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Abstract
User quality judgements can show a bewildering amount
of variation that is difficult to capture using traditional
quality prediction approaches. Using clustering, an ex-
ploratory statistical analysis technique, we reanalysed the
data set of a Wizard-of-Oz experiment where 25 users
were asked to rate the dialogue after each turn. The
sparse data problem was addressed by careful a priori pa-
rameter choices and comparison of the results of different
cluster algorithms. We found two distinct classes of users,
positive and critical. Positive users were generally happy
with the dialogue system, and did not mind errors. Crit-
ical users downgraded their opinion of the system after
errors, used a wider range of ratings, and were less likely
to rate the system positively overall. These user groups
could not be predicted by experience with spoken dia-
logue systems, attitude to spoken dialogue systems, affin-
ity with technology, demographics, or short-term mem-
ory capacity. We suggest that evaluation research should
focus on critical users and discuss how these might be
identified.
Index Terms: clustering, perceived quality, spoken di-
alogue systems, evaluation, user modeling

1. Introduction

The holy grail of user modeling for evaluation is an algo-
rithm that predicts how users will rate the quality of a
system given a system description and a set of user char-
acteristics. One of the main challenges for such an algo-
rithm is the sheer amount of variation in quality judge-
ments. In this study, we propose a bottom-up approach
to this problem. Given a set of evaluations of very similar
dialogues, is it possible to find groups of users that follow
similar strategies for assigning quality ratings? If these
groups can be identified, then how much of the variation
in judgements do they explain? Can users be assigned
to these groups based on characteristics such as affinity
with technology or cognitive abilities?

The rest of this paper is structured as follows. In Sec-
tion 2, we review the research that motivated the present
study. The corpus used for this study is described in
Section 3. Next, in Section 4, we explain the main ex-
ploratory statistical analysis techniques that we used to
uncover and characterise user groups, cluster analysis.
We found two groups, one of critical users and one of
positive users. Both groups are described in detail in
Section 5. None of the user characteristics we measured
were able to predict group membership. In Section 6, we
discuss the implications for formative evaluation and user
simulations. Finally, in Section 7, we stress the need for

our findings to be replicated with different data sets, in
particular real-world interactions with dialogue systems.

2. Background

Although methods exist which predict average user satis-
faction ratings for spoken dialogue systems, a substantial
amount of variation in these ratings remains unexplained
[1, 2, 3]. We conjecture that at least some of this unex-
plained variation can be explained by relevant user char-
acteristics, and that users who tend to rate systems in a
certain way form distinct groups. This is supported by
the results of [4], who found that quality prediction mod-
els performed better when users’ short-term memory and
affinity with technology were taken into account.

As their next step, Engelbrecht et al. analysed a cor-
pus of interactions between users and a simulated spoken
dialogue system which was designed to make pre-defined
errors at certain points in the dialogue. Three types of
errors were included, partial understanding (PA), failure
to understand an utterance (FA), and incorrect extrac-
tion of a concept (IC). The system was a modified version
of the BoRIS system [5]. 25 users were asked to perform
5 restaurant searches. After each turn, users indicated
their satisfaction with the dialogue so far using a scale
from 1 (= poor) to 5 (= excellent). For each dialogue,
task success was measured. Users also gave summary
quality judgements after each dialogue. After completing
all five tasks, they filled in a detailed 37-item question-
naire. On the questionnaire, all statements were rated on
a the five-point scale where 1 = “strongly disagree” and 5
= “strongly agree”, except for overall quality, which was
rated using the same scale as the dialogue turns. Memory
was assessed using digit span. Affinity with technology
and attitude to spoken dialogue systems were measured
using short questionnaires. Users were also asked to in-
dicate whether they had any experience of using spoken
dialogue systems.

Although there were clear, significant effects of errors
on ratings, these were comparatively small [6]. Users with
higher affinity with technology and a more positive atti-
tude to SDS were less likely to penalise errors than users
with low scores on both measures. Based on qualitative
inspection of their data and interviews with users, Engel-
brecht et al. found that the users differed substantially
in the priorities they assigned to different usability issues
and in their leniency, but they did not not estimate the
size of each user group or identify relevant measures of
rating behaviour. They concluded that user satisfaction
predictions might be improved by identifying groups of
users with similar rating behaviour.



3. Data

In this study, we reanalysed the data described in [6, 7].
For each user, we computed the number of times they
used each of the ratings from 1—5. These five variables
cover overall rating tendencies. We then subdivided the
ratings into five main groups: no error in the previous
utterance (OK), partial understanding error in the pre-
vious utterance (PA), failure to understand the previous
utterance (FA), incorrect extraction of a concept in the
previous utterance (IC), and errors in both previous ut-
terances (Two). For each of these groups, we computed
the average rating, the range of ratings, and the average
change in ratings from the previous turn. All variables
represent averages across all five dialogues. This set of
fifteen variables quantifies users’ reactions to errors.

The first dialogue lasted an average of 10 turns, the
second and fourth dialogue required 8 turns, dialogue 3
lasted for 7 turns, and the final dialogue was around 11
turns long. On average, across all five dialogues, each
user experienced 36 turns without errors, 7 turns with
failure to understand (FA), 3 turns with partial compre-
hension (PA), and 3 turns where not all concepts were
extracted correctly (IC). Dialogues 1–3 contained an av-
erage of 3 errors each, while the final two dialogues con-
tained two errors each.

4. Method

Since we are interested in finding groups of users, the
statistical method of choice is cluster analysis. Clustering
algorithms look for coherent groups of similar items in
a set of n data points. The number and composition
of groups that are found can vary greatly. Results are
affected by many factors, including the exact definitions
of similarity and coherence used, the direction of search
(top-down, starting with one large cluster, or bottom-up,
starting with n small clusters), and, for non-deterministic
algorithms, relevant initialisation choices.

When working with data about user ratings of spo-
ken dialogue systems, these problems are exacerbated by
the relative lack of data. If clustering algorithms are to
detect groups reliably, they need a sufficient number of
exemplars per group. Since interactions with an SDS
take time, collecting data on user behaviour is expensive,
unless quality judgements are collected by survey for a
system that has been deployed in the field. Data sets
with 50+ users that contain both dialogue transcriptions
and quality judgements are rare.

We addressed the sparse data problem by using a
five-step strategy which reflects good analytical practice:

1. Choose a good set of features

2. Restrict the number of clusters to a small number

3. Use multiple clustering algorithms and distance
measures that make different assumptions about
the size and shape of clusters

4. Test whether algorithms yield high-quality, stable
clusters

5. For high-quality solutions, check whether the clus-
ters make sense

The first step, choosing the right feature vector, can
be automated based on statistical properties of the can-

Table 1: Agglomerative Clustering Algorithms Tested.
Algorithm Merge Criterion
average average distance between points
median distance between medians
centroid distance between centroids
complete distance of farthest elements
single distance of closest elements
ward sum-of-squares error
mcquitty distance; C = A + B new clus., D old clus.

∆(C,D) = (∆(A,D) + ∆(B,D))/2

didate features or based on experiments with target clus-
tering algorithms. Alternatively, features can be selected
that characterise the behaviour patterns of interest.

The second step, restricting the number of clusters,
helps prevent apparently optimal partitions that contain
many clusters with very few elements. Such partitions are
typically difficult to interpret and generalise. Although
algorithms such as MClust [8] can automatically deter-
mine an optimal number of clusters based on a model
quality measure such as the Bayes Information Criterion,
in practice, these approaches benefit from prior informa-
tion about the expected maximum number of clusters.

The third step is particularly important if there are
no strong reasons to assume that the clusters which cor-
respond to the final groups have a particular shape. Oth-
erwise, it is easy to assume that there is no underlying
structure in the data because the output of a particu-
lar clustering algorithm does not yield any high quality
output. A useful package is the R package clusterSim [9],
which exhaustively explores many standard clustering al-
gorithms, combined with several different normalisation
strategies and distance measures, and ranks the results
according to a range of different quality measures.

Agglomerative clustering algorithms start out with
each data point in a separate cluster and then merge the
two clusters with the shortest distance until the desired
amount of clusters has been reached. They mostly differ
with respect to the way in which the distance between
clusters is defined. Table 1 gives an overview of the ag-
glomerative clustering algorithms used.

In partitioning-based approaches, clusters are defined
by their centres. Data points are assigned to the clus-
ter with the closest centre. These approaches start with
a random set of centres (build stage), which are then
adapted (swap stage) unless the partitioning cannot be
optimised further. In pam (partitioning around medoids,
[10]), initial cluster centres are data points, and cluster
centres are swapped with other data points until the clas-
sification can no longer be improved. Partitioning-based
algorithms are useful if one wishes to characterise groups
through “typical” users.

Conceptually, the fourth step, quantitative evalua-
tion of clusters, should be simple—good clusters are
compact units that are well-separated within the fea-
ture space. However, in practice, it is difficult to de-
scribe what exactly well-separated means. For compar-
ing many different cluster partitions automatically, we
used the Calinski criterion, a classic measure of cluster-
ing quality. To obtain the value of this criterion, the
sum of squared within-cluster distances is divided by the
sum of squared between-cluster distances, and the re-



sult is adjusted for the number of clusters by multiplying
with (K − 1)/(n − K), where K = number of clusters,
n=number of data points.

Once the space of potential partitions is reduced,
cluster solutions are compared graphically. First, the fea-
ture set is reduced to two dimensions for ease of visuali-
sation. In this study, we used the first two principal com-
ponents for each data set. For each candidate partition
of the data set, clusters are plotted along two dimensions
obtained by data reduction and the degree of separation
and shape of the resulting clusters is observed.

Another important aspect of cluster quality is their
stability [11]. If clusterings are determined for different,
overlapping subsets of the original data set, the result-
ing clusters should be highly similar. A useful similarity
measure for two sets of clusterings C1, C2 is the Jaccard
coefficient. Let a be the number of data points that are
in the same cluster in both C1 and C2 and b the number
of data points that are in the same cluster in one set, but
in different clusters in the other set. Then, the Jaccard
coefficient is defined as J = a/(a + b). It is 1 if both
clusterings agree, and below 1 if they disagree. In this
study, we estimated stability using the clusterboot algo-
rithm [11, 12] and 100 bootstrap samples per clustering
algorithm tested.

Finally, the fifth step is checking whether the clus-
ters can be interpreted in a meaningful way. This step is
important because we are using clustering to generate hy-
potheses about the typology of people who interact with
spoken dialogue systems. Although strange clusters that
are difficult to interpret may indicate an underlying reg-
ularity in the data that is not adequately captured by the
feature space, more often than not, such clusters are just
artifacts that result from overfitting or bad initialisation.

5. Results

5.1. Identifying Clusters

We ran an exhaustive search of the eight clustering al-
gorithms used in clusterSim for 2, 3, and 4 clusters on
several subsets of the original feature set. The 20 best so-
lutions consistently featured only 2 and 3 clusters. There-
fore, we discarded the 4 cluster option.

In order to establish basic parameters, we compared
five distance metrics (Euclidean, Squared Euclidean,
Manhattan, Chebyshev, and GDM1 [9]) and five data
normalisation techniques (standardisation using mean
and standard deviation, standardisation using median,
unitisation, unitisation with minimum 0, and normalisa-
tion to the range [-1,1]). The standard Euclidean distance
and normalisation to [-1,1] gave consistently good results.

The boxplot in Figure 1 shows the rankings of all
eight clustering methods according to the Calinski cri-
terion. Single, centroid, and median linking methods
give consistently bad results, with the Ward, average,
mcquitty, and complete linking methods scoring highest.
This indicates that the underlying groups in this data set
are relatively compact. Pam, the only partitioning algo-
rithm in clusterSim, performs slightly worse than the best
agglomerative approaches. For the following analysis, we
retained both the best agglomerative method (Ward) and
the partitioning method pam, because we are interested
in characterising our groups by typical users. We used
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Figure 1: Calinski Score for Eight Clustering Methods.

the full original feature set as defined in Section 3.

Next, we examined the stability of the clusters ob-
tained by both methods. Stability was assessed by com-
puting the Jaccard similiarity between the clusters de-
rived from 100 bootstrapped samples and the original
clusters. Following [11], a Jaccard coefficient of 0.75 and
above is taken to indicate stable clusters, while values
between 0.6 and 0.75 indicate a potential pattern in the
data set. For the two-cluster Ward solution, the Jaccard
coefficients are 0.77 and 0.76, just over the criterion, while
for the two-cluster pam solution, the similarities are 0.74
and 0.76, with one stable cluster and one potentially sta-
ble one. For the three-cluster solutions, two of the three
clusters have Jaccard values below 0.75 for both clus-
tering algorithms (Ward: 0.66, 0.71; Pam: 0.68, 0.64).
We conclude that the three-cluster solutions are slightly
unstable, and that two-cluster solutions provide a more
reliable basis for hypothesis generation.

The results of both pam and the Ward algorithm
agree for 21 of the 25 participants. Since Ward yields
more stable clusters, we will continue with the cluster-
ing derived using this algorithm. The resulting clusters
are shown in Figure 2. The clusters are reasonably well-
separated apart from a brief area of overlap at the mid
point of both dimensions. Experiments with other clus-
tering approaches such as Bayesian maximum-entropy
clustering as implemented in MClust [8] or traditional
k-means clustering all yielded results that were inferior
to the Ward clustering described above.

5.2. Interpreting Clusters

As a first step of exploring what the clusters mean, let
us consider the “prototypical” users selected by pam for
each of the two groups. For these users, we examined
those attributes whose values were below −0.5 or above
0.5 in the normalised feature set, where feature values
range from −1 to +1. For the first cluster, the prototyp-
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Figure 2: Clusters Projected Onto First Two Principal
Components.

ical user is number 8. This person assigns exceptionally
many “poor” ratings and tends to downgrade their rating
after a completely or partially misunderstood utterance
as well as after two system errors in a row. The sec-
ond cluster is centred on participant number 20. This
person is disproportionately enthusiastic, often assigns
the highest score, 5 (“excellent”), and reacts positively to
misunderstandings and sequences of two errors in a row.

This characterisation is reinforced by the first two
principal components of the principal component analy-
sis which was used to plot the clusters in Figure 2. In
order to interpret these components, we looked at the
features that have a loading of above 0.6 or below -0.6
on each component. For the first principal component,
features that load negatively are the range of ratings for
non-errors and failures to understand and the average
change in ratings for non-errors. Features that load pos-
itively are the average change in rating for incompletely
extracted concepts, failures to understand, and two er-
rors in a row. In summary, this dimension corresponds to
“error tolerance”—people who score highly on this com-
ponent tend to use a narrower range of values, and are
more likely to upgrade their assessment of the system
after an error. For the second principal component, fea-
tures that load negatively are the frequency of“poor”and
“average” ratings, while features that load positively are
the frequency of “excellent” ratings and mean ratings of
all errors except for partial understanding and non-error
turns. This dimension can be summarised as “positive
bias”. People who score highly on this dimension tend to
use positive ratings, even if the system makes an error.

Going back to Figure 2, we see that the cluster on the
right consists of people who score highly on error toler-
ance, and tend to have a positive bias. People associated
with the cluster on the left vary considerably in overall
bias, but is less likely to react positively to errors. These
patterns are reflected in distribution of the actual fea-
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Figure 3: Overall Frequency of Ratings for Critical and
Positive Users.

ture values across clusters. Table 2 shows features for
which significant differences could be detected using the
Kruskal-Wallis test. Users in the left cluster in Figure 2
are more likely to use the ratings 1 (“bad”) and 2 (“poor”),
while users in the right cluster are more likely to use the
rating 4 (“good”). The size of this effect is illustrated in
Figure 3. People in the left cluster also assign a lower
rating after errors, and they are more likely to choose a
lower rating for the error turn than for the non-error turn
before. Failure to understand leads to a rating that is on
average one point lower than the previous rating, and for
utterances where the system failed to extract a concept,
ratings drop by almost two points.

From these observations, we can deduce that the first
cluster represents critical users, while the second cluster
consist of more positive users. Critical users differentiate
between error and non-error turns (p =0.000); positive
users do not (p =0.156. This difference is illustrated in
Figure 4. Critical users also use different ranges of values
for error versus non-error turns (p =0.000), while positive
users use the same range of rating for each class of turns
(p =0.102).

5.3. Differences in Quality Ratings

The overall quality ratings for each dialogue are some-
what higher in the positive group, but this difference
is only significant for the fourth dialogue (cf. Table
3). There were clear differences between both groups on
seven of the final evaluation criteria, including overall im-
pression (cf. Table 4). Users in the critical group tended
to rate the system as slightly below average, while users
in the positive group rated it as above average. Users in
the critical group were also more sensitive to system er-
rors. They were more likely to find the system unreliable,
and to complain about the frequency of errors. Positive
users were more likely to feel comfortable with the sys-



OK FA PA IC Two

1
2

3
4

5

Cluster: Critical

Error Category

M
ea

n 
R

at
in

g

●

OK FA PA IC Two

1
2

3
4

5

Cluster: Positive

Error Category

M
ea

n 
R

at
in

g

Figure 4: Mean Ratings for Each Class of Turn (No Er-
ror, Failure to Understand, Partial Understanding, In-
correct Concept, Two Errors in a Row) for Critical and
Positive Users.

Table 2: Significant Differences in Features by Cluster.

Feature Critical Positive P
M SD M SD

Rating “Bad” 2.9 2.6 0.8 1.1 0.019
Rating “Poor” 9.9 4.9 1.9 2.0 0.000
Rating “Good” 13.9 6.2 23.0 10.3 0.022
Mean rating, PA 3.0 0.5 4.1 0.8 0.001
Mean rating, FA 2.5 0.6 4.0 0.6 0.000
Mean rating, IC 1.8 0.6 3.5 0.7 0.000
Rating range, PA 2.4 0.8 3.2 0.7 0.018
Mean change, FA -0.9 0.5 -0.1 0.4 0.001
Mean change, IC -1.9 0.8 -1.0 0.6 0.006

tem, to feel that they obtained the desired information,
and to feel that the system understood them.

5.4. Can Individual Differences Predict Clusters?

Despite clear and consistent differences in quality ratings
both during and after the dialogues, none of the user
characteristics measured during the original study is as-
sociated with cluster membership. The distribution of
genders and experience with SDS is almost completely
equal between clusters. 6 of all 12 male users and 6 of
all 13 female users were in the positive group, the rest
were in the critical group. Likewise, of the 4 users with
no previous SDS experience, 2 were in the positive group,
and of the 21 experienced users, 10 were in the positive
group—again, almost exactly half. Users also do not dif-
fer with respect to task success (p = 0.847), affinity with
technology (p = 0.584), attitude to spoken dialogue sys-
tems (p = 0.723), or digit span performance (short-term

Table 3: Differences in Overall Dialogue Quality Judge-
ments by Cluster, Kruskal-Wallis Test for Significance.

Dialogue Critical Positive P
M SD M SD

1 3.1 0.7 3.5 0.9 0.258
2 2.2 1.2 2.6 0.8 0.208
3 2.4 0.7 2.9 1.0 0.117
4 2.6 1.1 3.6 0.6 0.017
5 2.7 1.0 3.3 1.0 0.111

Table 4: Significant Differences in Questionnaire Ratings
by Cluster, Kruskal-Wallis Test for Significance.

Criterion Critical Positive P
M SD M SD

Overall impression 2.8 0.3 3.5 0.5 0.009
System unreliable 3.2 0.8 2.2 0.6 0.006
Obtained relevant info. 3.3 0.9 3.9 0.3 0.021
System understood me 2.4 0.8 3.2 0.7 0.018
Many system errors 3.5 0.8 2.8 0.6 0.019
Using system was fun 2.5 1.0 3.3 0.8 0.043
Comfortable w/ system 2.9 0.9 4.0 0.6 0.002

memory capacity, p = 0.869).

6. Discussion

Even though the number of data points is relatively small,
we successfully identified a meaningful underlying struc-
ture in users’ quality judgements. Half the users belonged
to a cluster that can be characterised as“positive”. These
users tend to give mainly positive ratings and appreci-
ate attempts at error recovery. The other half is more
“critical”. These users assign a greater variety of ratings
and penalise system errors. Both clusters are substanti-
ated by a range of converging evidence, prototypical users
found through clustering, principal component analysis,
and analysis of the distribution of feature values across
clusters. The clusters also agree with the qualitative ob-
servations by Engelbrecht et al. [6] summarised in Sec-
tion 2. This high level of consistency and convergence
suggests that what we have found indeed reflects an as-
pect of the real structure of the data set.

The result has implications for both formative and
summative evaluation of spoken dialogue systems. For
formative evaluation, it may be best to work with critical
users only, since they will have a lower error tolerance
and may therefore be more likely to highlight usability
problems. For the summative evaluation of a finished
system, it may be best to analyse data from both user
groups separately, since as Figure 4 illustrates, the same
analysis may yield different results for both groups.

Whenever simulated users are used to learn dialogue
management policies using a reward function that is
based on user satisfaction or user quality ratings [13, 14],
a case can be made for deriving the reward function and
training policies mainly from interactions between the



critical users and the system, not from positive users.
Since positive users do not tend to change their overall
ratings based on dialogue behaviour, a reward function
based on their judgements may severely underestimate
the effect of system errors or other usability problems.
Moreover, models that are trained with simulated posi-
tive users may not provide learning algorithms with suf-
ficient information for exploring the space of potential
policies, because they will rate almost all interactions
positively. A model trained on the positive user group
detected in this study might even encourage dialogue
policies that make frequent errors, because positive users
tended to revise their opinion of the system upwards after
an error, not downwards. If positive users differ from crit-
ical users in their dialogue behaviour, policies may need
to be learned with simulated users from both groups, but
the parameters of the learning algorithm may need to be
adjusted depending on the user group.

Another important finding is that none of the user
characteristics that were assessed in the corpus allow us
to predict what user group a person will belong to. At
first glance, this appears to contradict Engelbrecht et al.’s
finding that affinity with technology and attitude to SDS
correlate with higher ratings after errors. However, those
analyses concerned individual features, whereas the clus-
ters represent more generic patterns of behaviour.

Although the two user groups are relatively well-
defined, the clusters have not yet been incorporated into
a formal approach to quality prediction; it is not clear
to what extent they would improve different models. An
additional challenge here is the sparseness of the data set.
Each cluster consists of half the original data set, which
makes it more difficult to derive good estimations for the
parameters of a PARADISE-style model.

Finally, the original set up of Engelbrecht et al.’s ex-
periment is relatively artificial. Not only are users asked
to interact with simulated spoken dialogue systems that
have been primed to make errors, they are also asked to
rate the current interaction after each turn. It is not clear
how this setup affects users’ overall quality judgements
and, by extension, the user groups we found in the data.

7. Future Work

Our analysis needs to be replicated on different data sets
to ascertain whether similar user groups emerge. If our
categories hold across data sets, then strategies need to
be developed for identifying critical users. There are two
potential solutions. If there are differences between user
groups in terms of dialogue act patterns, linguistic struc-
ture, content of utterances, these could be used to auto-
matically predict the overall rating behaviour of a user
based on a few brief, well-designed interactions with a
SDS. One might also want to investigate the predictive
power of other user characteristics that can be measured
easily before data collection, such as personality.

Most importantly, we need to examine data sets of
interactions between real users and deployed spoken di-
alogue systems where task success matters to the user.
It is probably fair to assume that many of the users who
were in the “positive” group in this study would be less
lenient if system errors delayed or thwarted an actual
restaurant booking.
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