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Abstract

We have investigated the use of a pitch adaptive spec-
tral representation on large vocabulary speech recognition, in
conjunction with speaker normalisation techniques. We have
compared the effect of a smoothed spectrogram to the pitch
adaptive spectral analysis by decoupling these two components
of STRAIGHT. Experiments performed on a large vocabu-
lary meeting speech recognition task highlight the importance
of combining a pitch adaptive spectral representation with a
conventional fixed window spectral analysis. We found evi-
dence that STRAIGHT pitch adaptive features are more speaker
independent than conventional MFCCs without pitch adapta-
tion, thus they also provide better performances when combined
using feature combination techniques such as Heteroscedastic
Linear Discriminant Analysis.

Index Terms: pitch adaptive, speaker normalisation, LVCSR,
VTLN, HLDA

1. Introduction

The application of pitch synchronous features to speech recog-
nition has been mainly investigated on small vocabulary recog-
nition tasks. The pitch may be modeled explicitly as a variable
[1] or used to extract pitch synchronous features. For example
Bozkurt et al. [2] used group delay features extracted using a
window centered at the glottal closure instant while Holmes [3]
adopted an excitation synchronous fixed length analysis win-
dow to extract conventional MFCCs.

In [4] we used a pitch adaptive spectral representation,
STRAIGHT [5], to perform experiments on three Large Vocab-
ulary Continuous Speech Recognition (LVCSR) tasks: WSJ-
CAM0, conversational telephone speech and multiparty meet-
ing data. STRAIGHT derived features provided substantial im-
provements in all the tasks when combined with conventional
MFCCs, suggesting that they are complementary to the latter.
In this paper we analyse the individual contribution of each rep-
resentation in two ways. First, we decouple the pitch adaptive
and smoothing aspects of STRAIGHT. Experiments performed
on the meeting speech recognition task highlight the importance
of using a pitch adaptive spectral analysis and the benefit of
combining it with a conventional fixed window spectral analy-
sis. Second, a speaker independence metric was used to com-
pare pitch adaptive features with conventional features: it was
found that the pitch adaptive component of STRAIGHT provides
improved speaker independence. Reduced inter-speaker vari-
ability is particularly beneficial when feature combination tech-
niques such as Heteroscedastic Linear Discriminant Analysis
(HLDA) are employed.

2. Pitch adaptive features
Previously we adopted a pitch adaptive spectral representation,
STRAIGHT [5], to extract MFCCs, yielding consistent improve-
ments in three large vocabulary tasks (WSJCAM0, CTS and
meeting data) in combination with conventional features [4].
The spectral analysis of STRAIGHT uses an F0-adaptive win-
dow which gives equivalent resolution in both time and fre-
quency domains. An interpolation is then performed on the
partial information given by the adaptive windowing. This re-
sults in a smoothed time-frequency representation which is not
affected by the interference due to the signal periodicity. In
our STRAIGHT-based MFCCs we substitute the classic STFT,
which uses a Hamming window, with the STRAIGHT spec-
tral analysis where the shape of the window depends on the
fundamental frequency and is two fundamental periods long.
STRAIGHT based MFCCs were extracted by processing the
STRAIGHT (power) spectrogram through a mel scaled filterbank
and decorrelating using the discrete cosine transform (DCT).

VTL variability is taken into account by scaling the fre-
quency axis of the observed spectrum with a warping function
gα parameterised by a warping factor α estimated using Max-
imum Likelihood (ML) [6]. The speaker-specific warp factor
α is obtained by maximising the likelihood of the normalised
acoustic observation, given a transcription and an acoustic
model. In practice the centres of the filters of the mel scaling
filterbank are moved according to a piecewise linear frequency
warping function.

The STRAIGHT spectral analysis has two concurrent ef-
fects: on one side a pitch adaptive window is used for spec-
tral analysis; on the other side smoothing is performed inter-
polating the partial information provided by the pitch adaptive
spectral analysis itself. In our previous experiments we ob-
served that conventional MFCCs outperformed the STRAIGHT
based MFCC systems. Therefore in this paper experiments are
performed to decouple the two STRAIGHT effects on the close
talking meeting task. Figure 1 shows a plot of the spectral con-
tour for one frame of voiced speech for the short time Fourier
transform (STFT), and for STRAIGHT, while figure 2 compares
the STRAIGHT spectral envelope with that of STRAIGHT using
only the smoothing and STRAIGHT using only the pitch adap-
tive component. It can be noticed that when the pitch adaptive
module of STRAIGHT is used with no smoothing some harmon-
ics are still present, while using the smoothing part alone on the
other hand seems to yield a very smooth spectral envelope.

3. Experimental Setup
We performed experiments in the meeting domain. Our train-
ing set (the same used in our systems for the NIST RT05 and
RT06 evaluations) consists of a total of over 100 hours of con-
versational meetings speech recorded in different sites: 70 hours
from the ICSI, 13h from the NIST, 10h from the ISL and finally

Accepted after peer review of full paper
Copyright  2008 ISCA

September 22-26, Brisbane Australia2402



0 50 100 150 200 250 300 350 400 450 500
−10

−8

−6

−4

−2

0

2
STFT
STRAIGHT

Figure 1: A comparison of the STFT and STRAIGHT spectral
analysis
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Figure 2: A comparison of the STRAIGHT spectral analysis
with pitch adaptive only and smoothing only

16h from the AMI corpus [7]. The testing set consists of the
NIST Rich Transcription Spring 2004 evaluation data and con-
tains 11 minutes excerpts from 8 meetings recorded using head-
set microphones in 4 different data collection sites (2 for each
site: CMU, ICSI, LDC and NIST) 1.

Our ASR experiments were performed using an HMM-
based speech recognition system with Gaussian mixture model
(GMM) output distributions, using the Hidden Markov Model
ToolKit (HTK) software [8]. The overall training and decoding
structure was that developed for the AMI-ASR system [7]. The
baseline acoustic models were trained on conventional MFCCs
(computed using a 25ms window with a 10ms shift); we also
trained models using STRAIGHT derived MFCCs, and MFCCs
derived from STRAIGHT both using the smoothing part only and
using the pitch adaptive analysis only. For each representation
12 cepstral coefficients plus the zeroth cepstral coefficient (C0)
were estimated, and first and second derivatives were also com-

1NIST RT04s website: www.nist.gov/speech/tests/rt/rt2004/spring/

TO
T

F M
MFCC M1 38.4 38.5 38.3

STRAIGHT MFCC S1 39.3 38.3 39.7
STRAIGHT MFCC pitch adapt. only S2 38.2 38.2 38.3
STRAIGHT MFCC smoothing only S3 40.1 39.9 40.1

HLDA 78 to 39 M1 + S1 36.6 36.3 36.7
HLDA 78 to 39 M1 + S2 36.9 36.1 37.3
HLDA 78 to 39 M1 + S3 37.3 36.6 37.6
HLDA 39 to 39 M1 37.6 37.7 37.5
HLDA 39 to 39 S1 37.4 37.2 37.5
HLDA 39 to 39 S2 37.1 36.0 37.7
HLDA 39 to 39 S3 39.6 38.8 40.1

Table 1: Experiment on RT04seval testing set. From top
to bottom: conventional MFCCs (M1); STRAIGHT MFCCs
(S1); STRAIGHT MFCCs with pitch adaptive analysis only (no
smoothing) (S2); STRAIGHT MFCCs with smoothing only (no
pitch adaptative analysis) (S3)(where M1, S1, S2, S3 are all 39
dimensions); HLDA combination of M1 and S1, M1 and S2,
M1 and S3 all reducing from 78 to 39 dimensions; HLDA 39 to
39 dimension projection of M1, S1, S2 and S3.

puted, resulting in a 39-element feature vector (13 coefficients +
13 ∆ + 13 ∆∆). The acoustic models were state clustered cross-
word triphones with 16 mixture components per state. VTLN
was also performed during both training and testing and it was
applied with cepstral mean and variance normalisation (CMN,
CVN) both to the standard MFCC system and to the STRAIGHT
derived MFCC systems.

Conventional and STRAIGHT derivedMFCCs systems were
combined at a feature level using HLDA [9]. This is a gener-
alisation of LDA, which assumes a different covariance matrix
for each class. In our experiments we employed HLDA because
this has given better results than LDA when a sufficient amount
of data is available to estimate the statistics. In the experiments
presented in this paper we used mixture components of mono-
phone models as classes to estimate the HLDA transform.

4. Decoupling the pitch adaptive and the
smoothing effect of STRAIGHT

As mentioned in section 2 the aim of the experiments described
in the first part of this paper is to decouple the two effects of the
STRAIGHT spectral analysis: the use of a pitch adaptive window
on one side and the smoothing obtained through an interpola-
tion of the partial information given by the pitch adaptive spec-
tral analysis on the other side. The results of these experiments
have been reported in table 1. First we observe that the pitch
adaptive analysis without smoothing (S2) gives a small but not
significant improvement over conventional MFCCs (M1) and an
even bigger improvement on S1 (STRAIGHT derived MFCCs).
This is particularly evident for female speakers while for male
speakers there is a big improvement especially when compared
to purely STRAIGHT derived MFCCs (S1). Smoothing is par-
ticularly bad for male speakers and this is also confirmed by the
experiment on the use of the smoothing part only of STRAIGHT
without pitch adaptive analysis (S3). The MFCCs extracted us-
ing the smoothing component only of STRAIGHT performed
consistently worse than conventional MFCCs.

We also combined conventional MFCCs with the pitch
adaptive only (M1+S2) and smoothing only (M1+S3)
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STRAIGHT derived MFCCs using HLDA feature combination
with monophone mixture components as classes reducing from
78 to 39 dimensions. While none of this combinations out-
performed the combination of conventional and STRAIGHT de-
rived MFCCs (M1+S1) overall, the combination with pitch
adaptive only STRAIGHT derived MFCCs (M1+S2) gave bet-
ter performances for female speakers (for which pitch adaptive
analysis is more important). The combination with smoothing
only STRAIGHT derived MFCCs (M1+S3) on the other hand
gave a smaller improvement. This is further evidence that the
complementarity between conventional and STRAIGHT derived
MFCCs is arisen from the use of a pitch adaptive window by
the latter.

5. Measuring the speaker independence of
STRAIGHT derived features

One of the aims of using a pitch adaptive spectral representation
for feature extraction is to obtain features which have increased
speaker independence. Ideally we would like to have features
which only vary across different classes and which have as little
as possible variation across different speakers within the same
class used for speech recognition.

The relationship between speaker normalisation techniques
and LDA have been studied both in [10] where it was proposed
to use an LDA based metric to measure the effectiveness of
CMN and CVN and VTLN and in [11] where the importance of
applying LDA on top of speaker normalised features (to achieve
better class separability) has been demonstrated. Suppose each
acoustic feature vector xi is labelled according to the class j
and the speaker s to which it belongs (the association of a par-
ticular frame to a class j can be done automatically by forced
alignment). We can define the corresponding total number of
feature vectors xi ∈ ( j,s) as N( j,s), and µ̂( j,s) and Σ̂( j,s) are the
mean vector and covariance matrix respectively corresponding
to class j and speaker s. We can also define the class specific
total number of feature vectors N( j), the mean vector µ̂( j) and
the class specific covariance matrix as:

Σ̂( j) =
1
N( j) ∑

s∈S
N( j,s)Σ̂( j,s)+

1
N( j) ∑

s∈S
N( j,s)(µ̂( j,s) − µ̂( j))(µ̂( j,s) − µ̂( j))T

︸ ︷︷ ︸

Σ̂BS
( j)

(1)

where Σ̂BS( j) is the between speaker covariance for class j. The
total within-class covariance is therefore due to two distinct
components: the variance due to the classes themselves and the
between speaker covariance:

Σ̂wc =
1
N ∑
j∈J
N( j)Σ̂( j) =

1
N ∑
j∈J

∑
s∈S
N( j,s)Σ̂( j,s)

︸ ︷︷ ︸

Σ̂Nwc

+
1
N ∑
j∈J
N( j)Σ̂BS( j)

︸ ︷︷ ︸

B̂S
(2)

where B̂S is the total between speaker covariance and Σ̂Nwc is the
within class covariance matrix we would have if the features
were ideally speaker independent. Therefore the total covari-
ance Σ̂ has a component dependent on inter-speaker variability
and another one which would occur if the features were com-
pletely speaker independent too: Σ̂ = Σ̂bc + Σ̂Nwc + B̂S (where
Σ̂bc is the between class covariance matrix). The goal of LDA

is finding the projection θ which maximises the between class
covariance and minimises the within class covariance in the
projected space. The trace (the eigenvalues sum) of Σ̂−1

wc Σ̂bc =
(Σ̂Nwc+ B̂S)−1Σ̂bc can be considered as the LDA objective func-
tion. Saon et al. [11] argued that, since ideally the between-
speaker covariance B̂S should be zero for speaker normalised
features, the LDA objective function for normalised features
should always be higher than that of non normalised features.
Unfortunately even using speaker normalisation techniques, the
between-speaker covariance is not completely zero (for exam-
ple coarticulation differences are not normalised by VTLN) and
the LDA objective function can be used as a measure of speaker
independence of the features.

We adopted the inter-speaker metric introduced in [10]
where the trace of Σ̂bc/B̂S is used to measure speaker normalisa-
tion effectiveness. Gaussian components of monophone models
have been used as classes in order to maintain the same type of
classes used in our HLDA combination experiments. We com-
pared conventional MFCCs, STRAIGHT derived MFCCs with-
out the smoothing, STRAIGHT derived MFCCs without the use
of the pitch adaptive window and STRAIGHT derived MFCCs
with both smoothing and the pitch adaptive window usage. We
used the entire meeting training corpus described in section 3
which contains a total of 115 male and 49 female speakers.
The results of these experiments, using 39 dimensional feature
vectors (12 cepstral coefficients plus C0 plus ∆s and ∆∆s), are
shown in figure 3. The trend of the trace measure shows 3 big
humps (left part of figure 3) due to the different nature of cep-
stral coefficients and their first and second derivatives and to the
fact that as lower order cepstral coefficients are more discrim-
inative so are their corresponding first and second derivatives
(the gradient is higher for lower order coefficients and their
derivatives), while higher order cepstral coefficients are more
noisy and therefore less discriminative; thus they have a corre-
sponding eigenvalue which is smaller than that of lower order
coefficients.

Looking at the magnified right part of figure 3 (which shows
the trace trend for the first 12 cepstral coefficients only) we can
observe that STRAIGHT derived MFCCs using the pitch adap-
tive windowing but without smoothing shows the higher inter-
speaker independence. Pitch adaptive features are significantly
more speaker independent than both conventional MFCCs and
smoothing only STRAIGHT derived MFCCs. STRAIGHT de-
rived features using the pitch adaptive component only are the
most speaker invariant.

Saon at al. [11] argued that LDA gives better performance
on features that are more speaker independent. HLDA trans-
forms are estimated by maximising the likelihood of the original
data given the estimated statistics with the objective function:

logL(x;A) = −
nN
2 +

J
∑
j=1

Nj
2 log




(detA)2

(2π)n∏p
k=1 akΣ̂

( j)aTk ∏n
k=p+1 akΣ̂aTk



 , (3)

where the transformation is from n to p dimensions. We have
shown that the total covariance matrix Σ̂ = Σ̂bc + Σ̂wc can be
further decomposed into two parts: the covariance that would
be obtained if the features were perfectly speaker normalised,
and the between speaker covariance (equation 2). The per class
covariance matrix Σ̂( j) (equation 1) can be also split into a class-
specific covariance and the between speaker covariance matrix
for the class. Ideally, if the features were completely speaker
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Figure 3: Trace measure as a function of the feature dimension measured using the whole meeting training data on 39 dimensions (on
the left) and the magnified area representing the first 12 features (on the right)

normalised, the between speaker covariance would be null and
therefore the likelihood of equation 3 would be greater for nor-
malised features compared to features with some speaker de-
pendence.

We applied HLDA directly on the 39 dimensional con-
ventional MFCCs (M1) and STRAIGHT derived MFCCs (S1)
with pitch adaptation only (S2) and smoothing only (S3) pro-
jecting to 39 dimensions. The results of this experiment are
shown in the last 4 rows of table 1. The improvement obtained
by the use of HLDA is bigger for pitch adaptive STRAIGHT
derived MFCCs than for conventional MFCCs and smoothing
only STRAIGHT MFCCs, We hypothesise that this is due to the
better speaker independence of pitch adaptive features as shown
similarly by Saon et al. for LDA applied on VTLN features
[11].

6. Conclusions
A STRAIGHT based pitch adaptive spectral representation has
been successfully applied to extract acoustic features for a chal-
lenging LVCSR task, multiparty conversational speech in the
meeting domain. The combination with conventional MFCCs
using HLDA was particularly beneficial yielding consistent im-
provements over conventional features alone. In this paper
the two key components of STRAIGHT, pitch adaptive analy-
sis and smoothing through interpolation, have been studied in-
dependently. Experimental results showed that adopting pitch
adaptive features can significantly improve speech recognition
performances. Non smoothed pitch adaptive features outper-
formed smoothed non pitch adaptive features, when combined
with conventional MFCCs. This improvement is principally due
to the adoption of a pitch adaptive representation. The use of
a pitch adaptive representation is particularly beneficial for fe-
male speakers, because for high pitched speakers the Mel filters
are not broad enough to remove the horizontal spectral lines due
to the pitch interference.

We have also measured the speaker independence of all
the features adopted in this study. Using an LDA based met-
ric we found evidence that the pitch adaptive features are more
speaker independent than conventional MFCCs. We observed
that the improved speaker independence has the desirable ef-
fect of making HLDA more effective and making STRAIGHT
derived features more suitable for this technique than conven-
tional features.
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