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Abstract—We investigate the use of full covariance Gaussians
for large-vocabulary speech recognition. The large number of
parameters gives high modelling power, but when training data
is limited, the standard sample covariance matrix is often poorly
conditioned, and has high variance. We explain how these
problems may be solved by the use of a diagonal covariance
smoothing prior, and relate this to the shrinkage estimator, for
which the optimal shrinkage parameter may itself be estimated
from the training data. We also compare the use of generatively
and discriminatively trained priors. Results are presented on
a large vocabulary conversational telephone speech recognition
task.

I. INTRODUCTION

HMM-based systems for automatic speech recognition
(ASR) typically model the acoustic features using mixtures
of multivariate Gaussians (GMMs). Whilst the Gaussians are
most commonly restricted to have diagonal covariance matri-
ces, it has been shown [1], [2], [3] that increasing the number
of covariance parameters generally improves recognition per-
formance, above the improvement that may be achieved simply
by increasing the number of Gaussians. Various schemes
have been proposed for increasing the number of covariance
parameters per Gaussian, which may vary between d, in
the diagonal case, and 1

2d(d + 1) in the full covariance
case (where d is the size of the acoustic feature vector).
These schemes most commonly control the number of free
parameters by representing the inverse covariance matrices as a
linear combination of some set of basis elements: examples of
such schemes include Semi-Tied Covariance Matrices (STC)
[4], Extended Maximum Likelihood Linear Transforms [5] and
Subspace for Precision and Mean (SPAM) [1] – a review can
be found in [6].

In this paper we investigate the use of full covariance mod-
els, where each Gaussian has the maximum number of free
covariance parameters. In a large vocabulary recognition sys-
tem, such models present some practical issues with parameter
storage, and the cost of evaluating the Gaussian likelihoods,
but these requirements do not pose any hard limits on the
models that may be used. However, the use of full covariance
matrices requires that two major problems be addressed: firstly,
the covariance matrices must be well-conditioned, in order
to avoid amplifying numerical errors when evaluating the
Gaussian log likelihoods; secondly, models trained on limited

training data must generalise well to unseen test data, despite
the very large number of free parameters.

In [3], Povey demonstrated that full covariance models can
outperform SPAM models, but noted that it is essential to
smooth the off-diagonal elements. In this paper we explore
this technique further in the context of the two problems
outlined above, and relate it to our previous investigation of
the “shrinkage estimator” [7]. We consider the choice of prior,
and go on to discuss the estimation of the optimal shrinkage
parameter. We present results on a conversational telephone
speech task.

II. FULL COVARIANCE ESTIMATION

A. Background

In what follows, we generally take a generative approach
and assume that each Gaussian m has true, fixed parameters,
a mean µm and covariance Σm, that could, in principle, be
perfectly inferred were there are infinite training data available.
(We will discuss some problems with this approach in a later
section).

Given training data observations x(t) and weights γm(t),
the sample covariance matrix is computed as:

Sm =
∑

t γm(t)(x(t)− µ̂m)(x(t)− µ̂m)T

βm
(1)

where βm =
∑

t γm(t), a measure of the total amount of data
available for the Gaussian m. (µ̂m is the sample estimate of
the mean). In the context of the EM algorithm, the weights
γm(t) are set to the posterior probabilities of the observations
x(t), given some previous parameter set, and using Sm as
the estimate of the covariance matrix that maximises a lower
bound on the log likelihood of the training data. Sm is
guaranteed to be positive semidefinite.

In [8], Povey suggested smoothing the off-diagonal elements
of the covariance matrix and, in [3], showed that this results
in significant performance gains over the unsmoothed matrix.
His suggestion was to reduce the off-diagonal elements by
a factor τ

τ+βm
, where τ is a smoothing constant, set to an

empirically-determined value of 100. Defining Dm to be a
diagonal matrix consisting of the diagonal elements of Sm,



and writing the smoothed matrix as Um, we see trivially that

Um =
βm

τ + βm
Sm +

τ

τ + βm
Dm (2)

≡ (1− λ)Sm + λDm (3)

Equation (2) formulates the smoothed matrix as a maximum
a-posteriori (MAP) estimate, where the prior is chosen to
be the diagonal matrix with prior variance τ . Equation (3)
reformulates the matrix as a shrinkage estimator [9] with
shrinkage parameter λ. Both formulations yield benefits in the
analysis of the smoothed matrix. In the following sections we
consider the properties of the model Um with reference to three
criteria: matrix conditioning, generalisation and discriminative
power.

B. Matrix conditioning

Since each Sm is positive semidefinite, we may define the
condition number to be the ratio of the ratio of the largest and
smallest eigenvalues:

κ(Sm) =
λmax(Sm)
λmin(Sm)

(4)

The amplification of errors when inverting the matrix – re-
quired for the log-likelihood computation during decoding –
is directly proportional to the condition number, and a matrix
is said to be well-conditioned when κ is small. In the extreme
case when the number of observations for which γm(t) is non-
zero is less than d, Sm is guaranteed to be non-invertible, and
the condition number is infinite. In ASR systems, d is typically
39, and could even be 52 – so this is a practical consideration
in systems with relatively large numbers of Gaussians and
small amounts of data.

Moreover, it is shown in [9] that even when n > d, Sm will
be, on average, less well-conditioned than the true matrix Σm.
This follows from the mathematical result that the eigenvalues
of any symmetric matrix are the most dispersed diagonal
elements that can be obtained by rotation: that is to say, the
diagonal elements of the matrix RT SR, for any rotation R, are
maximally dispersed when R is the matrix of eigenvectors. The
eigenvectors of Sm and Σm are not equal, in general, despite
the fact that E(Sm) = Σm. Importantly, the result also shows
that the eigenvalues of the diagonal matrix, Dm (which are
of course, just the diagonal elements themselves) must be less
dispersed than the eigenvectors of Sm, and of Σ. It follows
that the smoothed Um is always better-conditioned than Sm.

C. Generalisation

In the context of statistical learning, generalisation refers to
the ability of a model whose parameters are estimated from
a finite set of training data to perform well when applied to
unseen test data. Considering the training data to be randomly
sampled from the true underlying distribution, we can view
the estimated covariance matrix Um as a random variable.
Since the test data are sampled from the same distribution, and
assuming again the existence of a true matrix Σm, a covariance

model Um will generalise well if, on average, it is close to Σm:
we therefore seek to minimise the convex error function

E‖Um −Σm‖2 = E‖Um − E(Um)‖2 + ‖E(Um)−Σm‖2 (5)

where the expectation denotes the fact that Um is a function
of the random training data. For the matrix norm, we use the
Frobenius norm, given by

‖A‖F =
√

trAT A = (
∑

i

∑
j

|Aij |2)
1
2 (6)

which arises from the inner product 〈A,B〉 = tr AT B.
Equation (5) decomposes the error function into two terms:

a variance term, and bias term respectively. This illustrates the
trade-off between a model that is too complex, which will have
a high variance (ie. it over-fits to the observed training data),
and a model that is too simple, which produces estimates that,
on average, deviate from the true parameter. Importantly, the
error function is strictly convex with respect to the parameter
λ from (3): by using a linear combination of Sm and Dm, the
expected error is reduced below a simple weighting of errors
from the two estimators.

D. Discrimination

The optimality properties of generative modelling for clas-
sification depend upon the assumption of model correctness,
which does not hold in practice for the HMM-GMM. Training
model parameters according to the explicitly discriminative
MMI criterion instead has been shown to yield performance
improvements [10]. The MMI criterion can be viewed as the
sum, over all training utterances, of the margin between the
model-based log likelihoods of the correct transcription and
the closest competing transcription. In the case of infinite
training data, it has been shown [11] that the criterion provides
an upper bound on the model-free expected error rate. In the
case of finite training data, however, the resulting estimators
may still have high variance.

The MMI criterion motivates a simple modification to the
smoothing technique. In the full covariance case, we would
expect MMI training to yield only small improvements over
ML training due to the very large number of parameters
(diminishing the importance of model correctness), whilst
continuing to suffer from high variance: in the diagonal case,
we would expect the converse. We therefore propose replacing
the prior Dm with a discriminatively-trained equivalent, whilst
using the standard full sample covariance matrix as before.

III. THE SHRINKAGE PARAMETER

A. Optimisation of the shrinkage parameter

An interesting consideration is the method for choosing
the optimal prior weight τ , or shrinkage constant λ. Whilst
this could, in practice, be chosen heuristically, with reference
to some held-back development data, it is worthwhile to
investigate whether a suitable constant may in fact, be obtained
analytically. As in our previous work [7], we adopt the
approach of [9], generalised in [12]. In what follows, we omit



the dependence on m for clarity. Consider the formulation in
(3). Using (5), we minimise

E‖U − Σ‖2 = E‖λ(D − Σ) + (1− λ)(S − Σ)‖2 (7)

= λ2E‖D − Σ‖2 + (1− λ)2E‖S − Σ‖2

+ 2λ(1− λ)E〈D − Σ, S − Σ〉
(8)

Differentiating with respect to λ and setting the result equal
to zero, we obtain

E‖S − Σ‖2 − E〈D − Σ, S − Σ〉
= λ[E‖D − Σ‖2 + E‖S − Σ‖2 − 2E〈D − Σ, S − Σ〉]

(9)

= λE‖(S − Σ)− (D − Σ)‖2 (10)

We decompose Σ into its diagonal and off-diagonal elements:
Σ = Σdiag + Σod. Since ES = Σ, E〈Σod, S −Σ〉 = 0, and we
add this to the second term on the left-hand side, giving

E〈D − Σdiag, S − Σ〉 = E‖D − Σdiag‖2 (11)

since the off-diagonal terms then vanish from the inner prod-
uct. We therefore obtain

λ =
E‖S − Σ‖2 − E‖D − Σdiag‖2

E‖S −D‖2
(12)

When D consists simply of the diagonal elements of S, then
the numerator in (12) becomes∑

i 6=j

E(Sij − Σij)2 (13)

whilst the denominator becomes∑
i 6=j

ES2
ij (14)

As presented, the calculations are not invariant to arbitrary
scaling of feature dimensions. To remedy this we adopt the
approach of [12], dividing each element Sij by

√
SiiSjj .

(The diagonal elements themselves are not changed by the
smoothing process).

B. Estimating the parameter from data

The numerator and denominator terms above are unknown,
but may be estimated from data. In this analysis, we fix the
number and weighting of observations for each Gaussian (ie.
the γ(t) and β), but assume that the actual observations vary
randomly according to the true distribution.

We define

wij(t) = (xi(t)− µ̂i)(xj(t)− µ̂j) (15)

The sample covariance matrix S is the sample mean of these
observations:

Sij =
∑

t γ(t)wij(t)
β

(16)

The (i, j)th term of the numerator can be estimated by∑
t γ(t)2

β2
.
1
β

∑
t

γ(t)(wij − Sij)2 (17)

=
∑

t γ(t)2

β2

[∑
t γ(t)w2

ij

β
− S2

ij

]
:=

δ

β
αij (18)

where αij =
P

t γ(t)w2
ij

β − S2
ij and δ =

P
t γ(t)2

β are estimated
constants that we would expect to be independent of the
sample count β. The numerator (13) is

δ

β
α :=

δ

β

∑
i 6=j

αij (19)

δ can be seen as a correction term to allow for the increased
variance when samples from nearby Gaussians “overlap” in
feature space.

We now consider the estimation of the ES2
ij terms in the

denominator. [12] suggest simply replacing the expectation by
the sample values Sij . We have, however, observed that this
leads to considerable error for small β. Decomposing

ES2
ij = (ESij)2 + var Sij (20)

we see that the expression consists of a expectation term which
we would expect to be constant with β and a variance which
reduces with 1

β . Sij has a Wishart distribution, and we observe
that the total variance can be approximated by∑

i 6=j

var Sij ≈
2δα

β
(21)

We can then estimate a third constant representing the bias
term,

C =
∑
i 6=j

S2
ij −

2δα

β
(22)

The shrinkage parameter is then given by

λ =
αδ/β

C + 2αδ/β
(23)

=
αδ/C

β + 2αδ/C
(24)

Comparing to (2) we see that this is similar to using a prior
with weight αδ/C, except the weighting is doubled in the
denominator. This suggests that in the limit as the quantity
of training data is reduced towards zero, the off-diagonal
elements are reduced by half, rather than vanishing to zero.
α, δ and C are all independent of the number of samples per
Gaussian, and since all matrices are scale free, it is possible to
pool the constants across Gaussians. In the results presented
here, we average the estimates of α and C, but compute δ
for each Gaussian. (For interest, we found α = 740, C = 3.1
and a mean δ = 0.75, giving an average shrinkage parameter
λ = 0.23).

C. Practical considerations

We briefly discuss the practical issues when estimating the
shrinkage parameter from data. The estimation is computa-
tionally inexpensive since the computational cost is dominated
by the computing of the γ(t) during the E-step of the EM
algorithm, which is required anyway for estimation of the
other parameters. Another issue is the storage of the statistics:
computing δ for each Gaussian requires the sums of w2

ij to
be stored, which could potentially require O(d2) memory,
equivalent to storing an additional covariance matrix. However,



this can be avoided by the summing over i and j on the fly
and subtracting the Sij terms after all the statistics have been
accumulated.

IV. EXPERIMENTS

A. Setup

We performed large-vocabulary speech recognition experi-
ments with full covariance models on the NIST Hub 5 Eval01
data, comprising around 6 hours of conversational telephone
speech from 60 male and 60 females speakers. Our system
was loosely based on the 2005 AMI recogniser [13].

Cross-word triphone acoustic models were trained on 277
hours of speech from the Switchboard-1, Switchboard-2 and
Call Home corpora. The acoustic feature vector contained 12
PLP plus energy coefficients, their delta and double deltas,
with CMN and CVN applied on a per-utterance basis. The
baseline system consisted of approximately 120,000 diagonal
covariance Gaussians. The feature vector was extended to
include third-differential coefficients, and a single HLDA
projection was applied to reduce the dimensionality to 39.
For decoding, HTK’s HDecode tool was used with a bigram
language model to generate lattices for the test utterances.
These were then rescored with a trigram language model to
produce a one-best transcription.

Using these transcriptions, speaker adaptation was per-
formed using CMLLR with 32 regression classes per speaker.
We did not apply VTLN, though we would expect it to give
further improvements on the results shown here. Table I shows
the results from the baseline systems.

As in [7], we initialised the full covariance models directly
from the final set of diagonal-covariance Gaussians. We found
that the estimation of the full-covariance models was quick to
converge, so the models used for the results presented below
were ML-trained using just one iteration with full covariance,
keeping the Gaussian means fixed. To reduce the computa-
tional cost of decoding with the full covariance models, we
instead used lattice rescoring of the baseline bigram lattices,
again applying a trigram language model to obtain the final
transcription.

The question of speaker adaptation of full covariance mod-
els has been considered in [14]. For speaker adaptation of
a full-covariance system, CMLLR has the advantage that it
can be formulated as feature-space transform rather than a
model-space transform, so it is not necessary to recompute
full covariance matrices. We used the diagonal-covariance
approximation suggested in [14] to obtain the transforms, but
found that results were little improved over simply using the
original CMLLR transforms obtained for the diagonal models,
and we present results using the latter.

B. Experiments with a diagonal prior

We investigated the effects of off-diagonal smoothing on
the full covariance recognition performance. As discussed in
Section II-B, a sample covariance matrix based on fewer
than d samples will be non-invertible when no off-diagonal
smoothing is applied, preventing it being used for likelihood

TABLE I
DIAGONAL COVARIANCE WER RESULTS ON HUB5 EVAL01 WITH BIGRAM

AND TRIGRAM LANGUAGE MODELS

System Bigram Trigram
Baseline 40.3% 37.2%
HLDA 38.5% 35.5%
HLDA + CMLLR 35.6% 33.3%

computation. The simplest way of avoiding this is to use
the full covariance matrix when the number of samples is
sufficient, and back off to the diagonal matrix otherwise.
We call this the “naive” full covariance system. We obtained
results using a range of values of the prior parameter τ , and
also with analytically obtained shrinkage parameters: selected
results are shown in Table II, and graphically in Figure 1,
using the convention τ = 0 for the naive system. All results
used CMLLR speaker adaptation – we show unadapted results
with τ = 100 for comparison.

TABLE II
SELECTED WER RESULTS WITH FULL COVARIANCE MODELS, USING A

TRIGRAM LM

System WER
Diagonal 33.3%
Naive fullcov 32.1%
τ = 10 31.3%
τ = 20 31.0%
τ = 40 30.7%
τ = 100 30.5%
τ = 200 30.8%
τ = 400 31.3%
Shrinkage 30.6%
Unadapted, τ = 100 31.8%
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Fig. 1. WER of ML-trained full covariance models, with varying smooth-
ing parameter τ (red) compared with diagonal models (dashed green) and
shrinkage estimate (dashed blue)

C. Experiments with a discriminatively-trained prior

In the second set of experiments we trained the full co-
variance models with ML, but used a discriminatively-trained



diagonal covariance prior. The priors were initialised with
the standard diagonal covariance Gaussians, with both mean
and variance parameters re-estimated to maximise the MMI
criterion, using four iterations of the EBW algorithm [8].
Speaker adaptation was performed non-discriminatively using
CMLLR as before. Full covariance models were initialised
from the diagonal-MMI system, and a single EM iteration
was used to update the covariance parameters. The mean
parameters were again kept fixed. As above, we investigated
the effect of varying the prior weight, using MMI-trained
diagonal matrices as a prior. For comparison, results are shown
using the ML-trained priors initialised from the same diagonal-
MMI system. We compare the results with those using the
analytically-obtained shrinkage parameters. Selected results
are shown in Table III, and graphically in Figure 2.

TABLE III
SELECTED WER RESULTS WITH FULL COVARIANCE MODELS, INITIALISED

FROM MMI-TRAINED DIAGONAL SYSTEM, USING A TRIGRAM LM

System ML prior MMI prior
Diagonal - 31.2%
Naive fullcov 31.5% 31.1%
τ = 10 30.7% 30.7%
τ = 20 30.5% 30.5%
τ = 40 30.3% 30.2%
τ = 100 30.3% 30.1%
τ = 200 30.6% 30.1%
τ = 400 30.9% 30.2%
Shrinkage 30.4% 30.1%
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Fig. 2. WER of ML-trained full covariance models initialised from MMI-
trained diagonal models, with varying smoothing parameter τ : using an ML
prior (solid red) and an MMI prior (dashed red); compared with diagonal
MMI-trained models (dashed green) and shrinkage estimates with ML and
MMI priors (solid and dashed blue respectively)

V. CONCLUSION

The results demonstrate that off-diagonal smoothing is
essential for good performance with full covariance models:
the reduction in WER over diagonal models is more than
doubled, compared to the naive full covariance systems, when

the optimal prior weight is used. The analytic method for
obtaining a shrinkage parameter – which can be viewed as
a form of prior weight – directly from the data was shown to
be effective, achieving close to the best performance obtained
by tuning τ on the test set. Using an MMI-trained diagonal
prior was also shown to be effective, yielding performance
gains over both an MMI-trained diagonal system, and an ML-
trained full covariance system with conventional smoothing.

It appears that we can make good use of the additional
statistics of the training data in computing the shrinkage
parameter. However, our analytically obtained solution uses
a generative model: we would expect the effectiveness to be
increased if the parameter itself were optimised with respect
to some explicitly discriminative criterion. Furthermore, the
performance could perhaps be improved by computing several
different values of the constants α and C, but it is not yet clear
how they would be best tied across Gaussians. We will address
these questions in future work.
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