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Abstract
In this paper, we evaluate the vulnerability of a speaker veri-
fication (SV) system to synthetic speech. Although this prob-
lem was first examined over a decade ago, dramatic improve-
ments in both SV and speech synthesis have renewed interest in
this problem. We use a HMM-based speech synthesizer, which
creates synthetic speech for a targeted speaker through adapta-
tion of a background model and a GMM-UBM-based SV sys-
tem. Using 283 speakers from the Wall-Street Journal (WSJ)
corpus, our SV system has a 0.4% EER. When the system
is tested with synthetic speech generated from speaker mod-
els derived from the WSJ journal corpus, 90% of the matched
claims are accepted. This result suggests a possible vulner-
ability in SV systems to synthetic speech. In order to de-
tect synthetic speech prior to recognition, we investigate the
use of an automatic speech recognizer (ASR), dynamic-time-
warping (DTW) distance of mel-frequency cepstral coefficients
(MFCC), and previously-proposed average inter-frame differ-
ence of log-likelihood (IFDLL). Overall, while SV systems
have impressive accuracy, even with the proposed detector,
high-quality synthetic speech can lead to an unacceptably high
acceptance rate of synthetic speakers.

1. Introduction
The objective in speaker verification (SV) is to accept or re-
ject a claim of identity based on a voice sample. During the
training stage [Fig. 1(a)], speaker-dependent feature vectors x′n
are extracted from training speech signals and used to build
a speaker model λs. The feature vectors are normally based
on the mel-frequency cepstral coefficients (MFCCs). Within
the speaker modeling block, feature vectors from all users are
first concatenated and modeled with a Gaussian mixture model-
universal background model (GMM-UBM) λUBM [1]. Next,
the speaker model is constructed through MAP-adaptation of
the GMM-UBM. Both λUBM and λs are parameterized by the
set {wi, µi, Σi} where wi are the weights, µi are the mean
vectors, and Σi are the diagonal covariance matrices of the
GMM. During the testing stage [Fig. 1(b)], feature vectors xn

are extracted from a test signal and a log-likelihood ratio Λ(X)
is computed by scoring the sequence of test feature vectors
X = {x1, . . . , xN} against the claimant model λC and the
UBM

Λ(X) = log p(X|λC)− log p(X|λUBM) (1)

where

log p(X|λ) =
1

N

NX
n=1

log p(xn|λ) (2)
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Figure 1: GMM-UBM speaker verification system.

and N is the number of test feature vectors. The claimant
speaker is accepted if

Λ(X) ≥ θ (3)

or else rejected, where θ is the decision threshold.
Synthetic speech potentially poses two related problems for

SV systems. The first problem is confirmation of an acquired
speech signal as having originated from a particular individual.
In this case, the speech signal might be incorrectly confirmed
as having originated from an individual when in fact the speech
signal is synthetic. The second problem is in remote or on-line
authentication where voice is used. In this case, a synthesized
speech signal could be used to wrongly gain access to person’s
account. We assume for this second problem, the authentication
system prompts the user to speak a randomly-chosen utterance
in order to thwart the use of pre-recorded material, i.e. text-
prompted SV. Of course, a randomly-chosen utterance would
not present a problem for a speech synthesizer. In both of these
problems, the speech model for the synthesizer must be targeted
to a specific person’s voice.

The problem of imposture against SV systems using speech
synthesized from hidden Markov models (HMMs) was first
published over 10 years ago by Masuko, et. al. [2]. In their
original work, the authors used an HMM-based text-prompted
SV system [3] and an HMM-based speech synthesizer. In the
SV system, feature vectors were scored against speaker and
background models composed of concatenated phoneme mod-
els (not GMM-based models). The authors also used a HMM-
based speech synthesizer which was adapted to each of the hu-
man speakers [4].



When tested with 20 human speakers, the system had a 0%
False Acceptance Rate (FAR) and 7.2% False Rejection Rate
(FRR) and when tested with synthesized speech (20 synthetic
voices) the system had over 70% FAR. In subsequent work
by Masuko, et. al. [5], the authors extended the research in
two ways. First, they improved their synthesizer by generat-
ing speech using pitch information. Second, they improved
their SV system by utilizing both pitch and spectral informa-
tion. The pitch modeling techniques used in synthesis were the
same used in the SV system. By improving the SV system, the
authors were able to lower the FAR for synthetic speech to 32%,
however, the FAR for the human speech increased to 1.8%.

In the last 10 years, both speech synthesizers and SV sys-
tems have improved dramatically. Around the same time as
Masuko’s work, GMM-UBM-based SV systems were first pro-
posed [6]. Since this time, GMM-UBM based SV systems
have produced excellent performance and have achieved EERs
of 0.1% on the TIMIT corpus (ideal recordings) and 12% on
NIST 2002 Speaker Recognition Evaluations (SRE) (non-ideal
recordings) [1, 7]. Other kernel-based techniques have been
proposed and in some cases can lead to lower EERs, however,
at this time GMM-UBM systems remain dominant in practice
[8].

Until recently, developing a speech synthesizer for a tar-
geted speaker required a large amount of speech data from a
carefully prepared transcript in order to construct the speech
model. However, with a state-of-the-art HMM-based speech
synthesizer [9], the speech model can now be adapted from
an average model (derived from other speakers) or a back-
ground model (derived from one speaker) using only a small
amount of speech data. Moreover, recent experiments with
HMM-based speech synthesis systems have also demonstrated
that the speaker-adaptive HMM-based speech synthesis is ro-
bust to non-ideal speech data that are recorded under various
conditions and with varying microphones, that are not perfectly
clean, and/or that lack phonetic balance [10, 11]. In [11] a high-
quality voice was built from audio collected off of the Internet.
This data was not recorded in a studio, had a small amount
of background noise, and the microphones varied in the data.
Further [12, 13] reported construction of thousands of voices
for HMM-based speech synthesis based on popular ASR cor-
pora such as the Wall Street Journal (WSJ0, WSJ1, and WSJ-
CAM0), Resource Management, Globalphone and SPEECON.
Taken together, these state-of-the-art speech synthesizers pose
major challenges to SV systems.

This paper is organized as follows. In Sections 2 and 3, we
describe our speech synthesis and speaker verification systems.
In Section 4, we describe the experimental evaluation and pro-
vide results using the Wall-Street Journal (WSJ) corpus and its
synthesized counterpart. Although the WSJ journal corpus is
not a standard corpus for SV research, it is one of the few that
provides sufficient speech material from hundreds of speakers
which is required to construct synthetic voices matched to their
human counterparts. In Section 5, we investigate two methods
for detecting synthetic speech and in Section 6, we examine the
issue of duration adaptation in synthesized speech. We conclude
the article in Section 7.

2. Speech Synthesizer
All text-to-speech (TTS) systems are built using the frame-
work from the “HTS-2007 /2008” system [10, 14], which was
a speaker-adaptive system entered for the Blizzard Challenge
2007 [15] and 2008 [16]. In the 2008 challenge, the system
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Figure 2: Overview of the HTS-2007/2008 speech synthesis
system, which consists of four main components: speech analy-
sis, average voice training, speaker adaptation, and speech gen-
eration.

had the equal best naturalness and the equal best intelligibil-
ity on a training data set comprising one hour of speech. The
system was also found to be as intelligible as human speech
[14]. The speech synthesis system, outlined in Fig. 2, consists
of four main components: speech analysis, average voice train-
ing, speaker adaptation, and speech generation.

In the speech analysis part, three kinds of parameters for
the STRAIGHT (Speech Transformation and Representation by
Adaptive Interpolation of weiGHTed spectrogram [17]) mel-
cepstral vocoder with mixed excitation (i.e., the mel-cepstrum,
log F0 and a set of band-limited aperiodicity measures) are
extracted as feature vectors for HMMs [18]. In the average
voice training part, context-dependent multi-stream left-to-right
multi-space distribution (MSD) hidden semi-Markov models
(HSMMs) [19] are trained on multi-speaker databases in order
to simultaneously model the acoustic features and duration. A
set of model parameters (mean vectors and diagonal covariance
matrices of Gaussian pdfs) for the speaker-independent MSD-
HSMMs is estimated using the Expectation Maximization (EM)
algorithm [20].

An overview of the training stages for the average voice
models is shown in Fig. 3. First, speaker-independent mono-
phone MSD-HSMMs are trained from an initial segmenta-
tion, converted into context-dependent MSD-HSMMs, and re-
estimated. Then, decision-tree-based context clustering with the
MDL criterion [21] is applied to the HSMMs and the model pa-
rameters of the HSMMs are tied at leaf nodes. The clustered
HSMMs are re-estimated again. The clustering processes are
repeated twice and the whole process is further repeated twice
using segmentation labels refined with the trained models in a
bootstrap manner. All re-estimation and re-segmentation pro-
cesses utilize speaker-adaptive training (SAT) [22] based on
constrained maximum likelihood linear regression (CMLLR)
[23].

In the speaker adaptation part the speaker-independent
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Figure 3: Overview of the training stages for average voice
models.

MSD-HSMMs are transformed by using constrained structural
maximum a posteriori linear regression (CSMAPLR) [24].
Note that not only output pdfs for the acoustic features but also
duration models are also transformed in the speaker adaptation
[25]. In the speech generation part acoustic feature parameters
are generated from the adapted MSD-HSMMs using a param-
eter generation algorithm that considers both the global vari-
ance of a trajectory to be generated and trajectory likelihood
[26]. Finally an excitation signal is generated using mixed ex-
citation (pulse plus band-filtered noise components) and pitch-
synchronous overlap and add (PSOLA) [27]. This signal is used
to excite a mel-logarithmic spectrum approximation (MLSA)
filter [28] corresponding to the STRAIGHT mel-cepstral coef-
ficients to generate the speech waveform.

3. Speaker Verification System
The GMM-UBM SV system used in this research is shown in
Fig. 1. Feature vectors are extracted every 10 ms using a 25
ms hamming window and composed of 15 MFCCs, 15 delta
MFCCs, log energy, and delta-log energy as elements. We ap-
ply feature warping to the vectors in order to improve robustness
[29] which is adequate given the high-quality recordings in the
WSJ corpus. The GMM-UBM (1024 component densities) is
built by concatenating the training feature vectors of the speak-
ers within the corpus and using the EM algorithm to compute
the parameters of the GMM-UBM. Individual speaker models
are obtained through MAP-adaptation of the GMM-UBM (only
the mean vectors) [1]. Our GMM-UBM SV system has a base-
line for the 330 speaker NIST 2002 corpus (one speaker detec-
tion cellular task) of 12.10% EER which agrees with recently-
published values [8]. In a previous study [30], our SV system
was based on a Support Vector Machine (SVM) with Gaussian
supervector kernel. Our results using a small, nonstandard cor-
pus were the same as compared to the GMM-UBM system. In
this paper, we have turned our attention to expanding the study
with a much larger corpus than that used in [30] which implies
the development of many more synthetic voices than previously
used.

4. Experiments and Results
We use the WSJ corpus [31] from LDC. Although the WSJ
corpus is not the de facto standard for building SV systems,
it contains several hundred speakers and sufficiently long sig-
nals required for constructing each of the components of both
our speech synthesizer and SV system [32]. Since the WSJ cor-
pus mainly has relatively clean speech and there is no read for
channel compensation or noise reduction, which would make
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Figure 4: The amounts of speech data available for individual
speakers in set A. The amounts vary from 73 sec to 27 mins.

distinction between real and synthetic speech more difficult due
to the masking effects etc, we can expect results on ideal condi-
tions. From the corpus, we chose the pre-defined official train-
ing data set (known as SI-284) that includes both WSJ0 and
WSJ1 as material data. The SI-284 set has a total of 81 hours
of speech data uttered by 284 speakers1 was partitioned into
three sets A, B, and C. Set A was used for the speech synthesis,
i.e., constructing an average voice model and for adapting the
average voice model to the 283 target speakers. Set B was used
for constructing the SV system, i.e. constructing the UBM and
adapting the UBM to the speakers. Note that the UBM and av-
erage voice model are trained on different subsets derived from
the same corpus, since we aim to show results on the ideal con-
ditions and thus should avoid cross-corpus negative effects. In
future work, however, the UBM and average voice model will
be derived from different corpora to discuss more practical sit-
uations where we also consider the cross-corpus effects includ-
ing acoustic condition differences, microphone differences, or
noise differences. Set C was used for test signals for the SV
evaluation of human speech.

Since each speaker included in the SI-284 set has different
speech durations, we used varying lengths (73 sec to 27 min)
of training signals from set A to construct the average voice
model and to adapt the model to each the speaker. Fig. 4 shows
the distributions of the amounts of data available for individual
speakers. The adapted models were used to create synthesized
speech for each of the target speakers which serve as test signals
for the SV evaluation of synthetic speech. Some speakers have
larger amounts of data than those we can practically collect for
the imposture against the SV system. However, in hopes that
analyzing the quantity of data would give us some insight on
this problem, we utilized the various amounts of data for speech
synthesizer.

We used approximately 180 sec of material from each of
the 283 speakers in set B for training and 30 sec of material
from each of the 283 speakers in set C for testing. The Deci-
sion Error Tradeoff (DET) curve is shown in Fig. 5. With the
decision threshold properly set, the EER is 0.4%. The mean
and variance of the log-likelihood scores for the GMM-UBM
SV system are computed and approximate score distributions
for human speech are shown in Fig. 6 with green and red lines.

1Due to the recording condition issues 1 speaker was eliminated in
our experiments.
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Figure 5: DET curve for speaker verification using test signals
from human speakers. For the GMM-UBM system, the EER is
0.4%.
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Figure 7: Distributions of DTW distance of MFCCs for human
and synthetic speech with different linguistic contexts and du-
rations for Austrian German corpus (9 speakers).

Using the same decision threshold, the system is then tested
using synthetic speech. In this case, each of the 283 syn-
thetic speech test signals is scored against one of 283 (human)
claimant models leading to a total of 2832 tests. Of these,
283 tests are with a “matched” claimant, i.e. synthesized voices
claim to be their human counterparts and 283*282 tests with
an “unmatched” or false claimant. For the matched claimant
tests, 254/283 or 90% of the claims are accepted. Thus despite
the excellent performance of the SV systems, the speaker sim-
ilarity/identity of the synthesized speech is high enough to al-
low these synthesized voices to pass for true human claimants.
The mean and variance of the log-likelihood scores (1) are
computed and approximate score distributions for synthesized
speech (black and blue lines) are shown in Fig. 6. As shown
in Fig. 6 significant overlap occurs in the distributions of log-
likelihood ratios for human speech, true claimant (green line)
and synthesized speech, matched claimant (black line). Thus
adjustments in decision thresholding or standard score normal-
ization techniques are unlikely to differentiate between true and
matched claims originating from human and synthesized speech
[33, 34].

5. Detection of Synthesized Speech
The difference between a synthetic and human speech signal is
audible although it is not clear at present, which acoustic cues
are being used to discriminate. However, we have investigated
three methods for the automatic (machine-based) detection of
synthetic speech. The first uses a distance measure between
MFCC features, the second uses the average inter-frame differ-
ence of log-likelihood (IFDLL) proposed in [35], and the third
uses the word-error-rate (WER) and sentence-error-rate (SER)
from an automatic speech recognizer (ASR) trained on human
speech. With these three methods, we have designed two dif-
ferent system architectures for the detection of synthetic speech
which are described in Subsection 5.4.

5.1. Dynamic time warping of MFCC features

In the first method, we compute the acoustic distance between
two realizations of the same utterance using dynamic time
warping (DTW) of MFCC features. This exploits the fact that
the HMM-based synthesizer will always produce the same glob-
ally optimal waveform in terms of maximum likelihood, given
a set of input phoneme labels while human speech will always
be different. In Fig. 7, we see that synthetic speech phrases
are more similar to each other (smaller variance) than human
speech (larger variance), even when using different linguistic
contexts and durations. This means that small changes in the
synthesis parameters are not sufficient to make synthetic speech
less similar [30].

5.2. Average inter-frame difference of log-likelihood

In the second method for detection of synthetic speech, we uti-
lize the average IFDLL first proposed in [35]. The IFDLL is
defined as

∆n = | log p(xn|λC)− log p(xn−1|λC)| (4)

and the average IFDLL is

∆̄ =
1

N

NX
n=1

∆n. (5)
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The authors in [35] observed that for synthetic speech, av-
erage IFDLL is lower than that for human speech. This dif-
ference was explained as a result of HMM-based synthesizers
generating a speech parameter sequence so as to maximize the
output probability. This maximization leads to a time variation
of the speech parameters of synthetic speech becoming smaller
than for human speech. In Fig. 8 we show the distributions of
average IFDLL for human and synthetic speech using the 283
speaker WSJ corpus. Unlike the work in [35] which used the
average IFDLL to detect synthetic speech, with state-of-the-art
speech synthesis this measure no longer appears to be robust
enough since the distributions in average IFDLL for human and
synthetic speech have significant overlap. This can be explained
because the state-of-the-art HMM-based speech synthesizer in-
clude global time variation models [26].

5.3. Automatic speech recognition

In the third method for detection of synthetic speech, we per-
form automatic speech recognition (ASR) on input utterances
and examine WER. This can prevent some FAs from synthesiz-
ers trained with small amounts of speech as shown by the WERs
and SERs in Table 1 taken from [30]. However, when we use
all the training data available in the WSJ corpus (between 73
and 1620 sec per speaker) to train the synthesizer, WER for
synthetic speech are lower than for real speech (Table 2). This
means that we can use the method relying on WER only when
the synthesizers, used by the impostor, are trained with very lit-
tle data (≈ 30 seconds). If enough training data is available,
WER/SER does not appear a robust enough measure to detect
synthetic speech. Grammars in Table 1 and 2 have a different
number of possible input sentences that can be recognized us-
ing the grammar. This defines the grammars complexity, where
the complexity of Grammar[i] is lower than that of Grammar
[i + 1].

In Fig. 9, we can see that the amount of training data used
for the synthesizer does not impact the WER of the ASR. The
amount of speech has to be significantly lower than that in Fig. 9
to significantly increase WER (see Table 1).

Table 1: Speech recognition WER/SER in % for Austrian Ger-
man corpus (9 speakers) [30].

Dataset Grammar1 Grammar2
Human speech 9.54 / 8.76 13.44 / 13.38
Synthetic (76 sec.) 11.64 / 10.82 15.62 / 16.09
Synthetic (38 sec.) 14.44 / 13.98 18.36 / 19.00
Synthetic (19 sec.) 26.50 / 29.52 31.33 / 36.16

Table 2: Speech recognition WERs and SERs in % for WSJ
corpus (283 speakers).

Dataset Grammar3 Grammar4
Human speech 9.55 / 10.79 13.91 / 33.24
Synthetic (73-1620 sec.) 3.05 / 4.85 5.50 / 22.51
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Figure 9: human and synthetic speech word-error-rates. Syn-
thesizers are trained with different amounts of data from the
Wall Street Journal corpus (283 speakers).
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Figure 10: Proposed systems for detection of synthesized
speech after speaker verification.

5.4. Two systems for detecting synthetic speech

Although when used individually, the three methods for auto-
matic detection of synthetic speech are not robust, they may be
used in conjunction with one another to design different sys-
tems for detecting synthetic speech after SV acceptance. The
first system shown in Fig. 10 (a) uses the DTW distance and
ASR’s WER. The input of the system are two signals, which
are supposed to be realizations of the same utterances. The
system relies on the high-degree of regularity of repeated ut-
terances from a speech synthesizer and the higher error rates
of an ASR (trained on human speech) subjected to synthesized
speech trained on small amounts of speech data (see Table 1).
If we have sufficient training data for the synthesizer we cannot
use the WER for detecting synthetic speech (see Table 2). The
system parameters are the distance threshold η, reference utter-
ance word string w0, word-error-rate threshold ω, and distance
function DTW ({x1}, {x2}) based on mean or variance. After
the ASR decoding it is verified that two utterances similar to
the reference utterance were spoken. The similarity is defined
by WER threshold.

The second system is shown in Fig. 10(b). It uses the
IFDLL measure and ASR’s WER. Here we only need one signal
as input to the system. The system parameters are the IFDLL
threshold η, reference utterance word string w0, word-error-rate
threshold ω, and IFDLL function IFDLL({x1}, {x2}).

Our research has shown that the combination of these meth-
ods into the two different systems allows us to detect some ex-
amples of synthetic speech under certain circumstances (e.g. lit-
tle training data available) as described in the previous sections.
However accurate and reliable detection of synthetic speech is
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Figure 11: WFST-like illustration of duration models used for
TTS systems. Duration probabilities pi are also transformed to
target speakers during speaker adaptation.

not yet achieved with these systems. For automatic detection
of synthetic speech, it appears the general system designs of
speech synthesizers must be taken into account. The measures
and system architectures that we described here may serve as a
starting point for building such a robust backend for the detec-
tion of synthetic speech.

6. The Impact of Duration Adaptation in
Synthesized Speech and Imposture

For speaker adaptation of speech synthesizer in the experiments
so far, we transformed temporal structures of the HSMMs as
well as mel-cepstrum and fundamental frequency streams to tar-
get speakers since the duration transformations perceptually im-
prove synthetic speech [25]. However, the SV systems do not
normally consider the temporal information and moreover they
are known to be somewhat sensitive to recording condition mis-
matches and inconsistencies. In fact, the recording conditions
of the WSJ corpus are not perfectly consistent and differ signif-
icantly among the recording sites [12].

Therefore in a second investigation we have turned off dura-
tion adaptation and compared it to synthesized speech with du-
ration adaptation for evaluating the risk of speech synthesizers
altered for the imposture purpose. The temporal/duration mod-
els used for our speech synthesizers are illustrated as Fig. 11,
where we can see that each semi-Markov state has stack of
states having associated duration probabilities pi. The dura-
tion probabilities pi are characterized by Gaussian pdfs, and the
mean and variance of the pdfs are transformed to target speak-
ers using CMLLR during speaker adaptation process. For the
second investigation, we used the Gaussian pdfs without the
CMLLR transforms for duration, which means that all speech
synthesizers have same duration information derived from the
average voice model, rather than speaker-specific duration in-
formation.

Fig. 12 and Table 3 show the results using IFDLL and
ASR’s WERs, respectively. As expected synthetic speech with-
out duration adaptation has average IFDLLs closer to human
and furthermore, lower WERs than those in Table 2 with du-
ration adaptation. These additional results further convince us
that with state-of-the-art speech synthesis, the previous and cur-
rently proposed methods to detect synthetic speech measure no
longer appear to be robust enough.
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Figure 12: Distributions of average interframe-difference of
log-likelihood for human, synthetic, and synthetic speech with-
out duration adaptation. Due to the overlapping distributions,
the average IFDLL cannot be used to detect synthetic speech.

Table 3: Speech recognition WERs and SERs in % for WSJ
corpus without duration adaptation (283 speakers).

Dataset Grammar3 Grammar4
Human speech 9.55 / 10.79 13.91 / 33.24
Synthetic (73-1620 sec.) 2.01 / 4.14 4.87 / 30.46

7. Conclusions
In this paper, we have evaluated the vulnerability of speaker ver-
ification (SV) to synthetic speech using state-of-the-art speech
synthesis and SV systems using the relatively large Wall Street
Journal corpus. Our results show that for matched claimant
tests, 90% of the claims are accepted. Thus despite the excellent
performance of the SV systems, the speaker similarity/identity
of the synthesized speech is high enough to allow these synthe-
sized voices to pass for true human claimants. This result sug-
gests that high-quality synthetic speech may lead to a high false
acceptance rate and may pose security issues for speech-based
remote/online authentication or incorrect identity confirmation
from a speech signal.

Next, we considered three measures for automatic detec-
tion of synthetic speech: 1) acoustic distance between two re-
alizations of the same utterance using dynamic time warping
(DTW) of MFCC features, 2) average inter-frame difference of
log-likelihood, and 3) word-error-rate and sentence-error-rate
from an automatic speech recognizer trained on human speech.
Individually, these measures were found to not be robust enough
to consistently (and with a high degree of accuracy) detect syn-
thetic speech. We proposed two detection systems based on
combinations of these measures.

Although automatic detection of synthetic speech appears
to be a challenging problem, human listeners can easily per-
ceive the difference when compared to human speech. There-
fore our future work is to explore acoustic cues that we utilize
in detecting these differences. Our goal is more robust ’code-
breaking’ features for the imposture of synthetic speech, based
on perceptual analysis results and/or ’parallel’ data of synthetic
speech and real speech.
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