EMA point prediction.

indicates the Kalman filter is working successfully to track the
target EMA points, but is otherwise unsurprising.

We then performed a more challenging evaluation, whereby
each of the EMA coils was left out of the observation vector in
turn, and the accuracy of predicting that coil using observations
of only the remaining five coils to drive animation was tested.
These results are shown in Fig. 7. Generally, these results are
slightly worse than those in Fig. 6. This is to be expected since
in this task no observations were available to the Kalman filter
that corresponded directly to each held-out target point. In addi-
tion, less observation data was available. It has been shown that
predicting tongue contours from two tongue fleshpoints is less
accurate than when three or more are used [4, 5]. Another im-
portant result is that using more PCA components in the hidden
state does not necessarily increase accuracy. This is especially
true for the front two tongue points, two of the most salient ar-
ticulators, for which the optimum state dimensionality appears
to be four. Informally viewing several animated utterances sup-
ported this finding. This is an intriguing result, for which one
possible explanation is that using only five or six EMA point ob-
servations does not bring adequate information to constrain the
model when extra degrees of freedom above four are available.

Finally, to gain some impression of the significance of the
errors in Fig. 7, we compared the proposed approach (using four
hidden state dimensions) with two linear mappings to perform
the same leave-one-out prediction task. These results are shown
in Fig. 8. “Linear Mapping 1” was trained on the same 28 sets of
EMA target points as used for the PCA in Section 3.3. “Linear
Mapping 2” was trained using all recorded EMA coil positions
for the test sentences, and gives a rough lower bound on the
error possible. Predicting coil positions via the (linear) MRI-
derived shape model is on average only 0.4mm worse than using
a more favourable direct linear mapping. Based on these results,
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Figure 8: Error when predicting held-out coil position using the
proposed approach (mean 2.9mm) compared with that of Linear
Mappings 1&2 (mean 2.5mm and 1.1mm respectively).

the approach seems promising and worth pursuing further.

5. Conclusion
In this paper, we have used MRI scans to train a model of vo-
cal tract shapes and then animated it using EMA data separately
collected from the same speaker. Our approach to this problem
was based on combining a latent space model with a dimension-
ality reduction model of vocal tract shapes. We carried out ex-
periments on the mngu0 corpus, which contains both MRI and
EMA data from a single speaker, matching the MRI and EMA
coordinate systems by hand. The system was evaluated by pre-
diction of the position of an EMA coil, on a leave-one-out basis.
We find the results of this pilot are encouraging.
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