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Abstract—This paper describes a speaker-adaptive HMM-based
speech synthesis system. The new system, called “HTS-2007,” em-
ploys speaker adaptation (CSMAPLR+MAP), feature-space
adaptive training, mixed-gender modeling, and full-covariance
modeling using CSMAPLR transforms, in addition to several other
techniques that have proved effective in our previous systems.
Subjective evaluation results show that the new system generates
significantly better quality synthetic speech than speaker-depen-
dent approaches with realistic amounts of speech data, and that
it bears comparison with speaker-dependent approaches even
when large amounts of speech data are available. In addition, a
comparison study with several speech synthesis techniques shows
the new system is very robust: It is able to build voices from
less-than-ideal speech data and synthesize good-quality speech
even for out-of-domain sentences.

Index Terms—Average voice, HMM-based speech synthesis,
HMM Speech Synthesis System, HTS, speaker adaptation, speech
synthesis, voice conversion.

I. INTRODUCTION

S TATISTICAL parametric speech synthesis based on
hidden Markov models (HMMs) [1], [2] is now well-es-

tablished and can generate natural-sounding synthetic speech
[3]. In this framework, we have pioneered the development of
the HMM Speech Synthesis System, HTS (H Triple S) [4].
This research started by developing algorithms for generating
a smooth parameter trajectory from HMMs [5]–[9]. Next, to
simultaneously model the excitation parameters of speech as
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well as the spectral parameters, the multispace probability
distribution (MSD) HMM [10] was developed. Using the log-
arithm of the fundamental frequency and its dynamic
and acceleration features as the excitation parameters, the
MSD-HMM enabled us to treat the sequence, which is
a mixture of one-dimensional real numbers for voiced regions
and symbol strings for unvoiced regions, in a probabilistic
framework. To simultaneously model the duration parameters
for the spectral and excitation components of the model, the
MSD hidden semi-Markov model (MSD-HSMM) [11] was
developed. The HSMM [12]–[14] is an HMM having explicit
state duration distributions instead of transition probabilities,
to directly model duration; it can generate more appropriate
temporal structures for speech. These basic systems [1], [4],
[11] employed a mel-cepstral vocoder with simple pulse or
noise excitation, resulting in synthetic speech with a “buzzy”
quality. To reduce buzziness, mixed or multi-band excitation
techniques [15]–[17] have been integrated into the basic sys-
tems to replace the simple pulse or noise excitation and have
been evaluated [18]–[21]. These basic systems also had another
significant problem: the trajectories generated from the HMMs
were excessively smooth due to statistical processing, resulting
in synthetic speech with a “muffled” quality. To alleviate
this problem, a parameter generation algorithm that considers
the global variance (GV) of a trajectory to be generated was
developed [22].

From the accumulation of these incremental improvements,
several high-quality text-to-speech synthesis systems have
been developed [20], [23]–[25]. They have demonstrated good
performance in the Blizzard Challenges, which are open evalu-
ations of corpus-based text-to-speech (TTS) synthesis systems
[26]–[28]. In the Nitech-HTS system [20] used for the 2005
Blizzard Challenge, a high-quality speech vocoding method
called STRAIGHT (Speech Transformation and Representation
using Adaptive Interpolation of weiGHTed spectrum) [29] was
used, in conjunction with MSD-HSMMs, mixed excitation, and
the GV parameter generation algorithm. STRAIGHT explicitly
uses information for removing the periodic components
from the estimated spectrum: it interpolates missing frequency
components considering neighboring harmonic components
based on an adaptive smoothing process on a time-frequency
region. This enables the generation of better spectral parameters
and consequently more natural synthetic speech [20]. In the
Nitech-NAIST-HTS system [23] for the Blizzard Challenge
2006, semi-tied covariance (STC) modeling [30], [31] was
employed to enable the use of full-covariance Gaussians in
the HSMMs, and the structure of the covariance matrices for
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the GV probability density functions (pdfs) was changed from
diagonal to full. Although the use of GV parameter generation
drastically reduces the muffled quality of synthetic speech, it
was sometimes perceived as more artificial. One reason for
this was that each acoustic feature dimension was optimized
independently. This limitation was addressed by the use of
full-covariance modeling in the HSMMs.

The above systems were speaker-dependent. In parallel,
we have also been developing a speaker-adaptive approach
in which “average voice models” are created using data from
several speakers. The average voice models may then be
adapted using a small amount of speech from a target speaker
(e.g., [32] and [33]). This research started by transforming only
the spectral parameters [34] using several speaker adaptation
techniques developed for automatic speech recognition, such
as maximum-likelihood linear regression (MLLR) [35]. To
adapt spectral, excitation, and duration parameters within the
same framework, extended MLLR adaptation algorithms for
the MSD-HSMM have been proposed [32], [36], [37]. A more
robust and advanced adaptation scheme, constrained structural
maximum a posteriori linear regression (CSMAPLR), has been
proposed and its effectiveness in HMM-based speech synthesis
has been demonstrated [33].

We have also developed several techniques for training the
average voice model. The average voice model is constructed
using training data from several speakers. Because these data
include many speaker-dependent characteristics that affect the
adapted models and the quality of synthetic speech generated
from them, we have employed a model-space speaker-adaptive
training (SAT) algorithm [38] in order to reduce the negative
influence of speaker differences [39]. In the SAT algorithm, the
model parameters for the average voice model were obtained
using a blind estimation procedure assuming that the speaker
difference was expressed by linear transformations of the mean
vectors of Gaussian pdfs in the average voice model. A similar
model-space SAT algorithm for the MSD-HSMM was also
derived [32]. Furthermore, applications to style adaptation
(conversion of speaking styles and emotional expressions) and
to multilingual/polyglot text-to-speech systems have also been
reported [40]–[42]. By using the speaker-adaptive approach,
we can obtain natural-sounding synthetic speech for a target
speaker from as little as a hundred adaptation utterances,
corresponding to about six minutes of speech data. In our
experiments, we have shown that the synthetic speech gener-
ated using this approach is perceived as being more natural
sounding, by many listeners, than that of a speaker-dependent
(SD) system trained using thirty minutes of speech from the
target speaker [32], [33]. The data-rich average voice model
provides a strong prior for speech generation, with the target
adaptation data being used to estimate speaker-specific charac-
teristics.

In this paper, we outline a high quality speaker-adaptive
HMM-based speech synthesis system. We then propose two
new algorithms for acoustic modeling. This system was first
evaluated in the 2007 Blizzard Challenge [28] and several
issues were analyzed from additional evaluation tests. We
then compare the system with several major competing TTS

methods used in the 2007 Blizzard Challenge and assess its
performance and potential.

We have combined several advances in the speaker adaptive
approach with our existing speaker-dependent system that
employs STRAIGHT, mixed excitation, HSMMs, GV, and
full-covariance modeling. 1) First we propose a feature-space
speaker adaptive training (SAT) algorithm for HSMMs to
replace the standard embedded training used in the speaker-de-
pendent system or the model-space SAT algorithm used in
conventional speaker-adaptive systems. The feature-space
SAT algorithm addresses two limitations of the model-space
SAT algorithm mentioned in the next section and hence yields
better speaker normalization of the average voice model. 2)
Second, we propose a modeling technique for the average voice
model called mixed-gender modeling to efficiently construct an
average voice model from a limited amount of training data.
3) To adapt the average voice model, we utilize an algorithm
combining CSMAPLR and maximum a posteriori (MAP)
adaptation [43] for HSMMs. 4) We investigate a full-covari-
ance modeling technique using the CSMAPLR transforms and
adopt it instead of the STC transform. Although CSMAPLR
is a speaker adaptation method rather than a full-covariance
modeling method, it has the same transforms for the covariance
matrices as STC and the additional MAP adaptation estimates
the diagonal elements of the covariance matrix in a similar
way to updating processes for STC. For CSMAPLR, multiple
transforms are estimated using the robust SMAP criterion [44],
which is expected to alleviate the artificiality and to improve
the quality of synthetic speech. We describe the details of
the resulting system, which we call “HTS-2007,” assess its
performance and discuss a number of outstanding issues.

II. HTS-2007 SYSTEM

The HTS-2007 system, outlined in Fig. 1, consists of four
main components: speech analysis, average voice training,
speaker adaptation, and speech generation.

A. Speech Analysis

We use three kinds of parameters for the STRAIGHT
mel-cepstral vocoder with mixed excitation: the STRAIGHT
mel-cepstrum [20], and aperiodicity measures. These
are the same as those of the Nitech-HTS 2005 speaker-depen-
dent system. The mel-cepstral coefficients are obtained from
a STRAIGHT spectral analysis in which -adaptive spectral
smoothing is carried out in the time–frequency domain to
remove signal periodicity. The values are estimated using
a three-stage extraction to reduce errors such as halving
and doubling and to suppress voiced/unvoiced errors. First,
using the instantaneous-frequency-amplitude-spectrum-based
algorithm (IFAS) [45], the system extracts values for all
speech data of each speaker within a common search range.
Second, the range of each speaker is roughly determined
based on a histogram of the extracted values. Third,
values are re-extracted in the speaker-specific range using three
methods: IFAS, a fixed-point analysis called TEMPO [46] and
the ESPS get- tool [47], [48]. The final estimated value for

at each frame is the median of the three extracted values.
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Fig. 1. Overview of the HTS-2007 speech synthesis system which consists of
four main components: speech analysis, average voice training, speaker adapta-
tion, and speech generation.

The aperiodicity measures for mixed excitation are based on a
ratio between the lower and upper smoothed spectral envelopes,
and averaged across five frequency sub-bands (0–1, 1–2, 2–4,
4–6, and 6–8 kHz).

In addition to these static features (STRAIGHT mel-cep-
strum, and 5 aperiodicity measures), dynamic and
acceleration features are also used, which are referred to as the
first and second delta parameter vectors, corresponding to the
first and second time derivative estimates of the static feature
vector. Let be the static vector at frame . For a given
static vector sequence with a length of
frames, the th delta parameter vector for , , is defined
by

(1)

where are coefficients used to obtain delta parameters
and , . For example, if we set ,
then the derived from numerical differentiation are

for (2)

for (3)

The static and delta feature vectors are combined and the obser-
vation vector at frame , denoted by , is

(4)

where denotes matrix transpose.

B. Acoustic Models and Labels

As in our previous systems, we utilize context-dependent
multi-stream left-to-right MSD-HSMMs [11] in order to si-
multaneously model the above acoustic features and duration.
The English phonetic and linguistic contexts that we employ
contain phonetic, segment-level, syllable-level, word-level and
utterance-level features [49]. Japanese phonetic and linguistic
contexts used in the following experiments contain phonetic,
mora-level [50], morpheme, accentual, breath-group-level,
and utterance-level features [39]. In addition to this phonetic
and linguistic information, we added speaker gender context
labels when conducting the mixed-gender modeling described
in Section II-D.

C. Speaker Adaptive Training

We estimated average voice models using the HSMMs de-
scribed above, trained with the SAT algorithm from training data
consisting of several speakers’ speech. Previously, we had uti-
lized a model-space SAT algorithm [38] using linear transfor-
mations of mean vectors of Gaussian pdfs in our average voice
systems [32], [39]. Here, we employ a feature-space SAT algo-
rithm [51] using linear transformations of feature vectors. There
are two major reasons for the change from model-space to fea-
ture-space.

The first reason is computational feasibility. As reported in
[51], in model-space SAT algorithms it is necessary to store a
full matrix for each Gaussian pdf, or to store statistics for each
Gaussian component for every speaker. In our speaker-adap-
tive HMM-based speech synthesis system, there are over 10 mil-
lion Gaussians, which can make parameter estimation imprac-
tical. In particular, the embedded training procedures in which
we could use the model-space SAT were restricted to only the
training procedures in which the mean and covariance param-
eters were tied across several Gaussian pdfs [32], [39]. On the
other hand, the feature-space SAT algorithm can be applied to
all embedded training procedures.

The second reason is the additional use of Gaussian pdf co-
variance matrices for speaker normalization of the average voice
model. A linear transformation of feature vectors can be viewed
as a simultaneous linear transform of both mean vectors and
covariance matrices using the same matrix [51], [52], and thus
we may also regard the feature-space SAT algorithm as a con-
strained model-space algorithm.

We can derive feature-space SAT in the framework of the
HSMM in a similar way to [32]. An -state HSMM is
specified by initial state probabilities , state transition
probabilities , state output probability distribu-
tions , and state duration probability distributions

(see Fig. 2). Let be the total number of training
speakers, be all the training data, and

be training data of length for speaker
. In the feature-space SAT algorithm, we assume that each

state of the HSMM has an output pdf , characterized
by a mean vector and a diagonal covariance matrix
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Fig. 2. Ergodic and left-to-right hidden semi-Markov models. Each state has a
state output distribution and a state duration distribution . The state
duration distributions directly model and control within-state duration instead of
the self-transition Markov probabilities. For further explanation of the training,
estimation and implementation and issues for HSMMs, see [11], [40], and [32].
(a) A five-state HSMM (one beginning null state, three emitting states, and one
ending null state). (b) A five -state left-to-right HSMM (one beginning null state,
three emitting states, and one ending null state).

, and a duration pdf characterized by a
scalar mean and variance

(5)

(6)

where and are the observation vector and duration, re-
spectively, at state , and , , , and

are speaker-dependent linear transforms which normalize
the observation vector and its duration for speaker . These
linear transforms can be estimated using the HSMM-based con-
strained maximum-likelihood linear regression (CMLLR) algo-
rithm [33].

Re-estimation formulas based on the EM algorithm [53] for
the Gaussian pdfs are given by

(7)

(8)

(9)

(10)

where is the state occupancy probability of being in state
of the HSMM for the period of time from to given

and is defined as

(11)
Here, the observation probability of the training data given
the model , and the forward and backward probabil-
ities, and , can be written as

(12)

(13)

(14)

where and , and is the initial state prob-
ability of being state at time . For further explanation of
the training, estimation and implementation issues for HSMMs,
see [11], [40], and [32].

D. Mixed-Gender Modeling and Training Procedures

In addition to phonetic and prosodic features, the variability
of speech may be accounted for by speaker-dependent charac-
teristics, some of which may be shared amongst all speakers of
the same gender. If a large amount of training data for male and
female speakers is available, then it is efficient to use gender-de-
pendent average voice models as an initial model before speaker
adaptation [33]. In practice, however, the available training data
from one or both genders may be limited. For example, the
CMU-ARCTIC speech database1 includes four male and two
female speakers. In such cases, it would not be the best choice
to use gender-dependent average voice models.

A gender-independent average voice model may be used, but
our previous work has shown that this results in a degradation in
the naturalness and similarity of the resultant synthetic speech,

1A free database for speech synthesis, http://www.festvox.org/cmu_arctic/.
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Fig. 3. Details of mixed-gender modeling. This modeling technique consists of
speaker adaptive training and decision-tree-based context and gender clustering.

after adaptation, compared with a gender-dependent average
voice model. Alternatively, it is possible to use the gender-de-
pendent average voice models simultaneously to enable them to
complement one another and to perform soft decisions during
the speaker adaptation [33]. However, we found no significant
improvement between the results of the simultaneous use of
the gender-dependent average voice models and those of the
single gender-dependent average voice model. It required twice
as many parameters for adaptation as the gender-dependent av-
erage voice model and seemed to suffer from the “curse of di-
mensionality.” Therefore, we sought an approach which satis-
fies the following three conditions: 1) it reflects the gender-de-
pendent characteristics as prior information; 2) it makes the best
possible use of the training data from both genders, comple-
menting one another if necessary; and 3) it does not increase
the number of parameters required for speaker adaptation.

To achieve this, we propose a mixed-gender modeling tech-
nique, similar to style-mixed modeling [54]. Mixed-gender mod-
eling includes speaker adaptive training and decision tree-based
context and gender clustering, and is outlined in Fig. 3. In order
both to normalize speaker-dependent characteristics and to con-
serve gender-dependent characteristics, we first train gender-
dependent monophone HSMMs using the SAT algorithm with
CMLLR global transforms. These are converted into gender-de-
pendent context-dependent HSMMs, and the model parameters
are re-estimated using the SAT algorithm again. Then, using the
state occupancy probabilities obtained in the SAT framework,
decision-tree-based context clustering (using a minimum de-
scription length (MDL) criterion [55]) is applied to the HSMMs,
and the model parameters of the HSMMs at each leaf node of the
decision trees are tied. We assume that the CMLLR transforms
for the SAT algorithm remain unchanged during the clustering.
The gender of each speaker is treated as a clustering context,
and both the gender-dependent models undergo clustering at the
same time. As a result, the gender information is included in the
single resulting acoustic model. Note that a decision tree was
constructed independently for each combination of state index
and acoustic parameter (mel-cepstrum, , aperiodicity) or
duration. Hence, when the target feature is generally gender-
specific, such as , the gender will tend to be automati-
cally split close to the root of the tree by using gender-related

Fig. 4. Part of a constructed decision tree in the mixed-gender modeling. Gen-
ders of training speakers are split by using gender-related questions as well as
other contexts.

questions, and the pdfs of that feature retain their gender-depen-
dent characteristics. For features which are less gender-depen-
dent, gender will tend to be split deeper down the tree or not at
all, thereby making efficient use of training data from both gen-
ders. Fig. 4 shows a part of the constructed decision tree for the
mel-cepstral part of the fifth state of the HSMMs. In this part
of the tree, we can see that vowels are gender-dependent, but
consonants are not, which seems reasonable. We re-estimate the
clustered HSMMs using SAT with piecewise linear regression
functions. The decision trees constructed for the mixed-gender
model are also used to determine the regression classes, since
these automatically reflect both gender differences and phonetic
and linguistic information.

E. Speaker Adaptation and Full-Covariance Modeling

In the speaker adaptation stage, we adapt the mixed-gender
average voice model to that of the target speaker by using speech
data plus gender information about the target speaker. We utilize
a combined algorithm of HSMM-based CSMAPLR and MAP
adaptation. The CSMAPLR adaptation simultaneously trans-
forms the mean vectors and covariance matrices of state-output
and state-duration distributions of the HSMMs as follows:

(15)

(16)

(17)

(18)

(19)

(20)

where and are the extended obser-
vation and duration vectors.

and are,
respectively, the linear transform matrices for the state output
and duration pdfs.

To robustly estimate and , structural maximum
a posteriori (SMAP) estimation [44] is used, in which tree
structures group the distributions in the model and propagate
priors for MAP estimation. Specifically, we first estimate a
global transform at the root node of the tree structure using
all adaptation data, and then propagate the transform to its
child nodes as their priors. In the child nodes, transforms are
estimated again using their adaptation data, based on MAP
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Fig. 5. Concepts of constrained structural maximum a posteriori linear regres-
sion. Transforms estimated at each node are propagated to its child nodes as their
priors for MAP estimation. A recursive MAP-based estimation of the transforms
from the root node to lower nodes is conducted.

estimation with the propagated priors and
. Then, the recursive MAP-based estimation of the

transforms from the root node to lower nodes is conducted (see
Fig. 5). For the tree structures of the distributions, the decision
trees for the mixed-gender average voice model are used for the
same reason as the above SAT algorithm with piecewise linear
regression functions. Then, since the CSMAPLR adaptation
algorithm estimates a piecewise linear regression, we update
the linearly transformed model using MAP adaptation.

Another advantage of combining CSMAPLR and MAP adap-
tation is that we can efficiently construct full-covariance models.
As we can see from (15), we may use the CSMAPLR transforms
for full-covariance modeling, since is a diagonal covariance
matrix and is a square matrix. In order to precisely model the
full-covariance in the HSMMs, the following update procedures
are used.

1) Train all parameters for the average voice model. Build the
tree structures to group the distributions in the model.

2) Using the current transforms ,
, and the average voice model, estimate the new

transforms and based on the
SMAP criterion as follows.

a) At the root node, estimate the initial transforms
and using the ML criterion (i.e. the CMLLR adap-
tation). Define the priors and for its child
nodes as and .

b) At each child node, estimate new transforms and
using the MAP criterion as follows:

(21)

(22)

where is the th row vector of ,
and . Note that is the th cofactor
row vector of . The terms ,

, , and in
these equations are given by

(23)

(24)

(25)

(26)

where is the th row vector of the prior ,
is the th diagonal element of diagonal covari-

ance matrix , and is the th element of the
mean vector . and are

and 2 2 identity matrices. and are posi-
tive hyperparameters of the prior distributions for the
state output and duration distributions, respectively.

and are, respectively, indices for the set of the
distributions of the state output and duration distribu-
tions belonging to this node. Then and are scalar
values that satisfy the following quadratic equations:

(27)

(28)

Since the cofactor affects all row vectors of , we
update using an iterative method proposed in [51],
whereas we can obtain a closed-form solution for the
estimation of in (22).

c) Redefine the priors for its child nodes as
and and go to step b) until it reaches the
leaf nodes or terminal nodes determined by thresh-
olds.

d) Assign transforms for the distribution belonging to
the leaf or terminal nodes to and

.
3) Using the estimated transforms ,

, and the current average voice model, estimate ,
, , and for the average voice model based on the

MAP criterion as follows:

(29)
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(30)

(31)

(32)

where and are the current mean vectors of the state
output and duration distributions of the average voice
model for th state. and are the current covariance
matrices of the state output and duration distributions
of the average voice model for th state. and are
positive hyperparameters of the prior distributions for the
state output and duration distributions, respectively.

4) Go to step 2) until convergence, or an appropriate criterion
is satisfied.

5) Transform the covariance matrices to full covariance using
the updated parameters. Transform the mean vectors too.

F. Global Variance Parameter Generation Algorithm

Finally, we explain the GV parameter generation algorithm
[22] for the CSMAPLR adapted model. The GV parameter gen-
eration algorithm is a penalized maximum-likelihood method.
First, let us consider the problem of generating a parameter
sequence from HSMM having states, given the transforms

for CSMAPLR
adaptation and frame length in a maximum-likelihood
sense [5]. In this approach, we obtain a suboptimal parameter
sequence without the dynamic and
acceleration features as follows:

(33)

(34)

(35)

where is a hidden state sequence. Since
this equation can be simply rewritten as

(36)

we first determine an optimal state sequence by maximizing
, and then maximize using .

Here, we can obtain the optimal state sequence as

(37)

where state duration is given by

(38)

(39)

(40)

(41)

It is noted that the value of is rounded to the nearest positive
integer.

Given the optimal state sequence , we calculate a subop-
timal parameter vector sequence . is given
by

(42)

where

(43)

(44)

Although Kalman smoothing or regularization theory com-
monly uses or as
continuity constraints, (42) constrains the static features ob-
tained from (1)–(3) in the following way:

(45)

(46)

We can obtain a smoothed parameter sequence which maxi-
mizes from these constraints [5].

In the GV parameter generation algorithm [22], we manip-
ulate the objective function for by adding a penalty term as
follows:

(47)

where is a GV vector having variance of each dimen-
sion of the parameter sequence as shown in Fig. 6. is the
dimension of the static feature. Then, and
are the mean vector and full-covariance matrix of the GV vec-
tors estimated from the training data. is the weight for con-
trolling the balance between these terms, and we set to ,
based on the number of Gaussian distributions included in the
first term. The penalty term for the GV vector is intended to
keep the variance of the generated trajectory as wide as that
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TABLE I
DEFINITION OF HTS-2007 SYSTEM AND RELATIONSHIP TO PREVIOUS SYSTEMS

Fig. 6. A GV vector has variance of each dimension of the parameter sequence
. is the th element of the GV vector .

of the target speaker, while maintaining an appropriate param-
eter sequence in the sense of maximum likelihood [22]. We use
a Newton–Raphson maximization, and employ a sequence ob-
tained from the maximization of , with a tra-
jectory variance which is manipulated to , as the initial se-
quence for the numerical optimization. Here, it is possible to
adapt the GV pdf using MAP adaptation. However, the number
of parameters of the GV pdf is very small. Specifically, it is equal
to the dimensionality of the static features. Hence, we directly
estimate the GV pdf from the adaptation data in the following
experiments.

Finally, an excitation signal is generated using mixed exci-
tation (pulse plus a noise component band-filtered according
to the five aperiodicity parameters) and pitch-synchronous
overlap add (PSOLA) [56]. This signal is used excite a mel-log-
arithmic spectrum approximation (MLSA) filter corresponding
to the STRAIGHT mel-cepstral coefficients and thus generate
the speech waveform. These vocoder modules are the same
as those of the above Nitech-HTS 2005 speaker-dependent
systems [20].2

2Comparison of these vocoder modules, our conventional vocoder with
simple pulse or noise excitation and natural speech in analysis-synthesized
speech was reported in [57]. Comparison of them in HMM-based speech
synthesis was reported in [20]. Comparison of natural speech, vocoded speech,
and HMM-based synthetic speech was reported in [58].

G. Relationship to Previous Systems

Table I shows definition of the proposed system and its
relationship to previous systems. As can be seen from the
table, two kinds of previous systems can be compared with
the HTS-2007 system: a conventional speaker-adaptive system
[33], [59] and our speaker-dependent systems for the 2005 and
2006 Blizzard Challenges [20], [23]. Comparing the conven-
tional speaker-adaptive and the HTS-2007 systems, we can
assess the effect of the use of STRAIGHT, mixed excitation,
and GV. We have previously analyzed the relation between
speaker-dependent and speaker-adaptive approaches without
STRAIGHT, mixed excitation, and GV [33]. Considering
our Blizzard Challenge 2005 and 2006 systems alongside the
HTS-2007 system, we can compare speaker-dependent and
speaker-adaptive approaches.

The offline procedures such as training, clustering, and adap-
tation for the HTS-2007 system require more computational
costs than those for previous speaker-dependent systems since
the system simply has to handle more data from several training
speakers.3 However, since we can concurrently conduct all the
procedures per state, per stream, per speaker, and/or per subset
of training data, grid computing clusters can straightforwardly
deal with the procedures. Computational costs for the online
procedures such as parameter generation and vocoding are the
same as those for our 2006 systems.

III. EXPERIMENTS

A. Blizzard Challenge 2007

The Blizzard Challenge is an annual evaluation of corpus-
based speech synthesis systems, in which participating teams
build a synthetic voice from common training data, then syn-
thesize a set of test sentences. Listening tests are used to eval-
uate the systems in term of naturalness, similarity to original
speaker and intelligibility. The Blizzard Challenge 2005 used

3Computational costs for each frame are the same as those for our 2006 sys-
tems.
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the CMU-ARCTIC speech database; in 2006, a database con-
sisting of five hours of speech uttered by a male speaker was
released by ATR from their ATRECSS corpus [60]. In the Bliz-
zard Challenge 2007, an extended version of the 2006 corpus
was released by ATR, containing eight hours of speech data ut-
tered by the same male speaker [60].

B. Experimental Conditions

We carried out a number of subjective and objective eval-
uation tests to assess the performance of the new system and
to evaluate the HSMM-based feature-space SAT algorithm and
the mixed-gender modeling technique. In this section, we re-
port on results using the CMU-ARCTIC and ATRECSS speech
databases, employing systems that use a diagonal covariance
model. The accuracy of the full-covariance modeling techniques
depends strongly on the amount of speech data available; this
evaluated in the next section.

The CMU-ARCTIC speech database contains a set of ap-
proximately one thousand phonetically balanced sentences ut-
tered by four male speakers (AWB, BDL, JMK, and RMS) and
two female speakers (CLB and SLT), with a total duration of
about six hours. The ATRECSS speech database was released
from ATR to be used in the 2007 Blizzard Challenge and con-
tains the same sentences as CMU-ARCTIC, together with ad-
ditional sentences, all uttered by a male speaker (EM001), with
a total duration of about eight hours. It contains speech from
three genres: conversation (3617 utterances), news (1930 utter-
ances), and ARCTIC (1032 utterances). We used the U.S. Eng-
lish phone set “radio” of the Festival speech synthesis system
[61], and obtained the phonetic and linguistic contexts from Fes-
tival utterance files (as distributed with these corpora) without
any modifications.

Speech signals were sampled at a rate of 16 kHz and win-
dowed by an -adaptive Gaussian window with a 5-ms shift.
The feature vectors consisted of 24 STRAIGHT mel-cepstral
coefficients (plus the zeroth coefficient), , aperiodicity
measures, and their dynamic and acceleration coefficients.
We used five-state left-to-right context-dependent multistream
MSD-HSMMs without skip transitions. Each state had a single
Gaussian pdf with a diagonal covariance matrix. For speaker
adaptation, the transformation matrices were triblock diag-
onal corresponding to the static, dynamic, and acceleration
coefficients. We set the hyperparameters as and

. We set the number of frames of speech data
to be generated to , that is, .

C. Implementation Issues

Since the HSMM-based feature-space SAT algorithm men-
tioned in Section II-C requires substantial computation [62],
[63] and it was required to build systems within only one month
in the Blizzard Challenge 2007, we had to simplify the training
procedures for the average voice model used in our Blizzard
Challenge 2007 entry. We first trained the acoustic models using
the HMM-based feature-space SAT algorithm. We then roughly
estimated initial duration pdfs from HMM trellises [64], and
conducted the decision tree-based context and gender clustering
for the duration pdfs. Using the tied duration pdfs, we applied

the HSMM-based SAT algorithm with piecewise linear regres-
sion functions in order to normalize speaker characteristics in-
cluded in the duration pdfs as well as other acoustic features.

Subsequent to the Blizzard Challenge 2007, we employed
an efficient forward–backward algorithm for the HSMMs pro-
posed by Yu and Kobayashi [62], [65], which makes training
time for the HSMMs a factor of times shorter,
where is the number of states used in an utterance. is the
maximum state duration.4 Therefore, we were able to use the
HSMM-based feature-space SAT algorithm in all the training
procedures in additional experiments reported in Sections IV-C
and V. The new efficient algorithm for HSMMs has been im-
plemented and released in HTS version 2.1 [4].

D. Evaluation of the Proposed System

We first compared the system proposed in this paper with the
conventional speaker-adaptive system [33], [59] in terms of the
naturalness and similarity of the synthetic speech. Both systems
were constructed using the same training data for the speaker-
independent average voice model, and the same adaptation data
for the target speaker. We chose male speaker AWB as the target
speaker, using three male speakers (BDL, JMK, and RMS) and
two female speakers (CLB and SLT) from the CMU-ARCTIC
database as training speakers for the average voice model. The
average voice model was trained using about 1000 sentences
from each speaker, and the system was adapted to the target
speaker using 100 sentences selected from the corpus randomly.
Finally, a set of ten test sentences—which were not included
in either the training or the adaptation data—were used for the
subjective evaluations.

We carried out paired comparison tests via the internet, in
which 28 subjects were presented with a pair of synthetic speech
utterances generated from the adapted models in random order,
and asked to indicate which sounded more natural. At the same
time, we conducted an “ABX” comparison test to assess the
adaptation performance of the average voice models of both sys-
tems. In this test, the subjects were presented with a reference
utterance from the target speaker, in addition to the above pair
of synthesized utterances, and asked which synthetic utterance
was most similar to the reference. The same test sentences were
used in both tests.

Fig. 7 shows the average preference scores (with 95% confi-
dence interval) of the paired comparison and ABX tests. From
this figure, we can see that the naturalness and similarity of the
synthetic speech generated from the adapted model using the
new system are both greatly improved compared with our pre-
vious system. In order to analyze which technique is responsible
for this positive result, we separately investigated the effects
of STRAIGHT, mixed excitation, feature-space SAT, mixed-
gender modeling and GV parameter generation in some prelim-
inary experiments. The results of these preliminary tests indi-
cated that each of the methods had an effect, with the GV pa-
rameter generation making the largest single contribution. The

4The computational complexity of the new efficient algorithm is
, where is the number of states used, is the maximum state du-

ration, and is the number of total frames of the observations, whereas the
conventional forward–backward algorithm requires computations
[11], [14].
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Fig. 7. Average preference scores of the paired comparison test and the ABX
test using our conventional system [33], [59] and the proposed system. Target
speaker is the English male speaker AWB.

Fig. 8. Objective evaluation of the SAT algorithms: Average mel-cepstral dis-
tance (dB). Target speaker is the English male speaker EM001.

amount of adaptation data in these experiments was very lim-
ited. The introduction of the new techniques results in an in-
crease in the number of parameters to be estimated. However, it
proved possible to robustly apply the GV parameter generation
algorithm using the adaptation data.

E. Evaluation of Feature-Space SAT

We evaluated the feature-space SAT algorithm using two
types of objective evaluation: the average mel-cepstral dis-
tance for the spectral parameters and the RMSE of .
In these evaluations, we chose the male speaker EM001 as
the target speaker and used six speakers—four male (AWB,
BDL, JMK, and RMS) and two female (CLB and SLT)—from
CMU-ARCTIC to train the average voice model. We con-
structed three kinds of gender-independent average voice
model: one using model-space SAT in HSMM embedded
training; a second using feature-space SAT in embedded
HSMM training; and a third using feature-space SAT for both
HMM and HSMM embedded training. Each average voice
model was constructed using about 1100 training sentences
from each speaker, and the amount of adaptation data ranged
from 10–100 sentences. The test set consisted of a further 1000
test sentences from the target speaker. For simplification of the
calculation of the average mel-cepstral distance and the RMSE

Fig. 9. Objective evaluation of the SAT algorithms: RMSE of (cent).
Target speaker is the English male speaker EM001.

of , the state duration of each HSMM was adjusted after
Viterbi alignment with the corresponding natural utterance.5

The experimental results are shown in Figs. 8 and 9. Fig. 8
shows the average mel-cepstral distance between spectra gener-
ated from the adapted model and spectra obtained by analyzing
the target speakers’ natural utterances. Fig. 9 shows the RMSE
of between patterns of synthetic and real speech. Si-
lence, pause, and consonant regions were eliminated from the
mel-cepstral distance calculation. The RMSE of was cal-
culated in those regions where both the generated and the real
were voiced, since is not defined in unvoiced regions. Com-
paring HSMM-based model-space and feature-space SAT only,
one sees that the feature-space SAT gives slightly better results
in the adaptation of the parameter, whereas the error of the
feature-space SAT is slightly worse for adaptation of the spectral
parameters. However, we can also see that when we consistently
apply the feature-space SAT to all the embedded training pro-
cedures for HMMs and HSMMs, both the mel-cepstral distance
and RMSE of decrease substantially.

F. Evaluation of the Mixed-Gender Modeling

We evaluated mixed-gender modeling using the same ex-
perimental conditions and evaluation measures as for SAT.
We constructed gender-independent, gender-dependent, and
mixed-gender average voice models, and adapted them to
the target speaker using the same adaptation data. Figs. 10
and 11 show the average mel-cepstral distance and RMSE of

between the synthetic and natural speech. As before,
silence, pause, and consonant regions were eliminated from the
mel-cepstral distance calculation, and the RMSE of was
calculated in voiced regions only. Comparing the gender-de-
pendent and mixed-gender average voice models, in the case
of 10–50 adaptation sentences, we can see that the gender-de-
pendent modeling has a lower error than the mixed-gender
modeling, and is thus the most suitable average voice model to
employ in the case of very small amounts of adaptation data.
However, as the number of adaptation sentences increases,
more of the decision tree nodes containing a question about
gender can be used for determining the shared transforms. If

5In all the subjective evaluation tests, the state duration of each HSMM was
automatically determined using (37)–(41).
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Fig. 10. Objective evaluation of the mixed-gender modeling: Average mel-cep-
stral distance (dB). Target speaker is the English male speaker EM001.

Fig. 11. Objective evaluation of the mixed-gender modeling: RMSE of
(cent). Target speaker is the English male speaker EM001.

we compare the mel-cepstral distance of the gender-dependent
and mixed-gender average voice models in the case of 50–100
adaptation sentences, we can see that mixed-gender modeling
gradually becomes better. Mixed-gender modeling makes use
of training data from both genders and can create leaf nodes
common to both genders, as well as creating gender-dependent
ones where necessary. On the other hand, we can see that
mixed-gender modeling does not surpass gender-dependent
modeling in terms of error. This is because, in the decision
trees for , gender was always split at the root node; hence,
there are no mixed-gender leaf nodes.

G. Comparison With Nitech-HTS 2005

Finally, we conducted a comparison category rating (CCR)
test to compare the performance of the new system with the
speaker-dependent Nitech-HTS 2005 system. The only differ-
ence between this Nitech-HTS 2005 system and the system de-
tailed by Zen et al. [20] is the dimension of the mel-cepstral co-
efficients. In [20], 39 mel-cepstral coefficients were used. How-
ever, this increases the number of parameters of the matrix for
linear transformation. Hence, we used 24 mel-cepstral coef-
ficients for both systems. The experimental condition on the
training data in this subsection is the same as for the previous
experiments.

We constructed the new system using the training data
and adapted the resulting average voice model to the target
speaker using 100 sentences of the target speaker EM001. The
speaker-dependent system Nitech-HTS 2005 was built using
1000 sentences of the target speaker EM001. For reference, we
also compared synthesized speech generated from an adapted
model using the same 1000 sentences of the target speaker
EM001 as adaptation data. Twenty-five experimental subjects
were first presented with synthetic speech from Nitech-HTS
2005 as a reference, then with speech synthesized from the
adapted models either using 100 sentences or 1000 sentences
(in random order). The subjects were asked to compare the
synthetic speech generated from the adapted models with the
reference speech using a five-point scale: 2 for better, 1 for
slightly better, 0 for almost the same, 1 for slightly worse,
and 2 for worse than the reference speech.

The average values and their 95% confidence interval of each
adapted model in the CCR tests were 0.140 0.145 for 100
sentences and 0.424 0.08 for 1000 sentences, respectively.
The values indicate that the new system can synthesize speech
of about the same quality as the Nitech-HTS 2005 system from
only 100 adaptation sentences—that is, 10% of the training data
for the speaker-dependent systems. This is a significant result,
since the Nitech-HTS 2005 system performed very well in the
Blizzard Challenge 2005. Furthermore, we can see that the syn-
thetic speech generated from the new system using 1000 sen-
tences is judged to be slightly better than that using 100 sen-
tences and Nitech-HTS 2005 system. This result implies that
the speaker-adaptive approach has the potential to surpass the
usual speaker-dependent approach. We therefore decided to use
the speaker-adaptive approach, even given the large amount of
speech data provided in the Blizzard Challenge 2007.

H. Experimental Conditions for The Blizzard Challenge 2007

We used both the CMU-ARCTIC speech database and the
ATRECSS speech database for the Blizzard Challenge 2007 as
the training data for the average voice model, since the amount
of speech data for the target speaker EM001 exceeded that of
CMU-ARCTIC, and the purpose of the experiment was not
rapid adaptation to a given target speaker, but rather improved
quality. To investigate the effect of the corpus size, three sys-
tems could be submitted by all participants: one trained using
all the speech data included in the released database (Voice
A), a second trained using only the ARCTIC subset (Voice B),
and a third system trained using a freely selected subset having
the same duration of speech as that of the ARCTIC subset
(Voice C). Because of the time-consuming training procedures
of the HTS-2007 system, we constructed the HTS-2007 sys-
tems that use full-covariance models for Voices A and B only.

I. Results of the Blizzard Challenge 2007

Synthetic speech was generated for a set of 400 test sentences,
including sentences from conversational, news and ARCTIC
genres (used to evaluate naturalness and similarity) and seman-
tically unpredictable sentences (used to evaluate intelligibility)
[28]. To evaluate naturalness and similarity, five-point mean
opinion score (MOS) and CCR tests were conducted. The scale
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Fig. 12. Mean opinion scores of all systems in the Blizzard Challenge 2007.
Target speaker is the English male speaker EM001.

Fig. 13. Average similarity scores to original speaker of all systems in the Bliz-
zard Challenge 2007. Target speaker is the English male speaker EM001.

for the MOS test was 5 for “completely natural” and 1 for “com-
pletely unnatural.” The scale for the CCR tests was 5 for “sounds
like exactly the same person” and 1 for “sounds like a totally dif-
ferent person” compared to natural example sentences from the
reference speaker (EM001). To evaluate intelligibility, the sub-
jects were asked to transcribe semantically unpredictable sen-
tences; average word error rates (WER) were calculated from
these transcripts. The evaluations were conducted over a six
week period via the internet, and a total of 402 listeners par-
ticipated. For further details of these evaluations, see [28]. For
overall analysis of these evaluations, see [66].

Figs. 12–14 show the evaluation results for Voice A (eight
hours) and Voice B (one hour) of all 16 participating systems.
In these figures, systems “N” corresponds to the HTS-2007
system. In addition “A”, “B” and “J” correspond to the HTS
system developed by USTC (HTS-USTC) [67], iFlytek hy-
brid system [67] and the Festival “Multisyn” speech synthesis
system [68], respectively, with “I” corresponding to real speech.

These four systems represent the three current major com-
peting TTS methods well: One method is the dominant,
established and well-studied technique, “unit-selection.” This
method concatenates units of speech, selected from a corpus of
the target speaker’s speech, to create new utterances [69]; The
next method is often termed “statistical parametric synthesis,”
in which a statistical model (usually a HMM) is trained on, or
adapted to, the target speaker’s speech. Our approach belongs
to this category; The final method is a hybrid of the statistical
parametric and unit-selection techniques [70], [71], which has
been shown to generate very natural-sounding synthetic speech
when clean speech data are available for the target speaker [70].

Fig. 14. Average word error rate (%) of all systems in the Blizzard Challenge
2007. Target speaker is the English male speaker EM001.

We give a brief overview of these systems and their relationship
to one another, since we will focus on these systems in the
following experiments.

Festival Multisyn
Festival [61] is a popular unit-selection speech synthesis
system. In the 2007 Blizzard Challenge, Festival’s new
“Multisyn” module [72], which provides a flexible, gen-
eral implementation of unit selection and a set of associated
voice building tools, was used. HTS-2007 used the existing
modules from Festival, resulting in different phonesets and
front-end text-processing outputs.
HTS-USTC
The HTS-USTC speech synthesis system [67] is also
HMM-based, with context-dependent HMMs for the
STRAIGHT spectrum, and phone duration being
estimated from a single speaker database. There are three
principal differences between HTS-USTC and HTS-2007:
1) HTS-USTC used a minimum generation error (MGE)
criterion [73], whereas HTS-2007 used the ML/MAP
criterion; 2) HTS-USTC used line spectral pair (LSP)
features whereas HTS-2007 used mel-cepstrum features
to represent the spectrum. The order of those spectral
coefficients was also different; 3) HTS-USTC only used
data from the target speaker, whereas HTS-2007 was
speaker-adaptive.
iFlytek Hybrid
The HTS-USTC and iFlytek systems [67] used the same
underlying HMMs but different waveform generation
methods. In the HTS-USTC system, speech parameters
were generated directly from the statistical models using a
parametric synthesiser to reconstruct the speech waveform.
On the other hand, the iFlytek system adopted a waveform
concatenation method, in which a maximum-likelihood
criterion of the statistical models guided the selection
of phone-sized candidate units from the single-speaker
database [70], [71]. Both systems only used data from the
target speaker.

From the results for MOS and CCR tests, we can see that
the hybrid system was generally rated higher than other sys-
tems. In addition to this, we can see several interesting and
important points regarding the HTS-2007 system: 1) the nat-
uralness (Fig. 12) of Voice A for HTS-2007 was evaluated as
worse than that of Festival , whereas the natural-
ness of Voices A and B of another parametric system (HTS-
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USTC) were significantly better than those of Festival
; 2) compared with the similarity scores for the Festival

and HTS-USTC systems (Fig. 13), we observe that HTS-2007
has lower similarity scores in both Voices A and B ;
3) compared with the WER results for all the other systems
(Fig. 14), we can see that systems which obtained WERs of
less than 30% in both Voices A and B are HTS-USTC (“J”),
“M”, and HTS-2007 (“N”) only. Although it is pleasing that
the speaker-adaptive HTS-2007 system provides good intelli-
gibility without requiring either manual adjustment of tuning
parameters or manual modifications to the database, including
speech and label files, the lower naturalness and similarity of the
HTS-2007 voices need to be further explored. We analyze this
next.

IV. ANALYSIS AND IMPROVEMENT OF THE HTS-2007 SYSTEM

Ideally, we would analyze the reasons for the lower nat-
uralness and similarity of the HTS-2007 voices using the
same speech database used for the 2007 Blizzard Challenge.
However, the license agreement, concluded with ATR for the
speech database, forced us to delete both the speech database
and constructed systems immediately after the 2007 Blizzard
Challenge. Moreover we identified a number of issues that
made our analysis either from the above results or from per-
fectly simulated conditions difficult. Hence, in this section, we
have utilized different speech databases for our analysis. In
particular we have addressed five main aspects.

Amount of Available Speech Data (Section IV-A): Evalua-
tions for Voice A and Voice B were separately performed
in both the above MOS and CCR tests. Thus, because the
listeners differed, strictly speaking, we cannot discuss the
differences between Voice A and Voice B (that is, the ef-
fect of the amount of speech data available).
However, the speaker-adaptive HTS-2007 system works
well on the limited amount of speech data available com-
pared to the speaker-dependent HMM-based speech syn-
thesis systems or unit-selection systems trained on enough
amount of speech data. Hence, we have simultaneously
evaluated the systems built on different amount of speech
data and assess the effect of the amount of speech data
available.
Configurations for HMMs (Section IV-A): In the previous
comparison of HTS-2007 and HTS-USTC, the different
criteria used for training/adaptation of HMMs, the spectral
representation, and the order of spectral parameters appear
to have had a decisive influence on the results.
The benefits of the MGE criterion and LSP features over
the ML criterion and mel-cepstrum features were reported
in [73]. However, the effect due to the order of spectral
parameters is not clear. In particular full-covariance mod-
eling, where the number of parameters to be estimated de-
pends on the order of spectral parameters, should be dealt
with both from the point of view of the order of spectral
parameters and the amount of speech data available.
Number of target speakers (Section IV-B)
A single target speaker was used in the previous evaluation,
rather than evaluating the systems using multiple speakers.

Text processing and contextual features for acoustic units
(Section IV-C)
The results in Figs. 12–14 were influenced by the different
phonesets and front-end text-processing used in each
system. Since the front-end text-processing includes at
least lexicon/dictionary, letter-to-sound rules/predictors
for out-of-vocabulary words, part-of-speech tagging,
pause/phrase break predictors, and accent/stress predic-
tors, the accuracy of each module can affect the quality
of synthetic speech. Moreover, the different front-end
text-processing always results in different contextual fea-
tures for acoustic units in HMM-based speech synthesis.
Open and new domain (Section IV-C)
All the test sentences used in the above MOS and CCR tests
for naturalness and similarity were closed/in-domain sen-
tences. The three genres used in the test sentences—con-
versation, news and ARCTIC—were the same as those pre-
defined in the training corpus. Although some unit-selec-
tion methods have been developed for closed domain ap-
plications (and perform very well in such cases), it would
be more desirable to be domain-independent and not re-
quire information about the domains of either training or
test sentences. It would be better to evaluate the systems
using new- and open-domain sentences.

Based on these points, we designed the following analysis.
In Section IV-A, we first analyze the effects of the amount
of speech data available and the order of mel-cepstral anal-
ysis in the HTS-2007 system. At the same time, we compare
the speaker-adaptive approach of the HTS-2007 system with
the previous speaker-dependent approaches, and compare
the system using full-covariance modeling using CSMAPLR
transforms with those using diagonal covariance and semi-tied
covariances (STC) [30], since the relative performance of
these methods depends on the amount of data available. In
Section IV-B, we evaluate full-covariance modeling using
multiple target speakers, since we found the effect of full-co-
variance modeling varies by speaker. In Section IV-C, we then
reevaluate the selected four systems from above, using identical
labels, in order to exclude any effect of differing phonesets and
front-end text-processing.

A. Evaluation of Amount of Speech Data Available, Order of
Mel-Cepstral Analysis and Full-Covariance Modeling

To investigate the effect of the amount of speech data avail-
able, we built two speaker-dependent systems (Nitech-HTS
2005, Nitech-NAIST-HTS 2006) and one speaker-adaptive
system (HTS-2007) using several sets of sentences spoken by
the target speaker EM001. These consisted of: 100 randomly
chosen CMU-ARCTIC sentences (6-min duration); the 1032
CMU-ARCTIC sentences used for Voice B (1-h duration);
all 6579 sentences used for Voice A (8-h duration). In all
HTS-2007 systems, the speech data from the CMU-ARCTIC
database was used as part of the training data for the average
voice model. For reference, the Festival speech synthesis
system using the same speech data of the speaker EM001 was
also evaluated as a baseline unit-selection speech synthesis
system.
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We built the HTS-2007 systems using either 24 or 39 order
STRAIGHT mel-cepstral coefficients for each voice, in order
to investigate the effect of the model order of the STRAIGHT
mel-cepstra. At the same time, systems using diagonal covari-
ance and semi-tied covariance were also built, in order to eval-
uate full-covariance modeling techniques. In order to assess the
effect on only the SMAP criterion and multiple transforms in
CSMAPLR, systems with diagonal covariance or semi-tied co-
variance were built using the following procedures after step 5)
for the CSMAPLR and MAP adaptation.

6) Diagonalize the covariance matrices of the transformed
model from step 5).

7) Update the mean, diagonalized covariance, and weight
of the transformed model based on the MAP criterion.
Repeat the update.

8) Using the current semi-tied transform, estimate diagonal
elements of the covariance matrices based on the MAP
criterion.

9) Using the estimated diagonal elements of the covari-
ance matrices, estimate the current semi-tied transform,
which is equivalent to the transform of only the covari-
ance matrices of (15), based on the ML criterion.

10) Go to step 8) unless convergence, or some other appro-
priate criterion is satisfied.

11) Transform the covariance matrices to full-covariance
using the estimated semi-tied transform.

Models with diagonal covariance from step 7) and with semi-
tied full-covariance from step 11) were compared to models
with CSMAPLR-based full-covariance.

Tables II and III show the number of leaf nodes of the con-
structed decision trees and memory footprints corresponding to
the acoustic models and linear transforms for each system. The
number of leaf nodes for the Nitech-NAIST-HTS 2006 system
is the same as for Nitech-HTS 2005. Since the number of leaf
nodes corresponds to the number of parameter-tied Gaussian
pdfs included in the model, we see that the HTS-2007 system
can use many more Gaussians compared with speaker-depen-
dent approaches. The memory footprints for the HTS-2007 sys-
tems depend on the condition of the speaker adaptation algo-
rithms. For example, when we use a global transformation of
the CSMAPLR adaptation only, the speaker-specific part of the
memory footprint is 40–55 kB. The remainder of the memory
usage is common to all speakers. However, since we focused
not on memory requirements but on the quality of synthetic
speech, we utilized combined piecewise CSMAPLR and MAP
adaptation, which increased the memory footprint (Table III).
If we diagonalize the covariance matrices of the adapted model
in the parameter generation stage, it would be a better choice
to transform the average voice model in advance. In this case,
the footprint of the adapted model is identical to that of the
average voice model and we can reduce the footprint for the
transforms. With full-covariance matrices using the CSMAPLR
transforms, the footprint for the transforms are also required.

TABLE II
NUMBER OF LEAF NODES OF CONSTRUCTED DECISION TREES FOR EACH

SYSTEM OF EACH VOICE. (a) 6 min. (b) 1 h. (c) 8 h

Note that no compression techniques were applied to the piece-
wise CSMAPLR transforms.6

We evaluated naturalness and similarity. The reference
speech included two recorded sentences spoken by target
speaker EM001. In those tests, 33 subjects were presented with
a set of synthetic speech utterances generated from the systems
in random order.

In order to evaluate naturalness and similarity to the orig-
inal speaker on out-of-domain sentences, 14 semantically
unpredictable test sentences (as used in Blizzard 2007 [28])
were randomly chosen for each subject, from a set of 50 test
sentences. Semantically unpredictable sentences were the only
out-of-domain sentences in the 2007 Blizzard Challenge. Sub-
jects were asked to rate them using a five-point scale, where 5
corresponded to natural (MOS test) or very similar (CCR test),
and 1 corresponded to poor (MOS test) or very dissimilar (CCR
test).

Fig. 15 shows the mean scores and 95% confidence intervals
for the MOS and CCR tests. For both tests, there are significant
differences between the HTS-2007 systems and the speaker-de-
pendent systems when six minutes or one hour of target speech
data is used. As the amount of training data available decreases,
the differences become more significant. In order to make this
speaker-adaptive approach beneficial even when large amounts
of target speech data are available, we should train the average
voice model from much larger amounts of speech data.

Further results from these experiments concern feature
dimensionality and covariance modeling. In the CCR test,
there are significant differences between the systems using
24th- or 39th-order STRAIGHT mel-cepstral coefficients when
one or eight hours of target speech data are used. The higher
feature dimensionality can improve the similarity of synthetic
speech, when a large amount of speech data is available.

6Voice sizes for Festival above are about 233 MB and 2080 MB, respectively.
Note that no compression techniques were applied to waveforms or utterance
files.
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TABLE III
MEMORY FOOTPRINT (MB) FOR EACH SYSTEM. (a) 6 min. (b) 1 h. (c) 8 h

Thus, we can conclude that one of the reasons the HTS-2007
system had poorer similarity scores in Fig. 13 is the use of
24th-order STRAIGHT mel-cepstral coefficients. The fact that
the HTS-USTC system utilized 40th-order STRAIGHT LSP
coefficients supports this finding. Contrary to this, in the MOS
test there is a significant difference between systems using
different order coefficients only in the case of six minutes of
target speech data. The HTS-2007 system using 39-dimen-
sion mel-cepstra was found to be less natural than that using
24-dimension mel-cepstra only in the case of six minutes of
target speech data, presumably due to the number of additional
parameters that need to be estimated for the linear trans-
form in the case of higher feature dimensionality. Although
CSMAPLR-based full-covariance modeling had the highest
scores in the CCR test, the differences were not significant. We
discuss the effect of full-covariance modeling more fully in the
next subsection.

We can see some important differences to the results reported
earlier (Section III-I, Figs. 12–14). First, in Fig. 15(a), the nat-
uralness scores of Voice A of HTS-2007 are now significantly
better than those of Festival , whereas before the
naturalness (Fig. 12) of Voice A for HTS-2007 was evaluated
as worse than that of Festival . Moreover, the natu-
ralness of synthetic speech generated from the Festival unit-se-
lection speech synthesis system becomes much worse as the
amount of target speech data becomes smaller .
It can be also seen that synthetic speech generated from the

HTS-2007 system using six minutes of speech data was rated
to be more natural than that of the unit-selection approach using
one hour of speech data . This is most likely due
to differences in the type of test sentences used in these ex-
periments. The test sentences used in the experiments reported
in this subsection were semantically unpredictable sentences
[74], with a simple grammatical structure det-adj-noun-verb-
det-adj-noun, using words of between low and medium fre-
quency. Table IV illustrates how the unit selection system makes
more concatenations (as opposed to selecting contiguous units
from the database) for the semantically unpredictable sentences.
In Fig. 15(b), the similarity scores of the HTS-2007 system are
comparable to those of Festival for Voice A and are better for
Voice B, whereas we previously observed that HTS-2007 had
lower scores in both Voices A and B than Festival
(Fig. 13). In addition to the effect of the semantically unpre-
dictable sentences described above, the differences in the order
of the STRAIGHT mel-cepstral analysis also affected the results
as shown in Fig. 15(b). These experiments indicate that unit-se-
lection works well for in-domain sentences with eight hours of
speech data. In particular, synthetic speech generated by unit-se-
lection has good similarity. However, it loses similarity, and par-
ticularly naturalness, for out-of-domain sentences or when little
speech data is available. On the other hand, the speaker-adaptive
system proposed here is able to maintain naturalness and sim-
ilarity even for out-of-domain sentences, or when little speech
data is available.
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Fig. 15. Subjective evaluation of the English HTS-2007 and previous systems.
Target speaker is the English male speaker EM001. (a) MOS test: naturalness.
(b) CCR test: similarity.

TABLE IV
PERCENTAGES OF SELECTED DIPHONE UNITS WHICH WERE CONTIGUOUS

IN THE CORPUS WITH THE PRECEDING SELECTED DIPHONE IN THE
FESTIVAL MULTISYN SYSTEM. AVERAGE, MINIMUM, AND MAXIMUM

PERCENTAGES PER UTTERANCE WERE CALCULATED FOR THE
TEST SENTENCES FOR THE BLIZZARD CHALLENGE

B. Evaluation of Full-Covariance Modeling With Multiple
Target Speakers

The previous experiments involved the evaluation of a single
target speaker in English. We also conducted experiments
for Japanese speech synthesis using the Nitech-HTS 2005,
Nitech-NAIST-HTS 2006, and HTS-2007 systems. To build
the Japanese HTS-2007 systems, we used two data sets: first,
the ATR Japanese speech database Set B,7 containing a set
of 503 phonetically balanced sentences each uttered by ten

7http://www.atr-p.com/sdb.html.

speakers (six male: MHO, MHT, MMY, MSH, MTK, and MYI;
four female: FKN, FKS, FTK, and FYM), with a duration
of about 30 minutes per speaker; Second, a database which
contains the same sentences as those of the ATR Japanese
speech database (Set B) uttered by a female speaker (FTY)
and two male speakers (MJI and MMI), also with a duration of
about 30 minutes per speaker. We utilized all the speakers for
the training of a Japanese mixed-gender average voice model.
Although the effect of full-covariance modeling in the English
experiment above was not statistically significant, we found
in preliminary experiments that the effect of full-covariance
modeling varies by speaker. Thus, in this experiment, we used
multiple target speakers for the adaptation of the average voice
model. From the training corpus for the average voice model,
we chose two female and two male speakers (FTY, FYM, MJI,
and MYI) as target speakers. About 30 minutes of adaptation
data for each target speaker was available. We also used one
female and one male speaker (F109 and M001) as additional
target speakers, not included in the training set. Speech data for
the speaker F109 was obtained from the ATR Japanese speech
database Set C,8 containing a set of 100 phonetically balanced
sentences of the ATR Japanese speech database (Set B), with
a duration of about six minutes. Speech data for the speaker
M001 was obtained from a Japanese database available from
the HTS website,9 which contains the same sentences as those
of the ATR Japanese speech database (Set B), with a duration
of about 30 minutes. About six minutes of speech data was
used for F109. Two different amounts of data were used for
M001: six minutes (the same set of sentences as for F109), and
30 minutes. The evaluation methods that we employed were
the same MOS and CCR tests as in the above experiments on
English. Ten Japanese male subjects were used, each listening
to six test sentences randomly chosen from 50 test sentences
from ATR Set B.

Fig. 16 shows the mean scores with 95% confidence interval
for the MOS and CCR tests for the Japanese systems using the
seven target speakers. Total scores and individual scores for
each amount of speech data are shown. From the total scores,
it can be seen that CSMAPLR-based full-covariance modeling
slightly improves similarity of synthetic speech compared to
that using diagonal covariance. Further, from the total scores
we can also see that there are significant differences between
the speaker-adaptive and speaker-dependent systems in both the
MOS and CCR tests. The HTS-2007 system generates better
quality synthetic speech than that of the speaker-dependent sys-
tems since the amount of speech data used for the target speakers
is relatively small. The differences between the HTS-2007 and
speaker-dependent systems become even clearer when only six
minutes of speech data are used. These results are in agreement
with our findings for English.

The effect of full-covariance modeling varied by speaker and
did not have much effect for some speakers, while improving
similarity others. Fig. 17 shows the scores for the CCR tests
for the male speaker M001. Average scores for each amount of

8http://www.atr-langue.com/product/index.html.
9http://hts.sp.nitech.ac.jp/?Download.
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Fig. 16. Subjective evaluation of the Japanese HTS-2007 and past systems.
Target speakers are six Japanese speakers. (a) MOS test: naturalness. (b) CCR
test: similarity.

Fig. 17. Subjective evaluation using the CCR test of the Japanese HTS-2007
and past systems. Target speaker is M001.

speech data are shown. For this speaker, the CSMAPLR-based
full-covariance modeling is highly effective.

C. Reevaluation With the Same Front-End Text-Processing

We now analyze the influence of the use of different front-end
text processing. The easiest way to do this is to separate the
influence of the front-end text processing and speech synthesis
methods and compare the performance of several systems.
In order to do that, we built voices for each of four synthe-
sisers—Festival, HTS-2007, HTS-USTC, and iFlytek Hybrid
systems—using the same front-end processing and the same
corpus.

Since its use was limited to the 2007 Blizzard Challenge, we
were not able to use the ATRECSS speech database, so we se-
lected a different corpus for this evaluation. This corpus con-
tains high quality clean speech data collected under controlled
recording studio conditions by a male British English speaker
with a received pronunciation (RP) accent. Subsets consisting
of 768 randomly chosen sentences (about 1 h in duration), 3063
randomly chosen sentences (about 4 h in duration) and 6691
randomly chosen sentences (about 9.5 h in duration) were used.
In all experiments, only target speaker data from the chosen
subset was used to build the voice. For example, we did not uti-
lize the full data set to train acoustic models used for segmen-
tation, when building voices on the smaller sets. Note that the
speaker-adaptive HTS-2007 system was trained on a substantial
amount of clean speech data from other speakers, then adapted
using the chosen subset of data from the target speaker. In all
the procedures, MSD-HSMMs were used throughout.

Speech signals were sampled at 16 kHz. for use in all syn-
thesis methods was estimated using the voting method described
in Section II-A. The spectral analysis methods varied according
to system: Festival uses 12 MFCC coefficients (in the join cost),
HTS-2007 uses 39 mel-cepstral coefficients, HTS-USTC uses
40 LSP coefficients, and the iFlytek hybrid system uses 12 mel-
cepstral coefficients. Each system may also have energy or the
0th coefficient.

In order to exclude differences in front-end text processing,
we used the same labels and lexicon for the voice building and
test sentence synthesis in all systems. The labels were generated
using Unilex [75] and Festival’s Multisyn module. Likewise,
the same question set for the clustering of context-dependent
HMMs was used in the HTS-2007, HTS-USTC, and iFlytek hy-
brid systems.

All the systems were used to synthesise the fairy tale
“Goldilocks and the Three Bears” and the Festival, HTS-2007,
and iFlytek hybrid systems were used to synthesise the story
“The Little Girl and the Wolf” by James Thurber. Neither of
these texts were in the training data. The reasons we used
children’s stories for the evaluation were 1) a new domain (this
genre was not represented in the training data) and 2) increased
naturalness compared with the semantically unpredictable
sentences used in Section IV-A. The stories were split up into
12 and 22 utterances, respectively. In the “Little Girl” story,
each utterance consisted of a single sentence, whereas each
utterance consisted of two sentences in the “Goldilocks” story.
55 subjects (of whom 47 were native speakers) were presented
with synthetic speech utterances from the various systems in a
random order. They were then asked to score the naturalness
of the utterance using MOS on a five point scale, where 5
corresponds to natural and 1 corresponds to unnatural. The
listening tests were separately carried out for each story. For
the “Goldilocks” story the systems using different amounts of
speech data above were evaluated together.

Fig. 18 shows the mean opinion scores, with 95% confidence
intervals for the “Little Girl” utterances. From this result, we can
see that the HTS-2007 and hybrid system are rated as more nat-
ural than the Festival unit-selection system, even for out-of-do-
main children’s story sentences. This confirms our hypothesis
that the unit-selection system is less robust for out-of-domain
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Fig. 18. Subjective evaluation using the “Little Girl” test utterances (one sen-
tence per utterance) synthesized from voices built using the Festival, HTS-2007,
HTS-USTC, and iFlytek Hybrid systems. The same front-end text-processing
and the same corpus were used in all the systems.

Fig. 19. Subjective evaluation using the “Goldilocks” test utterances (two sen-
tences per utterance) synthesized from voices built using the Festival, HTS-
2007, HTS-USTC, and iFlytek Hybrid systems. The same front-end text-pro-
cessing and the same corpus were used in all the systems.

sentences. However, the hybrid system also uses a unit search
and waveform concatenation method similar to that of the unit-
selection system, but with a different unit selection criterion.
Thus, we can conclude that it is the statistical models used in
the HTS-2007 and hybrid systems that provide the robustness
to the out-of-domain sentences. The models successfully guide
unit selection in the hybrid system by using a maximum-like-
lihood criterion [70], [71]. In other words, the hybrid system
finds better units to concatenate than the unit-selection system,
given the same database. Fig. 19 shows the mean opinion scores,
with 95% confidence intervals, for the “Goldilocks” utterances.
From this figure we can also verify that 1) the unit-selection
system is less robust for the out-of-domain sentences, 2) sta-
tistical parametric systems are robust by comparison, and 3)
the hybrid system benefits from the robustness offered by the
statistical parametric models. Comparing Fig. 19 and Fig. 18,
we notice that subjects no longer rate the hybrid system as the
most natural. Further work is needed to discover if this is be-
cause the test utterances consisted of two sentences, or whether
there is some other reason. However, this is beyond the scope of
this paper and thus we leave that analysis for the future. Com-
pared to Fig. 12, it is surprising how strong the effects of test
text and the front-end text processing are. This gives cause for
concern and deserves further investigation, in order that we can

better understand these various speech synthesis methods. The
HTS-2007 system proposed here is comparable in quality to the
HTS-USTC or iFlytek systems. The HTS-USTC system bene-
fits from the use of the MGE criterion and LSP features. Inte-
grating those advances into the HTS-2007 system should further
improve the quality of synthetic speech.

D. Blizzard Challenge 2008

In the Blizzard Challenge 2008,10 an English speech data-
base consisting of 15 h of speech uttered by a British male
speaker and a Mandarin speech database consisting of about 6 h
of speech uttered by a Beijing female speaker were released by
the Centre for Speech Technology Research (CSTR), Univer-
sity of Edinburgh, U.K., and the National Laboratory of Pattern
Recognition, Institute of Automation, Chinese Academy of Sci-
ences, Beijing, China, respectively.

For the 2008 Blizzard Challenge, we used the same speaker-
adaptive approach to HMM-based speech synthesis that was
used for the 2007 challenge, but an improved system was built
in which the multi-accented English average voice model was
trained on 41 h of speech data with high-order mel-cepstral
analysis using an efficient forward-backward algorithm for the
HSMM, based on the analysis results above. The listener evalu-
ation scores for the synthetic speech generated from this system
was much better than in 2007: the system had the equal best
naturalness on the small English data set and the equal best in-
telligibility on both small and large data sets for English, and
had the equal best naturalness on the Mandarin data. In fact, the
English system was found to be as intelligible as human speech
[76]. These facts also underpin the importance of the above anal-
ysis results.

V. ROBUST SPEECH SYNTHESIS

Our final experiment concerns what we consider to be a
major advantage of the HTS-2007 system over other syn-
thesis methods: it is speaker-adaptive. This system can create
synthetic speech with diverse speaker characteristics by trans-
forming the parameters of the average voice models using
speaker adaptation techniques. Here, we report an experiment
which tests this claim.

The ability to create diverse voices has many potential at-
tractive commercial applications, such as virtual celebrity actors
[77], as well as clinical applications such as synthetic replace-
ment voices. The ability to create speech with the characteristics
of a particular speaker could be combined with spoken language
translation, to personalize speech-to-speech translation: a user’s
speech in one language can be used to produce corresponding
speech in another language, while continuing to sound like the
user’s voice. This technology would also have applications in
dubbing foreign-language television programmes or movies.

In many of these applications, the available speech for the
target speaker will always suffer from noise or fluctuations in
the recording conditions (changes in environment, microphone
type and placement, etc.); this would be expected to signifi-
cantly degrade the quality of the synthetic speech. Moreover,
such “found” speech is unlikely to be phonetically balanced and

10http://www.synsig.org/index.php/Blizzard_Challenge_2008.
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Fig. 20. Subjective evaluation using the “Goldilocks” test utterances (two
sentences per utterance) synthesized from voices built using the Festival,
HTS-2007, HTS-USTC, and iFlytek Hybrid systems with noisy data. The same
front-end text-processing and the same corpus were used in all the systems.

will therefore lack some essential acoustic units. This causes se-
vere problems in some systems: for example, concatenative sys-
tems must back off to some other unit, which may or may not
sound acceptable.

It is not impossible to use unit-selection speech synthesis or
other techniques in such applications. However, we would ex-
pect their performance to be severely impacted by the imperfect
data quality. In this section, we therefore analyze how robust the
Festival, HTS-2007, HTS-USTC, and iFlytek Hybrid systems
are to such less favorable conditions. This is, as far as we know,
a new research topic, which we have termed “Robust speech
synthesis.”

A. Experimental Conditions

The voices for each system were built in the same way as
in Section IV-C except for the use of a different corpus. The
corpus used here consists of noisy data and was constructed
from audio freely available on the web, of a well-known
American politician. These data were not recorded in a studio
and have a small amount of background noise. The recording
condition of the data is not consistent: the environment and
microphone may vary. Subsets consisting of 978 randomly
chosen sentences (about one hour in duration) and 3846 ran-
domly chosen sentences (about 4 h in duration) were used. For
details of this data, please see [77].

B. Evaluation of Speech Synthesis Systems Built From
Imperfect and Noisy Data

The evaluation of the voices was also carried out in the
same way as in Section IV-C. The same subjects evaluated the
“Goldilocks” test utterances. Fig. 20 shows the mean opinion
scores, with 95% confidence intervals, for the “Goldilocks”
utterances. We can see completely different tendencies from
this figure. Comparing Figs. 19 and 20, we notice first that
the unit-selection method is very poor indeed on noisy data.
This is because inconsistency in the recording conditions from
session to session translates into inconsistency in the synthetic
speech from unit to unit, which makes the resulting synthetic
speech “patchy” and very unnatural sounding. The hybrid

system is also vulnerable to the same problem to some extent,
since it also concatenates waveforms to generate speech. The
speaker-adaptive HTS-2007 system is clearly the most robust
of the systems: its performance is least degraded by the use of
noisy data. The naturalness of the HTS-2007 system increases
as more data become available: the other systems are unable
to improve naturalness by using more data. We believe that
there are two principal reasons for the superior robustness of
the speaker-adaptive HTS-2007 system. The first is that the
average voice model is trained from a large amount of clean
speech data. Therefore, the decision trees used for tying of
HMM parameters are not affected by the noisy data at all. The
second is that the speaker adaptation algorithms used in the
system include feature transforms. These feature transforms are
a generalization of several normalization techniques mentioned
previously. They can normalize the fluctuations of the recording
conditions, assuming that these can be approximated by linear
or piecewise linear regression. The reasons the HTS-USTC
system is worse on noisy data constitute a reversal from the
advantages for the speaker-adaptive HTS-2007 system; both
the estimation and tying of HMM parameters are affected by
the noisy data. The MGE criterion used in the HTS-USTC
system is especially sensitive to the noisy data.

Our results therefore demonstrate a newly discovered signif-
icant advantage of speaker-adaptive HMM-based speech syn-
thesis: “robustness.” This ability to generate a synthetic voice
from noisy data further expands the potential applications of this
technique, and of course dramatically increases the amount of
existing data that can now be considered usable for speech syn-
thesis.

VI. CONCLUSION

We have described the development and evaluation of a
speaker-adaptive HMM-based speech synthesis system. The
speaker-adaptive approach was further enhanced by two new
algorithms: 1) feature-space adaptive training for HSMMs and
2) mixed-gender modeling, and two advanced techniques: 3)
CSMAPLR+MAP speaker adaptation and 4) full-covariance
modeling using the CSMAPLR transforms. These enhance-
ments were successfully incorporated into our systems that
employ STRAIGHT, mixed excitation, HSMMs, GV, and
full-covariance modeling.

We demonstrated the effect of the new algorithms in the ob-
jective evaluations. In a subjective comparison with a conven-
tional speaker-adaptive system, we showed that the GV algo-
rithm results in synthetic speech of substantially higher quality.
Furthermore, from several subjective comparisons with conven-
tional speaker-dependent systems, we found that the speaker-
adaptive approach is able to synthesize speech that is signif-
icantly better than that synthesized by speaker-dependent ap-
proaches in situations with realistic amounts of target speaker
data, and bears comparison with those speaker-dependent ap-
proaches even when large amounts of speech data are available.

We also compared the performance of the proposed system
with several other speech synthesis techniques, representative of
the state of the art. From subjective evaluation results (including
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the Blizzard Challenge 2007) we show that the new system gen-
erates high quality speech.11 In particular, we have shown that
the proposed system is robust, in several ways. It is able to syn-
thesize speech well, even for out-of-domain sentences or when
little speech data is available. It can also generate good-quality
synthetic speech from less-than-ideal speech data where the data
is not perfectly clean, recording conditions are not consistent,
and/or the phonetic balance of the texts is not controlled. This
robustness is unique to the proposed speaker-adaptive system
and opens up possible novel applications for speech synthesis.

The current adaptation framework in HTS-2007 system is su-
pervised: Although it does not require time-alignment informa-
tion for the target speaker adaptation data, it does require com-
plex context-dependent labels for that data. In order to build
voices from only speech data, in a completely automatic fashion,
we need to perform the speaker adaptation without such com-
plex context-dependent labels. We now are developing methods
to enable unsupervised speaker adaptation for speech synthesis,
to enable adaptation either without labels or with only simple
labels.
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