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Abstract
In this paper, we apply our inversion mapping method, the tra-
jectory mixture density network (TMDN), to a new corpus of
articulatory data, recorded with a Carstens AG500 electromag-
netic articulograph. This new data set, mngu0, is relatively
large and phonetically rich, among other beneficial character-
istics. We obtain good results, with a root mean square (RMS)
error of only 0.99mm. This compares very well with our pre-
vious lowest result of 1.54mm RMS error for equivalent coils
of the MOCHA fsew0 EMA data. We interpret this as show-
ing the mngu0 data set is potentially more consistent than the
fsew0 data set, and is very useful for research which calls for
articulatory trajectory data. It also supports our view that the
TMDN is very much suited to the inversion mapping problem.
Index Terms: acoustic-articulatory, inversion mapping, neural
network.

1. Introduction
There is a large body of research which has investigated ways to
exploit an articulatory representation of speech to improve both
speech technology and understanding. Various articulography
methods have been employed to provide useful data to sup-
port this work, such as electropalatography (EPG), X-ray mi-
crobeam cinematography, ultrasound and MRI. The MOCHA
fsew0 electromagnetic articulography (EMA) corpus has been
particularly useful and has supported research in areas such as
ASR [1], articulatory-acoustic synthesis [2, 3], speech synthesis
and the inversion mapping [4].

We have previously worked extensively on the inversion
mapping problem. To perform the inversion mapping, we aim
to take an acoustic signal and estimate the sequence of articu-
latory movements which produced it. This would be useful, for
example, as a source of articulatory features for several speech
technology applications (in addition to those mentioned above)
such as low bit-rate speech coding, visual speech synthesis or
facial animation, speech communication augmented by speech
synthesis [5] and speech training software.

The method we have been developing is based on a partic-
ular type of artificial neural network (ANN): the mixture den-
sity network (MDN). The MDN allows us to model a probabil-
ity distribution over variables in the articulatory domain condi-
tioned on the acoustics features. Supplementing the static artic-
ulatory features with their delta and deltadelta features allows
us to form a statistical trajectory model for articulatory move-
ments, which we have termed the trajectory MDN (TMDN).
Similar to many others, we have frequently used the MOCHA
fsew0 dataset as training and test data [6, 7, 8, 9]. The TMDN
has proved very well suited to the inversion mapping problem,
and the results we have obtained, in terms of root mean square
(RMS) error expressed in millimetres, are lower than any other
comparable study we have seen so far [6].

Although the TMDN performs well, it is hard to know how
far it is from the optimal performance possible. In theory, there
are three sources for the error we observe: error attributable
to inaccurate modelling, error attributable to inconsistencies in
the articulatory data recordings, and “residual” error resulting
purely from intrinsic variability of articulatory movements. The
question is, how much of the error exhibited by the TMDN in
[6] is due to the first two of these, and which is hence open
to improvement? This paper aims to investigate this question.
First, we consider evidence to suggest there may be some in-
consistency in the fsew0 corpus. Then, we introduce a new
corpus, mngu0, which has certain possible advantages. To eval-
uate this, we train a TMDN to perform the inversion mapping
on mngu0, and consider what the results might tell us.

2. Evidence for inconsistency
In this section we consider evidence hinting at some degree of
inconsistency in the fsew0 EMA data set. One clear source
of inconsistency is introduced where a coil becomes detached
and needs to be re-attached during the recording session. Un-
fortunately, it is not possible to re-attach a sensor coil with ex-
actly the same position and orientation. It is also possible the
movement necessary to re-attach a coil could result in a shift in
the position of the speaker’s head relative to the EMA helmet,
which potentially affects the accuracy of all coils. The recording
log for fsew0 indicates the velum coil needed to be re-attached
at recording index 125, and the middle tongue (“TB”) coil was
re-attached at file recording index 284.

Looking at the EMA data itself in plots like Figure 1, we
observe what may be evidence of inconsistency. In this figure,
we have overlaid the sampled position of the velum recorded
throughout multiple utterances. These utterances comprise two
groups of contiguously recorded files: group 1 (black) for the
sixteen files 070−085; group 2 (grey) for the 11 files 102−112.
We observe the movement of the velum appears to be very reg-
ular; it is constrained to movement in a slight arc. However,
we furthermore note that for the two groups of files we have se-
lected, while they exhibit the same pattern of velum movement,
it appears as though the coordinate system has been somehow
shifted or rotated between the two groups. The cause of this
variation is unknown. These two groups of files both came be-
fore the point during the recording session at which it is re-
ported the velum coil became detached. Therefore, it is con-
ceivable that it is unrelated to that event. Potential causes might
be movement of the speaker’s head within the AG200 helmet
between the two groups, or differences introduced by the head-
movement correction algorithm. This relied on tracking two
reference coils, and if either of these coils became inaccurate
for some reason (such as movement off the midline axis of the
transmitter coils, or movement with the skin of the bridge of the
nose), then the coordinate system for the rest of the coils would
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Figure 1: Overlaid samples of velum x- and y-coordinates for
multiple files in the MOCHA fsew0 data set. Two groups of
contiguous files are shown: one group (black) shows velum po-
sitions for files 070− 085, the other (grey) shows the velum for
files 102− 112

.

be affected. Thus, it is possible the positions of the other coils
are affected in a way similar to the translation we observe in the
patterns of velum movement in Figure 1.

Figure 2 gives another perspective on potential inconsis-
tency present in fsew0. This plot shows the mean velum x-
coordinate (y-axis) calculated for each of the 460 files in the
data set (along the x-axis) [10]. We would expect the mean
velum position to vary “randomly” in accordance with phonetic
content of each file. For example, for an utterance containing
more nasal stops, we would anticipate the mean velum posi-
tion to be lower, and vice-versa. In Figure 2, we observe such
random variation across neighbouring files. However, we also
observe more global trends in the position of the velum.

In [10], we used a simple method of normalisation in an at-
tempt to reduce the prominence of these trends. Taking each x-
and y-coordinate for each coil separately, the method basically
consists of calculating the mean coordinate for each file, low-
pass filtering this to identify trends over time (see the smooth
line overlaid on Figure 2), and then using this mean-trend as
part of z-score normalisation. Inversion mapping experiments
in [10] showed this normalisation reduced RMS error between
the measured articulatory trajectories and the estimated ones.
This suggests the global trends are indeed symptomatic of in-
consistency in the EMA data.

3. New EMA data set (mngu0)
We have available an alternative EMA data set: mngu0,
recorded using a Cartsens AG500 electromagnetic articulo-
graph at Ludwig-Maximilians-Universität München1. This data
set consists of over 2,000 utterances recorded from a single
speaker over two consecutive days. For the session of the first
day, over 1,200 utterances were recorded with EMA sensors at-
tached to the speaker’s upper lip (UL), lower lip (LL), lower
incisor (JAW), tongue tip (T1), tongue blade (T2) and tongue
dorsum (T3), plus coils used for head-movement correction. On
the second day, a coil was placed on the velum (V), with only
two coils on the tongue. Around 800 utterances were recorded
with this configuration. Coils were attached in the midsagittal

1In collaboration with Phil Hoole
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Figure 2: A plot of mean velum x-coordinate calculated for each
utterance from the database for speaker fsew0 in recording or-
der. This diagram also shows trends captured by lowpass filter-
ing the file means.

plane. The prompts for the speaker were selected from news-
paper text, using a text-selection algorithm designed for build-
ing Multisyn [11] unit-selection voices for Festival. This
algorithm aimed to maximise coverage of context-specific di-
phones in as few sentences as possible.

In addition to providing a large and phonetically rich source
of EMA data, the mngu0 corpus offers other advantages. First,
none of the sensor coils used became detached during record-
ing, immediately increasing the chances of a consistent data set.
Using the AG500 conferred several advantages. Unlike the pre-
ceding 2D AG200, this system tracks sensor coils in 3D space,
and with two angles of rotation. Among other benefits, this
means the speaker’s head is free to move, which increases com-
fort. It also obviates the problem with the AG200 of inaccuracy
being introduced when a sensor moves off the midline plane of
the transmitter coils (although sensor coil tracking in the AG500
is a non-linear optimization problem which may bring other un-
certainties). Finally, the mgnu0 data was recorded with speech
synthesis in mind, so care was taken to ensure good audio qual-
ity and a professional actor was employed. Unlike for MOCHA,
EPG was not used, and so the impact on the speech from the ar-
ticulography equipment is only very negligible.

We plan to release this dataset in the near future. In addi-
tion to the raw EMA and audio data, we aim to release the pro-
cessed versions we have used in our experiments. We shall like-
wise release phonetic labelling, based on the Combilex lexi-
con and created using forced alignment. The intention is to en-
able other researchers to conduct experiments using exactly the
same data, in order to facilitate direct comparison between dif-
ferent approaches. Furthermore, we have collected additional
data from the same speaker, such as MRI scans and video of the
mouth area, which we shall also release to form a collection of
articulatory-acoustic data for a single speaker.

4. Inversion experiment

In this preliminary experiment, we aim to use the mngu0 data
set described in Section 3 to train the TMDN system [6] to per-
form the acoustic-articulatory inversion mapping.
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Figure 3: The mixture density network we use combines an
MLP and GMM

.

4.1. TMDN

Due to space constraints, we can only give a high level introduc-
tion to the TMDN. For a more explicit description, the reader is
referred to [6].

At heart of our inversion mapping model is the mixture den-
sity network (MDN). In the most general sense, the MDN can
be considered as combining a trainable regression function (typ-
ically a non-linear regressor such as an artificial neural network)
with a probability density function. In our work, we have been
using a multilayer perceptron (MLP) as a trainable non-linear
regressor and a Gaussian mixture model (GMM). An illustra-
tion is shown in Figure 3. The role of the MLP is to take an in-
put vector in one domain (x, acoustic features in this case) and
map to the control parameters (priors, means and variances) of
the pdf over the domain of the target parameters (t, the EMA
positions). In this way, the MDN offers a model of probability
density over the target domain conditioned on the input domain,
p(t|x). Training consists of updating the MLP weights to op-
timize an error function, defined as the negative log likelihood
of the target data. As in standard MLP training, the error at the
MLP outputs (which have specialized activation functions) may
be calculated and backpropagated to find the gradient of the er-
ror function with respect to the weights. Thus, standard non-
linear optimization algorithms may be used to train the MDN.

Since, the MDN gives us a model of conditional probability
density, it is trivial to augment the target features with derived
delta and deltadelta features. Once trained, we may then input
the sequence of acoustic feature vectors for an utterance and get
as output a sequence of pdfs over the static articulatory features
and their delta and deltadeltas. We may then apply a maximum
likelihood parameter generation algorithm (MLPG)[12] to this
sequence of pdfs in order to obtain a single, most probable tra-
jectory which optimizes the constraints between the distribu-
tions of static, delta and deltadelta features. In the case of a
sequence of pdfs containing a single Gaussian mixture compo-
nent, this optimum is the solution of a set of linear equations.
When multiple mixture components are used, an EM-based al-
gorithm described in [12] is applied.

4.2. Data processing

Part 1 of the mngu0 dataset was used for the experiment pre-
sented here. 6 coils were attached to the speaker’s articulators in
the midsagittal plane: 3 on the tongue, one on the lower incisor

training # subsets # epochs stage total
stage each subset weight updates

1 20 5 100
2 10 10 100
3 5 20 100
4 2 50 100
5 1 2600 2600

weight update grand total = 3000

Table 1: Incremental training schedule used to train the TMDN
with various subsets of the training set.

and one each on the upper and lower lips. Coil movement in
the axis orthogonal to the midsagittal plane was very small. To
match previous results using the fsew0 corpus, we used only
the movements of the coils in the midsagittal plane. So, the ar-
ticulatory data used for this experiment comprised 12 channels
of EMA data at a sampling frequency of 200Hz.

The corresponding audio data was converted to frequency-
warped LSFs of order 40 plus a gain value. These were derived
from the spectral envelope estimated with STRAIGHT, which
was calculated at a 5msec frame shift to match the sample rate
of the articulatory data2. Finally, both EMA and LSF features
vectors were z-score normalised, by subtracting their respective
global mean and dividing by four times the standard deviation.

Three subsets were created from a total set of 1,263 utter-
ances: a training set of 1,137 utterances comprising all files
apart from those with an index number ending in ’0’; a vali-
dation set of 63 utterances comprising the half of the held out
utterances with an odd integer preceding the final ’0’; and a test
set with the remaining 63 utterances.

4.3. Training procedure

For the experiment presented here, we have used a context win-
dow of 10 acoustic frames as input. This context window was
constructed, however, by alternately selecting only every other
acoustic frame. Thus, given the 5msec shift of the acoustic fea-
ture frames, there was a 90msec time difference between the
acoustic frames at the left and right edge of the context window.
With 41 features in each acoustic vector, the size of the MDN
input layer was 410 units. We used 100 units in the hidden
layer, each with a tanh activation function. We trained sepa-
rate MDNs with output pdfs containing either 1, 2 or 4 mixture
components. Furthermore, each of the 12 articulatory channels
were trained in a separate MDN, meaning a total of 36 MDNs
were trained.

The Scaled Conjugate Gradients optimization algorithm
was used to train the MDN weights. Network training was
conventional in that we used a held-out validation set to guard
against over-fitting. However, to accelerate training, we used
a schedule of updating the network weights according to error
calculated on varying subsets of the training set. This schedule
is presented in Table 1. For example, in the first stage, we split
the training set into 20 subsets and for each of these calculated
the error and updated the weights 5 times. This means that the
weights were updated a total of 100 times in stage 1, but that
only one twentieth of the training data was used for any one up-
date. In stage 2, the number of separate subsets was decreased,
and the number of weight updates made was increased. This
pattern was repeated for the following stages, until in stage 5,
where all training data was used to update the weights a total
of 2,600 times. Calculating the error function and its gradient
for only one twentieth of the training set is certainly faster, al-

2This processed data set is identically to that used in [5]
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TMDN opt #
Channel 1 mix 2 mix 4 mix mixes
T3 x 1.25 1.28 1.22 4
T3 y 1.74 1.63 1.57 4
T2 x 1.41 1.40 1.34 4
T2 y 1.38 1.24 1.24 2
T1 x 1.41 1.39 1.36 4
T1 y 1.30 1.27 1.28 2
JAW x 0.57 0.57 0.57 2
JAW y 0.75 0.74 0.75 2
UL x 0.32 0.32 0.32 2
UL y 0.46 0.46 0.49 2
LL x 0.66 0.64 0.64 2
LL y 1.16 1.11 1.18 2

Table 2: Inversion results for mngu0: RMS error (mm) between
TMDNs with 1, 2 or 4 mixture components. Average (min)
RMSE=0.99mm for all coils.

.

static TMDN opt #
Channel lpfilt 1 mix 2 mix 4 mix mixes
upper lip x 0.90 0.90 0.90 0.91 1
upper lip y 1.06 1.05 1.03 1.06 2
lower lip x 1.11 1.10 1.10 1.12 1
lower lip y 2.31 2.27 2.20 2.22 2
lower incisor x 0.84 0.82 0.80 0.81 2
lower incisor y 1.05 1.03 1.04 1.03 1
tongue tip x 2.14 2.12 2.09 2.10 2
tongue tip y 2.12 2.08 1.98 1.94 4
tongue body x 1.99 1.96 1.97 1.98 1
tongue body y 1.80 1.76 1.73 1.78 2
tongue dorsum x 1.88 1.85 1.81 1.83 2
tongue dorsum y 1.92 1.89 1.85 1.88 2
velum x 0.36 0.35 0.35 0.35 2
velum y 0.37 0.37 0.36 0.37 2

Table 3: Comparable TMDN results for fsew0 from [6]. As
well as RMS error (mm) for TMDNs with 1, 2 and 4 mixture
components, results are shown for a low-pass filtered static fea-
ture mean sequence (equivalent to smoothed output of standard
MLP). Discounting the velum coil, the average (min) RMSE is
1.54mm.

.

though it does mean that the error “landscape” being explored
by the optimization algorithm is not necessarily consistent be-
tween updates. However, this can be viewed as similar to the
case of applying simulated annealing in function optimization,
with an analogous schedule of “cooling”.

5. Results
The results of applying the TMDNs trained with mngu0 to the
held-out test set are given in Table 2. Comparable results previ-
ously reported for the fsew0 data in [6] are in Table 3.

We find the TMDNs using mngu0 performed very well,
significantly better than previous results obtained using fsew0:
RMS error of 0.99mm instead of 1.54mm for equivalent EMA
coils. A plausible explanation is that the mngu0 corpus may
indeed feature a lower level of inconsistency than fsew0.

However, we cannot be sure what degree of inconsistency
might be present in the mngu0 corpus. Specifically, we are
unfortunately not able to judge how much of the error we still
observe is attributable to inadequacies in the model, how much
is due to potential inconsistency in the articulatory data, and
how much is residual error due simply to inherent variability in
articulatory movements. Hopefully, other researchers will ap-
ply different techniques to the same data set. This will provide

reference points to help decide how good a model the TMDN is
for the inversion mapping. At the moment, we can merely posit
that the mngu0 appears to be a reasonably good data set.

6. Conclusions
We have introduced a new corpus of EMA data and used it to
train our TMDN inversion mapping method. Performance was
very good, even better than previously obtained with MOCHA
fsew0 data. Our results indicate the new mngu0 corpus is a
good resource, and that the TMDN is an accurate model of the
inversion mapping.
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