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Abstract

The Hierarchical Pitman Yor Process Language Model
(HPYLM) is a Bayesian language model based on a non-
parametric prior, the Pitman-Yor Process. It has been demon-
strated, both theoretically and practically, that the HPYLM
can provide better smoothing for language modeling, compared
with state-of-the-art approaches such as interpolated Kneser-
Ney and modified Kneser-Ney smoothing. However, estima-
tion of Bayesian language models is expensive in terms of both
computation time and memory; the inference is approximate
and requires a number of iterations to converge. In this paper,
we present a parallel training algorithm for the HPYLM, which
enables the approach to be applied in the context of automatic
speech recognition, using large training corpora with large vo-
cabularies. We demonstrate the effectiveness of the proposed al-
gorithm by estimating language models from corpora for meet-
ing transcription containing over 200 million words, and ob-
serve significant reductions in perplexity and word error rate.
Index Terms: language model, Pitman-Yor processes, hierar-
chical Bayesian models, parallel training, meetings

1. Introduction

The task of a language model (LM) is to estimate a probability
distribution over sentences, which can be formed by piecing to-
gether a sequence of conditional probability distributions over
each word in the sentence given the histories. An n-gram LM,
which approximates the histories by the immediately preceding
n − 1 words, is the most widely used language model in many
applications such as automatic speech recognition (ASR) and
statistical machine translation (SMT). Due to the curse of di-
mensionality, smoothing plays an essential role when estimating
n-gram language models. A large number of smoothing meth-
ods have been proposed in the literature [1, 2], among which
interpolated Kneser-Ney [3] and modified Kneser-Ney [1] are
the best.

In recent years, a hierarchical Bayesian language model
based on Pitman-Yor processes has been introduced as a po-
tentially better smoothing method, and theoretically shown to
recover the interpolated Kneser-Ney smoothing for language
modeling [4]. Our previous work [5], furthermore, practi-

cally demonstrated that hierarchical Pitman-Yor process lan-
guage models (HPYLM) can offer consistent and significant re-
ductions in perplexity and word error rate (WER), compared
with both interpolated Kneser-Ney LMs (IKNLM) and modi-
fied Kneser-Ney LMs (MKNLM), for large vocabulary auto-
matic speech recognition (LVASR) of conversational speech in
multiparty meetings.

Training an HPYLM typically uses Markov chain Monte

Carlo (MCMC) sampling methods, which are significantly
more computationally expensive than training an IKNLM or
MKNLM. There are two things that lead to increased compu-
tational complexity when training an HPYLM. First, the in-
ference itself can take several hundred sampling iterations to
converge. Second, the memory requirement for training an
HPYLM is large and grows linearly with corpus size. It is there-
fore important to make the HPYLM scale to work on the large
corpora used in LVASR and SMT.

In this paper, we present a parallel training algorithm for
the HPYLM. The parallel training algorithm alleviates the limi-
tation of computational time and memory constrained by a sin-
gle machine, by dividing the inference into sub-tasks. The sub-
tasks, thereafter, can be either parallelly submitted to a comput-
ing cluster, or sequentially run on a single server machine. In
this way, we are able to train in parallel HPYLMs on corpora
of more than 200 hundred millions of words, which in turn re-
duce the perplexity and word error rate significantly on meeting
transcription tasks. We show that any approximations resulting
from the proposed parallel algorithm have a negligible effect on
performance.

2. Hierarchical Pitman-Yor Process LMs

In this section we briefly recap the hierarchical Pitman-Yor pro-
cess language model first introduced in [4]. In the Bayesian
framework for language modeling, a prior distribution is placed
over the predictive distribution of interest in LMs, and the poste-
rior distribution is inferred from the training data (observations).
The final predictive probability can then be estimated from the
posterior by marginalizing out the latent variables and/or hyper-
parameters.

Goldwater et al. claimed that the Pitman-Yor process is
potentially a more suitable prior distribution for language mod-
eling [6], because of its ability to generate power-law distribu-
tions. The power-law distribution – a few outcomes have very
high probability and most outcomes occur with low probability
– closely resembles the statistical properties of word frequen-
cies observed in natural languages.

The Pitman-Yor process [7] PY(d, θ, Gb) is a distribution
over distributions, where d is a discount parameter, θ a strength
parameter, and Gb a base distribution that can be understood as
a mean of draws from PY(d, θ, Gb). The procedure for generat-
ing draws from G that is distributed according to a Pitman-Yor
process, G ∼ PY(d, θ, Gb), can be described using the Chinese
restaurant metaphor. Imagine a Chinese restaurant containing
an infinite number of tables, each with infinite seating capac-
ity. Customers enter the restaurant and seat themselves. The
first customer sits at the first available table, while each of the
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subsequent customers sits at an occupied table with probability
proportional to the number of customers already sitting there
ck − d, or at a new unoccupied table with probability propor-
tional to θ + dt•, where ck the number of customers sitting at
table k, and t• is the current number of occupied tables. This
metaphor is helpful for the inference of an HPYLM.

Consider a vocabulary V with |V| word types. Let G∅(w)
be the unigram probability of w, and G∅ = [G∅(w)]w∈V =
[G∅(w1), G∅(w2), G∅(w3), . . . , G∅(w|V|)] represents the vec-
tor of word probability estimates for unigrams. A Pitman-Yor
process prior is placed over G∅ ∼ PY(d, θ, Gb) with an un-
informative base distribution Gb(w) = 1/|V| for all w ∈ V .
According to the Chinese restaurant metaphor, customers (word
tokens) enter the restaurant and seat themselves at tables. Those
cw customers that correspond to the same word label w, can sit
at different tables, with tw denoting the number of tables occu-
pying customers w. Given the seating arrangement S of cus-
tomers, and hyperparameters d and θ, the predictive probability
of a new word w is given by:

P (w|S, d, θ) =
cw − dtw

θ + c•
+

θ + dt•
θ + c•

Gb(w) (1)

where c• =
P

w cw is the total number of customers, and
t• =

P
w tw is the total number of tables, in the restaurant

for unigrams. Averaging over the posterior distribution over
seating arrangements and hyperparameters, we can obtain the
probability P (w) for a unigram LM.

Similarly we can generalize the above unigram example to
the n-gram case. An n-gram LM defines a probability distribu-
tion over the current word given a context u consisting of n− 1
words. Let Gu(w) be the probability of the current word w and
Gu = [Gu(w)]w∈V be the target probability distribution for n-
gram. A Pitman-Yor process is served as the prior over Gu, with
discounting parameter d|u| and strength parameter θ|u| specific
to the length of the context |u|. The base distribution is Gπ(u),
the lower order model of probabilities of the current word given
all but the earliest word in the context. That is,

Gu ∼ PY(d|u|, θ|u|, Gπ(u)) (2)

Since Gπ(u) is still an unknown probability distribution, a
Pitman-Yor process is recursively placed over it with parame-
ters specific to |π(u)|, Gπ(u) ∼ PY(d|π(u)|, θ|π(u)|, Gπ(π(u))).
This is repeated until we reach G∅ for a unigram model dis-
cussed above. This results in a hierarchical prior, enabling us to
generalize from the unigram model to the n-gram case. There
are multiple restaurants (Pitman-Yor processes) in the prior hi-
erarchy, with each corresponding to one context. By using the
hierarchical framework of Pitman-Yor priors, different orders of
n-gram can thus share information, similar to the traditional in-
terpolation of higher order n-grams with lower order n-grams.

The inference algorithm for the HPYLM is Gibbs sampling,
a special case of MCMC, which iteratively first removes cus-
tomers, and then adds them again to the restaurants to obtain an
updated seating arrangement [4]. A method based on auxiliary
variables is used for sampling hyperparameters d and θ.

We implemented the hierarchical Pitman-Yor process lan-
guage model on top of the SRILM toolkit [8], as an extended
tool for Bayesian language modeling1. We take advantages of
data structures available in SRILM for an efficient and extensi-
ble implementation of the HPYLM. Refer to our previous work
in [5] for more detailed information.

1The HPYLM software is available from http://homepages.
inf.ed.ac.uk/s0562315/.

3. A Parallel Training Scheme for HPYLM

Even with an efficient implementation of the HPYLM, however,
it is still computationally expensive in terms of computing time
and memory requirements to infer an HPYLM using a large
corpus. According to our previous results in [5], increasing the
size of either corpora or vocabulary increases the computational
complexity of inferring an HPYLM, with a corpus of around 50
million words using a 50k vocabulary roughly taking ten min-
utes per iteration and occupying about 2.5 GB memory.

This motivated us to design a parallel training algorithm to
efficiently estimate an HPYLM. We use a divide-and-conquer

scheme. There are two steps: data partition and model combi-

nation. Generally speaking, we divide the inference task, which
is normally infeasible or expensive using a single machine, into
sub-tasks that fit well to the computational capacity of a single
computing node – alleviating the memory requirement. Further
combined with parallelism, we can also decrease the computa-
tional time for inference by running sub-tasks in parallel.

In the data partition step, we first divide word types in the
vocabulary V into subsets Vk ⊂ V . For each subset Vk, we
then compose those bigrams beginning with words w ∈ Vk,
and their corresponding child n-grams with n > 2, as a
sub-HPYLM (dotted rectangles), and put a pseudo G∅ (dot-
ted circles) as the Pitman-Yor process for unigrams of the sub-
HPYLM, as shown in Figure 1. Each sub-HPYLM can be in-
ferred separately using the same routines as those for a normal
HPYLM, except that the pseudo G∅ now additionally collects
the number of insertion and deletion for customer w ∈ Vk. The
inference of sub-HPYLMs can be executed in parallel by sub-
mitting to a computing cluster.

In the model combination step, we combine all the sub-
HPYLM models level-by-level in the HPY hierarchy. For each
level, we accumulate auxiliary parameters, and sample the hy-
perparameters d and θ. For the global G∅ for unigrams, we
infer the seating arrangements by using the insertion and dele-
tion statistics accumulated by each pseudo G∅, to make sure the
HPYLM is consistent regarding the modified counts for lower
order n-grams [3, 4]. Depending on when to combine sub-
HPYLMs, we explore two different versions of parallel train-
ing algorithm. The first version, iterative-synchronized or Iter-

Sync, combines sub-HPYLMs, and sample hyperparameters
after each iteration, while the second one, final-synchronized
or FinalSync, does the combination and samples hyperparame-
ters only after each sub-HPYLM has finished all the predefined
number of iterations. Due to the extra costs of submitting and
queueing jobs at each iteration, it is much slower for IterSync

to infer an HPYLM than FinalSync. It is understandable, how-
ever, that the second version, FinalSync, will lose more preci-
sions than the first one, since the hyperparameters are not op-
timized globally, which in turn does harm to the inference of
seating arrangements.

The parallel training algorithm makes it possible to estimate
an HPYLM on large corpora using a large vocabulary. The de-
tailed parallel algorithm for the HPYLM is described in Algo-
rithm 1. Since this is indeed a data parallelism, it is possible
to port the parallel training algorithm for the HPYLM in Algo-
rithm 1 to the MapReduce framework. This work on parallel
computing for inferring HPYLMs has made use of the comput-
ing cluster managed by Sun Grid Engine, which is provided by
the Edinburgh Compute and Data Facility2.

2http://www.ecdf.ed.ac.uk/
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Figure 1: The partition of an HPYLM into sub-HPYLMs, denoted by dotted rectangles, for the parallel inference. The dotted circles
represent pseudo G∅s to complete a Pitman-Yor process hierarchy, and collect additional insertion/deletion information. Each circle
corresponds to a context, or a restaurant in the Chinese restaurant metaphor.

Algorithm 1 A Parallel Training Algorithm for the HPYLM
1: procedure PARALLELHPYLMITERSYNC(order n, C, V)
2: divide vocab V into K subsets, Vk ⊂ V
3: for k = 1 to K do

4: read counts for subset Vk from count C
5: initialize sub-HPYLMk

6: end for

7: for i = 1 to N iterations do

8: PARALLEL

9: for k = 1 to K do

10: infer sub-HPYLMk: INFERHPYLM(n)
11: end for

12: ENDPARALLEL

13: infer HPYLM for unigrams
14: collect statistics
15: sample hyperparameters
16: end for

17: combine sub-HPYLMs
18: estimate a final ARPA format LM
19: end procedure

20: procedure PARALLELHPYLMFINALSYNC(order n, C, V)
21: divide vocab V into K subsets, Vk ⊂ V
22: for k = 1 to K do

23: read counts for subset Vk from count C
24: initialize sub-HPYLMk

25: end for

26: PARALLEL

27: for i = 1 to N iterations do

28: for k = 1 to K do

29: infer sub-HPYLMk: INFERHPYLM(n)
30: end for

31: end for

32: ENDPARALLEL

33: infer HPYLM for unigrams
34: collect statistics
35: sample hyperparameters
36: combine sub-HPYLMs
37: estimate a final ARPA format LM
38: end procedure

4. Experiments and Results

In the following experiments, we trained HPYLMs using 100
iterations to burn in, and output standard ARPA format LMs,

which were subsequently used in the first pass decoding using
HDecode

3.

4.1. Meeting Corpora

Partially driven by the Rich Transcription (RT) evaluations or-
ganized by the U.S. National Institute of Standard and Tech-
nology (NIST), there is a growing research interest in the auto-
matic transcription of multiparty meetings. European projects
AMI and AMIDA [9] are examples of such efforts. This has,
consequently, provided us a well-defined benchmark on which
to evaluate a state-of-the-art LVASR system.

The experiments reported in this paper, therefore, were per-
formed using two meeting transcription tasks. The first task
is the NIST Rich Transcription 2006 spring meeting recogni-
tion evaluations (RT06s). We tested only on those audio data
recorded from individual headset microphones (IHM), consist-
ing of meeting data collecting by the AMI project, CMU, NIST,
and VT (Virginia Tech). The training data sets for language
models used in this paper, and the test transcription (rt06seval),
are listed in Table 1. The web-data for meetings and conver-
sational speech were collected from the world wide web using
strategies described in [10].

Table 1: The statistics of the training and testing data sets for
language models for the RT06s task.
No. LM Data Set #Sentences #Words

1 rt06strain 205,814 1,847,201
2 Fisher (fisher-03-p1) 1,076,063 10,593,403
3 webdata (meetings) 3,218,066 36,073,718
4 webdata (conversational) 12,684,025 162,913,566

test rt06seval 3,597 31,810

A second multiparty meeting corpus we consider in this pa-
per is a domain-specific meeting corpus — the AMI Meeting
Corpus4 [11], which consists of 100 hours of multimodal meet-
ing recordings with comprehensive annotations at a number of
different levels. About 70% of the corpus was elicited using
a design scenario, in which the participants play the roles of

3http://htk.eng.cam.ac.uk/
4http://corpus.amiproject.org
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employees — project manager, marketing expert, user interface
designer, and industrial designer — in an electronics company
that decides to develop a new type of television remote con-
trol. We used the scenario part of the AMI Meeting Corpus for
our experiments. There are 137 scenario meetings in total, of
which we use 105 meetings (514,667 words) for training, and
32 meetings (175,302 words) for testing.

4.2. Validation of Parallelization Errors

We first conducted experiments to validate the errors/losses
caused by parallelization. We trained three HPYLMs of order
3 on fisher-03-p1 shown in Table 1, one without using parallel
training algorithm but the traditional inference, and the other
two with parallelism of IterSync and FinalSync, respectively.
We output standard ARPA format LMs, and evaluated these
LMs for the transcription of rt06seval. Table 2 shows perplexity
and WER results, which claims that there is no statistically sig-
nificant difference between these results, although FinalSync

has a bit higher perplexity than the other two. It is therefore
safe for us to use the proposed parallel training algorithm for
the HPYLM. In the following experiments, we all use the Iter-

Sync parallel training algorithm for inferring HPYLMs.

Table 2: Results of training on fisher-03-p1 and testing on
rt06seval, to compare three cases of training an HPYLM: with-
out parallelization, IterSync parallelism, and FinalSync paral-
lelism, respectively.

Parallel PPL SUB DEL INS WER

No 121.4 16.0 9.8 3.0 28.9
IterSync 121.8 16.1 9.8 3.0 28.9

FinalSync 126.6 16.1 9.7 3.1 28.9

4.3. Experiments on rt06seval

We trained three types of ARPA format trigram LMs – IKNLM,
MKNLM, and HPYLM – on data sets No. 1–4 in Table 1, which
is overall a corpus of around 210 million words. We observe
in Table 3 that the HPYLM has a lower perplexity than both
IKNLM and MKNLM. Moreover, the HPYLM produces signif-
icant lower WER (p < 0.005) compared with both the IKNLM
and the MKNLM.

Table 3: The perplexity and word error rate results on rt06seval.
LMS PPL SUB DEL INS WER

IKNLM 107.0 14.5 9.7 2.7 27.0
MKNLM 105.2 14.4 9.8 2.7 26.8
HPYLM 98.9 14.2 9.8 2.6 26.5

4.4. Experiments on AMI Corpus

In addition to the training data from the scenario AMI meet-
ings , we included broadcast news (HUB-4) and conversational
text (Fisher), which totally makes up a corpus of around 200
millions of words for training LMs. Again we trained IKNLM,
MKNLM, and HPYLM on this combined data, and used these
three LMs for the transcription of the testing data of 32 scenario
AMI meetings . It is not surprising to find that the HPYLM is

more accurate than both the IKNLM and the MKNLM, with
lower perplexity and significantly lower WER (p < 0.005).

Table 4: The perplexity and word error rate results on the sce-
nario AMI Meeting Corpus.

LMS PPL SUB DEL INS WER

IKNLM 168.6 22.2 10.7 5.7 38.6
MKNLM 163.9 22.0 10.8 5.6 38.5
HPYLM 158.8 21.9 10.8 5.5 38.2

5. Conclusions

In conclusion we have demonstrated that it is feasible to infer
a hierarchical non-parametric Bayesian language model from a
large corpus, thus making it practical to use for large vocabu-
lary speech recognition or machine translation. Our experimen-
tal results have shown that any approximations resulting from
the parallel algorithm have a negligible effect on performance.
Overall, the HPYLM results in significantly improved accuracy
compared with the current state-of-the-art (IKNLM/MKNLM).
The resulting language model may be interpreted as a smoothed
n-gram model, can be implemented in a standard way (e.g., us-
ing an ARPA format language model file), and may be used in
place of other smoothed n-gram language models.
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