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Abstract. Although speech is a highly natural mode of communication, building
robust and usable speech-based interfaces is still a challenge, even if the target
user group is restricted to younger users. When designing for older users, there are
added complications due to cognitive, physiological, and anatomical ageing. Users
may also find it difficult to adapt to the interaction style required by the speech
interface. In this chapter, we summarise the work on spoken dialogue interfaces
that was carried out during the MATCH project. After a brief overview of relevant
aspects of ageing and previous work on spoken dialogue interfaces for older people,
we summarise our work on managing spoken interactions (dialogue management),
understanding older people’s speech (speech recognition), and generating spoken
messages that older people can understand (speech synthesis). We conclude with
suggestions for design guidelines that have emerged from our work and suggest
directions for future research.
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Introduction

Spoken communication with computing devices can offer a natural, intuitive and hands-
free interface to the user. Speech-based systems have found increasing usage in informa-
tion provision systems, software for personal assistance, in-car navigation systems, tele-
care, and in controlling home appliances. Spoken interfaces have the potential to be par-
ticularly useful for older people, especially those with mobility and visual impairments.

A typical spoken dialogue system (SDS) is shown in Fig. 1. The dialogue manager
coordinates the other modules for speech input and output, and is usually provided with
a knowledge base that contains the information specific to the task. In an SDS, spoken
input from a user is processed by an automatic speech recognition module to generate a
text transcript of the spoken command. If the system is designed to process complex spo-
ken input, then a natural language understanding module is typically used to make sense
of the user request. In order to communicate the response to the user, the dialogue man-
ager invokes a natural language generation module that converts the response to a natural
text format. This text is then converted into speech using a text-to-speech synthesizer.

1Corresponding Author: Ravichander Vipperla, Multimedia Communications Department, Eurecom, Sophia
Antipolis, France ; E-mail: vipperla@eurecom.fr.



Dialogue

Manager

Automatic 

Speech 

Recogniser

Text to Speech

 Synthesizer

Natural 

Language 

Understander

Natural 

Language 

Generator

Domain / Task

Knowledge base 

Figure 1. Spoken dialogue system.

The use of an SDS in a home care setting can have a variety of uses such as medi-
cation reminders, home appliance control, on assistive robots or simply interactive chat-
bots. When designing and building such systems for older users, it is necessary to ac-
commodate those changes that occur with ageing. In the MATCH project we focused
on the development of SDS that takes account of cognitive ageing, auditory ageing, and
vocal ageing—each of which has an impact of the usability of an SDS. In this chapter
we outline the key findings of our research [1,2,3,4,5,6,7,8,9]. Following a review of the
physiology of ageing with respect to spoken communication, we outline our research
on how older people interact with dialogue systems. We also review our work on the
two key speech technologies—speech recognition and speech synthesis—and how they
should be adapted for older users.

1. Background

The impact of ageing is notoriously difficult to study because chronological age is a
relatively poor predictor of anatomical, physiological, and cognitive changes [10,11].
This variability is not only genetic, but also depends on individual lifestyle [12]. As a
consequence, designing systems for older users is challenging because individual older
people have very different needs and abilities.

Ageing mostly affects aspects of cognitive function such as reasoning [13] or
working memory [14]. Acquired knowledge such as vocabulary tends to be well pre-
served [15]; older users may even have a richer vocabulary than younger ones. How-
ever, older users are more prone to difficulties in finding words and may produce more
disfluencies in stressful conditions [16].

Ageing also affects the physiology of speech and hearing. The human vocal mech-
anism consists of the lungs, the larynx (which houses the vocal cords), and the vocal
tract comprised of the pharynx, the mouth and the nose. Typical changes associated with
ageing are reduction in the respiratory muscle strength and lung elasticity that result in
lower energy in produced speech, restricted vocal fold adjustments during phonation that
affect voice quality, and difficulty in producing the required tongue and lip shapes [17],
which can affect articulatory patterns and speech rate.

Speech perception is also affected by age. The most well-known effect of audi-
tory ageing is that low intensity sounds, in particular those at high frequencies, become
more difficult to hear [18]. For example, older people find it more difficult to understand
rapid or time-compressed speech [19], and speech in reverberant [20] or noisy environ-
ments [21,22].



Speech interfaces for older people have been developed in a variety of contexts,
ranging from systems that are intended to cover the whole population, such as airline
help systems, to specialist health care and rehabilitation applications such as symptom
management (e.g.[23,24]), delivery of health care interventions (e.g. [25]), memory
aids (e.g. [26]), home-based assessment using kiosks (e.g. [27]), and falls monitoring
(e.g.[28]).

Dulude [29] evaluated the usability of six commercially deployed Interactive Voice
Response systems with 22 younger and and 22 older people Only one of these systems
used speech input; the others relied on a touch-tone setup. The performance of older
users varied greatly. Even though older and younger users experienced similar problems
with the systems, older users’ performance suffered more, and they were more likely to
give up than younger users. Older people were particularly affected by voices that spoke
too fast, wrong keystrokes, and missing opportunities for error recovery.

Zajicek proposed a dedicated set of design patterns for voice interfaces tailored to
older users [30]. One example is Menu Choice, which suggests that menus should be
limited to at most three items. These design patterns are mainly motivated by existing
HCI guidelines and results from cognitive psychology.

2. Dialogue Management

In the MATCH project, we focussed on understanding how older people interact with
dialogue systems. In particular, we tested two strategies for reducing working memory
load, and we examined whether there are consistent differences between the interaction
style of younger and older users that can be modelled using simulated users.

2.1. Experimental methodology

We tested two strategies for reducing working memory load [1]: reducing the number
of options (four alternatives, two alternatives, yes/no); and confirming agreed informa-
tion (explicit confirmation dialogues, implicit confirmations where agreed information is
merely repeated, no confirmations). The strategies are illustrated in Table 1.

Table 1. Strategies for Reducing Working Memory Load

Options (Health Professional) Confirmation (Physiotherapist)
System System

Yes/No: Would you like to see the
physiotherapist?

Explicit: You would like to see the
physiotherapist. Is that correct?

2 Options: Would you like to see the
physiotherapist or the diabetes
nurse?

Implicit: When would you like to see
the physiotherapist, on Thurs-
day afternoon or on Friday
morning?

4 Options: Would you like to see the occu-
pational therapist, the commu-
nity nurse, the physiotherapist
or the diabetes nurse?

None: System: When would you like
to come, on Thursday afternoon
or on Friday morning?



We recruited 50 participants, of whom 26 were older (aged 50–85) and 24 were
younger (aged 18–30). The older users contributed 232 dialogues, the younger ones 215.
Older and younger users were matched for level of education and gender. These partici-
pants completed a series of four tests to assess two main dimensions of intelligence: fluid
intelligence, which is linked to abstract reasoning, and crystallised intelligence, which
is linked to acquired knowledge as well as working memory and information processing
speed. All tests were presented visually, to avoid problems due to age-related hearing
loss [31].

Fluid intelligence was assessed using Ravens’ Progressive Matrices [32]. Crys-
tallised intelligence was measured using the Mill Hill Vocabulary test [32]. Working
memory capacity was assessed using a sentence reading span test implemented in ePrime
[33]. Information Processing Speed was assessed using the Digit Symbol Substitution
subtest (DSST) of the Wechsler Adult Intelligence Scale-Revised [34].

Overall, we found that crystallised intelligence increases with age, and information
processing speed, fluid intelligence and working memory capacity decrease with age.

To explore the dependence of dialogue management strategies with age, the experi-
mental participants performed an appointment scheduling task, by interacting with nine
different SDSs, one for each combination of strategies. Each SDS was simulated using
a Wizard-of-Oz approach, where the “wizard” was responsible for speech recognition
and natural language understanding, while dialogue management and natural language
output generation was done automatically. Each system used a strict system-initiative
policy. In the experiments, users first arranged to see a specific health care professional,
then they agreed on a specific half-day, and finally, a specific half-hour time slot on that
half-day. Users were unable to skip any stage of the dialogue. This design ensured that all
users were presented with the relevant number of options and the relevant confirmation
strategy at least three times per dialogue. At the end, the appointment was confirmed.
After interacting with a SDS, participants filled in a detailed usability questionnaire. This
yielded both user satisfaction data and served as a brief distraction. Having completed
the questionnaire, they were asked to recall the appointment. Participants could not take
notes and had to rely on memory.

Both younger and older users correctly scheduled their appointments and were able
to recall appointments well regardless of dialogue strategy. This is contrary to the design
recommendations of e.g. Zajicek [30]. One possible reason for this result is that our task
could be solved by waiting for the first acceptable option, which removes the need to
remember, compare, and contrast options. In this case, presenting more options at a time
is better, especially for users with low working memory capacity [35].

An examination of dialogue length showed that using confirmations makes older
users less efficient. When the system used implicit confirmations or no confirmation at
all, older users’ dialogues were only around two turns longer than younger users’ dia-
logues. When the system used explicit confirmations, on the other hand, the gap widened
to around five turns.

The overall impression of the system was not affected by dialogue strategy. On the
whole, older users were less satisfied with the systems than younger users. For more
details on the experiment design and statistical analysis, see [1].



2.2. Experimental analysis

The dialogues that were generated during the study were recorded, transcribed ortho-
graphically, and annotated with dialogue acts and dialogue context information, to form
the MATCH dialogue corpus [36]. Using a unique mapping, we associate each dialogue
act with a 〈speech act, task〉 pair, where the speech act is task independent and the task
corresponds to the slot in focus (health professional, half-day or time slot). For example,
〈confirm pos, hp〉 corresponds to positive explicit confirmation of the health professional
slot. For each dialogue, detailed measures of dialogue quality were recorded: objective
task completion (appointment recall), perceived task completion, length (in turns), and
user satisfaction ratings as provided in the questionnaire.

Based on this corpus, we compared the interaction style of younger and older users.
In particular we investigated if users be categorised into distinct groups depending on
how they speak to the system, and how such groups might be characterized, and whether
the interaction style of an individual cab be predicted.

The interaction style of each user was characterised by features such as dialogue
length, frequencies of speech acts, and word frequency features. In order to establish the
underlying cluster structure, we used hierarchical agglomerative clustering and partition-
ing based top-down clustering. Classes were assigned based on agreement. A strong pat-
tern of two dominant clusters emerged. The clusters can be described by two key words,
social and factual. Factual users adapted quickly to the SDS and interacted efficiently.
Social users, on the other hand, treated the system like a human, failing to adapt to the
SDS’s system-initiative dialogue strategy. While almost all the social users were older,
about a third of the factual users were found to be from the older age group. The results
suggest that while older users are more social, it is advisable to adapt the spoken dialogue
systems to users based on their observed behaviour rather than simply relying on their
age.

2.3. Learning dialogue management

A dialogue manager can be based on hand-crafted rules or on statistical models obtained
using reinforcement learning [37,38]. In the statistical approach, strategies that lead to
successful dialogues are rewarded, while strategies which lead to failure are penalised.
Reinforcement learning requires a substantial number of recorded dialogues, which is
currently difficult to obtain from human users. Therefore, approaches have been devel-
oped using simulated users [39] in which the number of dialogues is limited only by
computing power. Although simulated users must be learned from interactions between
systems and human users, the number of interactions needed to learn a good simulated
user is several orders of magnitude lower than the number of interactions needed to train
a statistical dialogue management model.

Using the MATCH corpus, we constructed the first known age-sensitive user simu-
lations [3]. We showed that simulations based on younger users could not appropriately
describe the behaviour of older users, but that simulations created on the basis of older
users or all users covered behaviour patterns of both younger and older users fairly well.

We tested the utility of these user simulations for learning dialogue policies in two
further experiments [4]. In the first experiment, policies were rewarded that filled slots in
the correct order (strict policy). A large penalty was imposed when the policy deviated



from the strict slot order (health professional, half-day, time slot). In the second experi-
ment, these constraints were removed and slots could be filled in any order (user-initiative
policy). For each experiment, two policies were learnt, Policy-Old, which was based on
simulated older users, and Policy-Young, which was based on simulated younger users.
The resulting policies were then tested on simulated older users (Test-Old) and simulated
younger users (Test-Young). Scores for each combination of policy and simulated user
were established using 5-fold cross-validation.

The strict policy that was learned from simulated younger users was as follows, with
only slight variations: first request the type of health professional, then implicitly confirm
the health professional and request the half-day slot, then implicitly confirm the half-day
slot and request the time slot, and then confirm the appointment.

The flexible policy learned from simulated older users was a much better fit for
their interaction style than the strict policy. The score for the flexible policy learned from
simulated younger users was relatively low, even though the resulting policy was very
similar to the strict policy learned from younger users (i.e. a sequence of information
requests and implicit confirmations), and even though the behaviour of younger users is
far more predictable than the behaviour of older users.

The results indicate that simulated users can be used to learn appropriate policies for
older adults, even though their interaction behaviour is more complex and diverse than
that of younger adults. Crucially, simulated older users made it possible to learn a more
flexible version of the strict system-initiative dialogue strategy.

3. Speech Input

In this section we present some automatic speech recognition experiments, comparing
older and younger users, and investigate the acoustic changes that arise from ageing, and
their effects on speech recognition accuracy.

We first present the basic architecture of automatic speech recognition (ASR) sys-
tems that convert speech input to text which can subsequently be processed by the di-
alogue system. We then summarize our work on understanding the impact of several
changes observed with vocal ageing on ASR accuracies.

State-of-the-art ASR systems recognise speech by predicting the most likely se-
quence of words that can explain an observed sequence of recorded acoustic information
[40]. Such an approach is based on two statistical models estimated from data: the acous-
tic model, which provides an estimate of the likelihood of an acoustic observation se-
quence given a word sequence; and the language model which provides a prior probabil-
ity for a word sequence. A feature extraction module assumes the task of converting the
speech signal into discrete parameter vectors, and the lexicon acts as a map between the
words in the language model and the sub word units (typically phones) that comprise the
acoustic models. Given some recorded speech (acoustic observations), the most likely
sequence of words is found using a search, or decoding process based on the acoustic
and language models. Figure 2 illustrates such a system.

The acoustics are typically modeled with statistical models such as Gaussian mixture
models (GMMs) sequenced using hidden Markov models (HMMs). All the results pre-
sented here have been conducted in this framework, with the front end parametrization
being perceptual linear prediction coefficients (PLP) which are one of the best known



Figure 2. Automatic speech recognition system

features for speech recognition purposes. The ASR results are presented in terms of word
error rate (WER) which is a combination of substitution, deletion and insertion errors in
the recognition hypothesis with reference to the ground truth transcription.

Our work in the MATCH project [41,5,6,42,7] was primarily focused on under-
standing how ageing impacts the ASR accuracies from an acoustic modeling point of
view. Four different corpora were used in our experiments: The supreme court of United
states corpus (SCOTUS); The Japanese News paper archive sentences (JNAS and senior
JNAS) corpus; The Augmented multiparty interaction corpus (AMI); and the MATCH
corpus. While most analysis results were validated on at least two different corpora [7],
the results on only one corpus for each analysis are presented here for brevity.

In order to understand how ASR word error rates vary between younger and older
users, experiments were performed on the SCOTUS corpus, the details of which can be
found in [41]. The test set comprised 27 younger speakers (23 Male and 4 Female) in
the age range of 30-45 years, and 12 older speakers (10 Male and 2 Female) in the 60-85
years age range. The results presented in the Figure 3 show a significant difference of
9.3% absolute higher WERs for older speakers compared to younger speakers. Standard
approaches for improving accuracies such as adapting the speaker independent models
to the target speaker using maximum likelihood linear regression (MLLR), vocal tract
length normalisation (VTLN) to compensate for the differences between speakers and
the speaker adaptive training (SAT) that seperates speaker specific characteristics from
the phone acoustic models [43] also fail to bridge the gap in WERs for the two age
groups.

In order to understand the reasons behind these differences, we analysed the effect
of glottal source characteristics and articulatory changes.

3.1. Glottal source characteristics

Some of the most perceptually apparent vocal changes that occur due to ageing, such as
increased hoarseness, are due to the changes in the glottal source characteristics. These
changes are characterised by changes in parameters such as fundamental frequency, jit-
ter, shimmer, and the noise-to-harmonic ratio (NHR). Jitter and shimmer measure the
perturbations in time and amplitude of a signal (Fig. 4). Jitter is the ratio of pitch period
(Ti) variation from cycle to cycle to the average pitch period, expressed as a percentage.
Shimmer is the average absolute difference between the amplitudes (Ai) of consecutive
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Figure 3. Comparison of ASR WERs between younger and older adults in the SCOTUS corpus

periods, divided by the average amplitude, also expressed as a percentage. The noise-to-
harmonic ratio (NHR), which correlates well with breathiness in the voice, is the ratio of
the noise to the energy in the periodic part of the signal.

Ti

Ai

Figure 4. Perturbations in time and amplitude lead to jitter and shimmer respectively

Voice analysis is typically carried out on sustained vowel pronunciations recorded
in a controlled noise-free environment. However the SCOTUS corpus is spontaneous
speech with a considerable amount of background noise. Being spontaneous in nature,
the corpus also does not have sustained vowel pronunciations, with most of vowel sam-
ples being a fraction of a second long and part of a longer utterance. In order to pick
the best available instances of the sustained vowel (aa) phonations from the speech, each
utterance from the male speakers in the test set was aligned to the phonetic transcription
in order to determine the phone boundaries and the likelihood of the phone sequence



Voice quality measures
Younger Males Older Males

p-value
Mean Std Mean Std

Mean F0 143.9 43.2 128.0 44.6 < 0.001
Jitter (Local) 1.89 1.50 2.41 1.83 < 0.001

Shimmer (Local) 10.73 5.22 11.33 5.27 < 0.001
NHR 0.21 0.15 0.21 0.16 0.79

Table 2. Comparison of voice parameters between younger and older male speakers for the phonations of
vowel aa

comprising the utterance. Segments of the utterance corresponding to the phone aa satis-
fying a minimum length of 0.1 seconds and a likelihood threshold criterion were chosen
for voice analysis. In all, 2970 samples from 23 adult male speakers and 2105 samples
from 10 older male speakers were used for voice analysis. The analysis was carried out
only on male speakers to avoid any gender related confounding effect in the results.

The comparative results of the differences in these parameters between younger and
older males are displayed in Table 2. We observe that F0 reduces by about 10% and there
is a significant increase in jitter and shimmer measures. In order to understand if these
changes contribute to the increased WERs in older voices, a set of experiments were
conducted to artificially introduce these artifacts into younger adult voices [6].

To understand the F0 impact, the frequencies were scaled to 0.9 of their original
value to reflect the values observed in older voices [6]. The word error rates before and
after reduction in F0 are given in Table 3. The WER increased by 1.1% absolute to
33.2% and is statistically significant with p < 0.001.However, this difference could be
overcome to a certain extent by using vocal tract length normalisation.

Word Error Rate (WER) %
Original Reduced F0 p-value

Without VTLN 32.1 33.2 < 0.001
with VTLN 28.8 29.5 < 0.01

Table 3. WER (%) with artificial reduction in fundamental frequency of the speech from younger adults in the
SCOTUS corpus.

Jitter and shimmer in the younger adult test set were manipulated similarly, with a
maximum allowable perturbation of 5% and 10% (α = 0.05 and 0.1 respectively). ASR
results are shown in Table 4, where it can be seen that the changes in glottal source char-
acteristics have minimal impact on the ASR WERs. Front end feature extraction tech-
niques in ASR such as perceptual linear prediction used in our experiments are designed
to capture the vocal tract characteristics and surpress the glottal characteristics. As a
result, the changes in glottis with vocal ageing has little impact on ASR accuracies.

3.2. Articulatory changes

While there are significant differences in the glottal source characteristics, they do not
explain the differences in WER for the the two age groups. ASR systems model articu-
latory patterns through the acoustic model. We investigated three aspects of articulatory
changes: phone recognition accuracy, vowel centralisation, and speaking rate.



Word Error Rate (WER) %

Artifact introduced Original
Modified

α = 0.05 α = 0.1

Increase Jitter 32.1 32.2 (p = 0.62) 32.4 (p = 0.17)

Increase Shimmer 32.1 32.1 (p = 0.65) 32.1 (p = 0.13)

Table 4. WER (%) with artificial modification of the speech from younger adults in the SCOTUS corpus to
reflect the voice parameter values observed in older adults

In order to understand which phones are most impacted by ageing in terms of ASR
WERs, we performed an experiment on the SCOTUS corpus using the same train and
test set as for the baseline experiments above, using a phone loop decoder (where any
phone is allowed to follow any phone in an unconstrained manner) to output a phone
transcription purely based on the acoustic model likelihood. In such a setting, the con-
founding effect of the language model are eliminated and an insight into the acoustic
differences becomes possible. The results in this case are measured using phone cor-
rect recognition percentage which is a ratio of the number of occurences of a phone in
the decoded hypothesis to the total number of occurences of the phone in the reference
hypothesis. These results indicated that the class of phones whose recognition accuracy
decreased the most with ageing were vowels [7].

We hypothesised that this impact is due to vowel centralisation, in which the discrim-
inability between vowels is reduced due to articulatory undershoot, leading to changes
in vowel formant frequencies towards the mean. It has been reported in [44] that vowel
centralisation is quite pronounced in very old speakers with all vowel realisations sound-
ing quite close to each other. Vowel centralisation is typically measured using the vowel
space area. First and second formant frequencies (F1 and F2) are calculated for each
vowel and the vowels are plotted in the 2 dimensional F1-F2 space. The vowel space area
is the area enclosed by the corner vowels i, u, a and ae.

The vowel space analysis was carried out on the utterances used for the experiments
on glottal source characteristics described previously. The values of first (F1) and second
formant (F2) frequency for each vowel instance were computed at the vowel midpoint.
After rejecting outliers, mean values of each vowel for a speaker were computed.

The vowel space bounded by the phones aa, uw, iy and ae for both the age groups
is shown in figure 5. The corner points of each quadrilateral is the average across all
the speakers in that age group. The area of the vowel quadrilateral for each speaker was
computed, and shown in Table 5. The area occupied by the vowel quadrilateral of older
speakers is less than that of younger speakers, indicating vowel centralization. The vowel
space areas of the speakers in the two age groups are significantly different at p < 0.01
using Student’s T test.

Vowel space area (Hz2)
Younger adult males Older adult males Difference p-value

5.46× 104 (std: 1.33× 104) 3.99× 104 (std: 0.97× 104 ) 1.47× 104 < 0.01

Table 5. Vowel Space Area comparison between younger adult and older adult males in SCOTUS corpus

While all the corner vowels appear to shift in the F1-F2 space with ageing, the phone
recognition results indicated that vowels ae and aa have a large decrease in performance
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Figure 6. Centroid positions of common vowels in younger and older Adults

with ageing while the phones iy and uw do not show much difference in accuracies. In or-
der to understand this better, the centroids of all the vowels (averaged over all the speak-
ers in each age group) are shown in Figure 6. For the older speakers, the vowels appear to
move closer to each other into clusters in the F1-F2 space especially in the central region
of the vowel space. This might lead to a reduction in the discrimination capacity between
phones and also explain to some extent the large decrease in recognition accuracies for
some of the central vowels.

The third articulatory pattern we explored, speaking rate, has been reported to be
slower in older adults compared to younger adults. Though the underlying physiological
change for the decrease in speech rate is not clear completely, it is believed to be a result
of restricted free movement in articulators and a reduction in motor control capabilities.



It has also been suggested that older adults tend to deliberately reduce speech rate so
as to be more intelligible under restricted motor control abilities. Slower speaking rate
is a combined effect of longer pronunciation of words, increased number of pauses and
pause duration. The impact of speaking rate differences on ASR accuracies has received
little attention in ASR research.

For our analysis of speaking rate, we computed the average duration of each phone.
We used the JNAS corpus for the analysis where the test set comprised 101 older and
101 younger speakers with about 50 utterances per speaker, with the speakers in the two
age groups being roughly balanced in terms of gender. The average duration (dp) for
each phone for each age group was computed and a weighted average phone duration
(based on the phone frequency) for older and younger speakers is shown in Table 6. The
results show a statistically significant decrease (p < 0.01) in the speaking rates of older
speakers.

Speaking Rate (msec per phone)
Younger Males Older Males Younger Females Older Females

72.0 91.2 78.1 93.8

Table 6. Speaking rate differences between younger and older adults in the JNAS corpus

In an experiment to understand the impact of using acoustic models trained on
speech with a speaking rate different from that of the test set, seperate acoustic mod-
els were trained on the JNAS corpus for each age-gender group [7]. The state transition
probabilities of these acoustic models capture the duration information for each phone
and thereby speaking rate. A different set of acoustic models were then created by swap-
ping the transition probabilities of the models of older males with those of younger males
and similarly for the female speakers. All other parameters of the original models were
kept fixed and the test sets decoded with the original and modified models. The results
shown in Table 7 capture in effect, the outcome of slower speech test set decoded on
models trained on slower speech and models trained on faster speech, all other charac-
teristics of training speech being the same. It is observed that while correct recognitions
are almost the same, the word error rates increase for both male and female speakers
with modified models. It can thus be concluded that insertions errors increase for slower
speech decoded with models trained on relatively faster speech.

Acoustic models
Older males Older females

% Correct % Accuracy % Correct % Accuracy
Original 75.8 69.6 84.3 80.0

Modified 75.6 68.1 84.2 79.6

Table 7. Word correct recognition and accuracies for older speakers in the JNAS corpus with original and
transition parameter modified models

3.3. Acoustic modelling for older speakers

One of the questions of interest is to address whether speech from older speakers is
different from that of younger speakers in the acoustic feature space used in ASR. In



order to answer this, a speaker-age group classification task was set up on the MATCH
corpus.

Using speaker independent acoustic models trained on the AMI corpus, speaker
adaptation transforms for each of the 50 speakers in the MATCH corpus were computed.
These transformation matrices capture speaker specific information and can be used as
speaker identities. The similarity between every pair of speaker transforms was com-
puted [42] and using those similarity scores all the speakers were then clustered into
four groups using CLUTO [45] by the repeated bisections method. In this method, the
speakers are first clustered into 2 groups, which are bisected again to obtain four groups.

Younger Males (5)

Older Males (2)

Younger Males (2)

Older Males (8)

Older Females (1)

Younger Females (6)

Younger Females (11)

Older Females (15)

(7)

(11)

(6)

(26)

Total Speakers (50)

(18)

(32)

Figure 7. Clustering of speakers in the MATCH corpus

The speaker distribution in the clusters is shown in Figure 7. As expected, at the
first level of clustering, the male and female speakers are separated out. At the next level
of clustering, there appears to be some separation between the younger and older male
speakers. While for the females, there is a large overlap of younger and older females in
a cluster. This also corroborates with the fact that age related changes in the voice for
women are less pronounced than those observed in men.

Motivated by the results of speaker clustering, hierarchical acoustic models were
built on the JNAS corpus as shown in figure 8 to find if any improvements in ASR WERs
were possible for the older age group. The root speaker independent models were trained
using the entire training set of 205 younger speakers and 187 older speakers roughly
balanced in terms of gender. The acoustic models in each child node are derived from the
parent node by adapting with a node specific subset of the training set using maximum
a-posterori approach.

The results shown in Table 8 are obtained by decoding age and gender dependent
subsets of the test set with various sets of acoustic models in the hierarchical struc-
ture. While gender dependent models achieve significant improvements over speaker-
independent models, there are modest additional gains possible with further clustering
based on age for the older age group. Such age based grouping is observed to be counter
productive for younger adult group and they appear to benefit from a larger training set
(including speech from older speakers).

It can thus be concluded that while it helps to a certain extent to collect more data
from the older age group to improve their ASR accuracies, the accuracies that can be
achieved are still lower than what is desired. Perhaps speaker specific models where the



Figure 8. Gender and age dependent acoustic models

ASR Word Error Rates (%)

Acoustic models
Younger Adults Older adults
Male Female Male Female

Speaker Independent 16.2 15.5 23.9 16.9

Gender Dependent 15.1 14.3 21.4 15.9

Gender and Age Dependent 15.7 14.2 21.1 15.7

Table 8. ASR WERs using hierarchical models based on gender and age groups

changes in the articulatory patterns for each individual are carefully taken into consid-
eration during modeling might form an appropriate solution. Building a framework for
such modeling is a subject of future work in this direction.

4. Speech Output

Computer-generated synthetic speech makes it easy to adapt the spoken messages used
in home and telecare systems to users’ needs and preferences. Full speech synthesis sys-
tems can be used to generate virtually any sentence desired. This means that content and
wording can be adapted quickly and cost-effectively to changing care needs. Designers
can choose from a range of voices, speaking styles (and, in the case of avatars, faces) to
provide users with a choice of personas for their interaction with the system.

Despite recent advances in speech synthesis technology, synthetic speech can still be
seen as degraded relative to human speech because the synthesis process may introduce
artefacts, fail to include potentially important information in the signal or even produce
mistakes. In the light of the effect of ageing on hearing, we need to ask what effect this
degradation has on older users’ ability to understand synthetic speech.

Formant synthesis, the technology used in DECTalk [46], is perhaps the most artifi-
cial of all forms of speech synthesis. In formant-based systems, the speech signal is cre-
ated from scratch based on a model of the speech production process. It therefore lacks
much of the rich acoustic information found in natural speech. Due to its long tradition
and its widespread use in augmentative and alternative communication, formant synthe-
sis is by far the best studied synthesis technology for older people. Using a task involving



the recognition of isolated monosyllabic words, the Modified Rhyme Test [47], Humes
[48] showed that older people with a hearing loss can understand formant synthesis as
well as natural speech. However, when moving from words to sentences, new problems
emerge. The dearth of acoustic information in the signal [49] and wrong intonation pat-
terns [50] may make it more difficult for the listener to understand what is being said,
which in turn increases cognitive load [51]. Due to reduced cognitive resources, a higher
cognitive load may affect older listeners more than younger ones [52]. Some strategies
that increase intelligibility of formant synthesis are reducing the speech rate [53] or mak-
ing sure that appropriate context is provided [54].

Roring, Hines, and Charness [55] studied another form of speech synthesis, diphone
synthesis. In diphone synthesis, new utterances are constructed from units that are de-
signed around the transition between two speech sounds. Roring et al. asked younger
and older listeners to identify monosyllabic words that were either spoken in isolation or
occurred in the final position of a sentence that provided a few contextual cues. Overall,
older listeners found synthetic speech more difficult to understand, even when the mate-
rial was slowed down by 50%. Older and younger listeners profited equally from addi-
tional context. All age-related effects could be explained by increased pure-tone thresh-
olds. Even though they performed thorough cognitive assessments, Roring et al. did not
observe any additional effect of cognitive ageing.

4.1. Unit selection speech synthesis

During the MATCH project, we focused on unit selection synthetic speech [56], which is
both highly intelligible and sounds very natural. Unit selection systems generate output
by concatenating segments of speech that are taken from a large database of pre-recorded
utterances. These segments can be as small as the transition between two sounds used
in diphone synthesis, or as large as entire phrases. Given input text, the unit selection
algorithm searches the database for the best-fitting sequence of segments. Unit selec-
tion databases typically contain about ten hours of high-quality speech from a variety of
genres, recorded by a single speaker.

Unit selection synthesis is characterised by requiring very little additional signal
processing that might distort the speech. The acoustic richness of the original human
voice is preserved, and the resulting output often sounds highly natural. The downside
is that modifying the intonation, speaking rate, and rhythm of the resulting speech may
be difficult. As most unit selection systems are highly modular, it is relatively easy to
add new voices, genders, and dialects. In later work, not described here, we have carried
out intensive research on statistical parametric speech synthesis, an approach which has
the advantages of offering much greater control over the generated speech, as well as
offering the possibility to personalise the synthetic speech through speaker adaptation,
an approach which requires only a few minutes of speech data [57]. This technology has
been applied to voice reconstruction for people with degenerative diseases such as motor
neurone disease and Parkinson’s disease [58], and was compared to unit selection speech
synthesis in terms of intelligibility in experiments performed using Amazon Mechanical
Turk [59].

Lines and Hone investigated the intelligibility and acceptability of an early version
of unit selection, which used units of flexible length that can be up to a word long [60],
with older users [61,62]. The target application was an interactive domestic alarm system



Younger Users Older Users

Number 20 42
Age in Years M=25 SD=4.4 M=60 SD=7.4
Perc. Male N=4 20 N=18 43
Difficulty Hearing N=1 5 N=24 57
Hearing Loss, at least one ear

Based on PTA4 N=0 0 N=17 40
Conductive N=0 0 N=7 17
Mixed N=0 0 N=4 10

Hearing Loss, bilateral
Based on PTA4 N=0 0 N=17 40
Conductive N=0 0 N=7 17
Mixed N=0 0 N=4 10

Table 9. Participant Demographics

installed in four trial homes of the Millenium Home project [28]. They compared a male
and female synthetic voice to a male and female human voice. All voices spoke British
English with a Received Pronunciation (RP) accent. To assess intelligibility, users were
asked to perform a series of tasks around the home in each of the four voices. Task
success was uniformly high for each voice. However, the synthetic voices were seen as
less natural, less pleasant, more irritating, and more boring.

Langner and Black [63] evaluated fully-fledged unit selection where segments were
selected from a large database and were allowed to be longer than a word. Younger and
older participants received computer-generated information about bus timetables over a
telephone. Participants transcribed what they heard, and the word error rate of these tran-
scriptions was measured, with the finding that people with self-reported hearing prob-
lems found it more difficult to understand messages spoken by a computer voice.

4.2. Experimental study

Since formant synthesis and unit selection synthesis are so different, it is not straightfor-
ward to translate message design principles developed using formant synthesis systems
to unit selection. While it is possible to slow the down the output of formant synthesisers
by almost arbitrary amounts, this is not so easy for unit selection. The signal processing
methods that are used to stretch unit selection speech can introduce undesirable artefacts
if the speaking rate is changed by more than 10-20%. In this study, we investigated the
baseline intelligibility of unit selection systems with older listeners under good listening
conditions with a view to proposing a new set of guidelines that are largely independent
of the synthesis technology used.

The demographics of the participants in terms of ageing and hearing loss are sum-
marised in Table 9. Relevant medical and family history information was obtained us-
ing a detailed questionnaire. Working memory capacity was assessed using a visually
presented reading span test [64]. Visual evidence of ear disease was screened for using
otoscopy. The full set of tests, which is described in detail in [8], included pure-tone au-
diometry, bone-conduction audiometry tympanometry, speech audiometry in quiet [65],
and a gap detection test [66].



Severity of hearing loss was described based on the average air-conduction thresh-
olds at 0.5, 1, 2, and 4 kHz (PTA4) following the guidelines of the British Society of Au-
diology [67]. Hearing was considered normal when PTA4 air-conduction thresholds were
≤ 20 dB(HL) in both ears. People with a PTA4 air-conduction threshold >20 dB(HL)
were considered to have a hearing loss. A PTA4 threshold of between 20 and 40 dB(HL)
indicated mild hearing loss, a threshold of between 40 and 70 dB (HL) indicated mod-
erate hearing loss, and a threshold of 71 dB or higher indicated severe hearing loss. Fol-
lowing BSA guidelines, a bone conduction threshold that was at least 10 dB lower than
the corresponding air-conduction threshold was taken to indicate a potential conductive
hearing loss, i.e. problems with hearing due to middle ear pathology. An air-bone gap
of at least 10 dB together with an average bone-conduction threshold of 20 dB (HL) or
higher was taken to indicate a mixed hearing loss.

The speech task covered two types of reminders that are particularly relevant to the
home care domain: reminders to meet a specific person at a given time (appointment
reminders), and reminders to take a specific medication at a given time (medication re-
minders). Participants heard a reminder and were asked to recall either the time or the
other relevant information provider (person / medication).

We implemented a full factorial design with five variables, reminder type (ap-
pointment / medication), reminder voice (human/synthetic), order of information (time
first / time last), information to be recalled (time / person or medication), and posi-
tion of information to be recalled (non-reminder-final / reminder-final) for a total of
2 × 2 × 2 × 2 × 2 = 32 reminders. Only the voice of the reminder itself was manip-
ulated; questions were always presented using the human voice to ensure participants
could understand the recall task.

Times are remembered well regardless of voice or position in the sentence, at 95%
correct. Person names are remembered less well when they are presented using the syn-
thetic voice (86%) instead of the human voice (98%). Medications were by far the most
difficult response category. Overall, people only remembered half the medication names
correctly (50% correct). It was only for the combination of this particular response cat-
egory and the synthetic voice that we observed a recency effect. While people only re-
membered one in three medication names correctly (30% correct) when they occurred in
the first slot in a synthetic reminder, they were able to remember two in five when the
name occurred in the second, final slot (44% correct). Multilevel modelling confirmed
the findings of Roring et al. [55] that most of the age-related variation was due to differ-
ences in hearing, not cognition.

5. Conclusions

Designing spoken dialogue systems for older people presents many challenges. The stud-
ies reported in this chapter have shown that simple systems with basic functionality can
potentially work well for younger and older people. When creating new spoken dialogue
interfaces for home care tasks, we suggest the following practical guidelines:

Speech Recognition and Natural Language Understanding: If the speech recogni-
tion component used does not work as well for older as for younger people, create
materials that reflect the speaking style of the older user who will be interacting
with the system and schedule a session for training and adapting the recogniser.



These materials should cover dialectal variation as well as typical sentence struc-
tures and expressions.

Dialogue Management: Adapt to the user’s interaction style. Are they quite chatty or
are they likely to give short, focused answers? Ensure that the dialogue structure
follows existing mental models, like the ones discussed here for medication. When
adapting to cognitive limitations, be wary of making assumptions based on the
literature. A detailed cognitive walkthrough will show you what information needs
to be processed and memorised.

Speech Synthesis and Natural Language Generation: Speak clearly, using the appro-
priate settings for the speech synthesis system you are using. Use of phrasing and,
if available, intonation to highlight important information can be achieved in dif-
ferent ways depending on the system. Sometimes intelligibility can be improved
by slowing down the generated speech, but rate of slowing depends on system.

The biggest future challenge will be to assess the effect of speech recognition prob-
lems on the usability of spoken dialogue systems, so that strategies can be developed to
address them. There are also very few studies of older people using deployed speech in-
terfaces, with the notable exception of [29]. This is a general problem in spoken dialogue
systems research, which is mostly conducted in the lab, not in the wild.

We also need a better understanding of the advantages and limitations of spoken di-
alogue systems in order to decide where and when to use them. In related user require-
ments work [68], we have found that many users prefer visual interfaces. Even among
those who would use auditory interfaces, there is a divide between people who prefer
speech and people who prefer non-speech audio. While ongoing work in mainstream
speech technology and dialogue research is focusing on increasing robustness and us-
ability, work within the Human-Computer Interaction field on speech and dialogue tech-
nology for older adults should also concentrate on identifying relevant use cases and
improve screening for usability problems.
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