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Combining Spectral Representations for Large
Vocabulary Continuous Speech Recognition

Giulia Garau*, and Steve Renalslember, |IEEE

Abstract—In this paper we investigate the combination of warping factor is known to be affected by the fundamental
complementary acoustic feature streams in large vocabulary frequency [10], [11] as well as vocal tract size. It is therefof
continuous speech recognition (LVCSR). We have explored the interest to explore the use of a pitch-synchronous analpsis

use of acoustic features obtained using a pitch-synchronousd. di tion I1. pitch h mstia
analysis, SRAIGHT , in combination with conventional features ISCUSSed In section 1, pitch-synchronous represe ve

such as mel frequency cepstral coefficients. Pitch-synchrone Peen investigated in the context of speaker recognition and
acoustic features are of particular interest when used with for small vocabulary ASR. However, investigation of pitch-
vocal tract length normalisation (VTLN) which is known to be  synchronous representations for LVCSR has been very limite

affected by the fundamental frequency. We have combined thes  “yye haye explored the use of spectral representations derive
spectral representations directly at the acoustic feature levelsing

heteroscedastic linear discriminant analysis (HLDA) and at the TOM STRAIGHT, a pitch-Ssynchronous analysis developed by
system level using ROVER. Kawahara [12], reviewed in section Ill. This analysis résul

We evaluated this approach on three LVCSR tasks: dictated in a smoothed time-frequency representation from which it
newspaper text (WSJCAMO), conversational telephone speechis possible to extract MFCCs and mel frequency perceptual

(CTS), and multiparty meeting transcription. The CTS and meet- linear prediction (MF-PLP) cepstral coefficients. We have
ing transcription experiments were both evaluated using standard ’

NIST test sets and evaluation protocols. Our results indicate that COMPined these pitch-synchronous acoustic represemsatio
combining conventional and pitch-synchronous acoustic feature With conventional representations both at the featurelleve
sets using HLDA results in a consistent, significant decrease in using heteroscedastic linear discriminant analysis (H).Brd
word error rate across all three tasks. Combining at the system at the decoding level using the ROVER technique to combine
:/%E(!I if;g? rl:ngER resulted in a further significant decrease in the outputs of multiple decodings (section IV).

In section V we report on experiments using these combined

Index Terms—LVCSR, VTLN, pitch-synchronous, feature gpectral representations on three LVCSR tasks: tranmtipt

combination, HLDA, ROVER, STRAIGHT. of dictated newspaper text (WSJCAMO); conversational tele-

EDICS Category: SPE-RECO phone speech (CTS) recognition; and transcription of mul-
tiparty meetings using both close-talking and distant oiicr
l. INTRODUCTION phones. This set of experiments has allowed us to test the

HE combination of multiple acoustic feature streams h
the potential to improve the accuracy of automatic spee
recognition (ASR) [1]-[5]. Different acoustic represedigas

approach in a range of speaking styles and channel consglition
%%:though, the WSJCAMO task consists of read speech using
g close-talking microphone in a quiet environment, the othe

two tasks are more challenging. Both are concerned with

have difierent streng_ths, and thus will tend t(.) re;ult in ASgﬁoontaneous conversational speech. Moreover, CTS irs/olve
systems that make different errors. The combination Of&co‘felephone speech which is subject to a bandpass filter that

Fic feature representations is a way to exploit complemgz_ntapartly obscures the pitch, while the multiparty meetingseve
mformatut)nt.and tlo t;Ke advantagg of tr;.e s’iretlgths Ofbm. "f'C recorded in reverberant conditions with overlapping spesk
representations. In this paper we investigate the combmal — rpq gjyation is further complicated for the meeting taslemwh
conventional acoustic features, such as mel frequencytregéps,

fici MECCS) | binati ith f b multiple distant microphones are used to record the speech,
coefficients ( §), In combination with features obtaine, "heamforming algorithms are applied to the recorded

using a pitch-synchronous analysis for large vocabulary Cosignals
tinuous speech recognition (LVCSR). Th ' . oo -
. ' o results of our experiments indicate that combinin
LVCSR systems typically include a speaker normahzatl(’;ﬁ e resuilts of our experiments indicate that combining

i h | tract lenath lizati VTL onventional and BRAIGHT-based acoustic features using
component, such as vocal tract length normalization ( LDA results in a consistent relative decrease in the word

[61-[3], in which a transform is inferred to make the featur%rror rate of 3—9% across all three domains, with the largest

vectors for a target speaker appear close to those of an- NBfative reductions observed for the telephone speech and

age” speaker. In the case of VTLN, this transformation Ofte&]stant microphone tasks. A further 8% relative reduction i

takes the form (.)f a piecewise Iir_1ear warping of the frequenWord error rate was observed when ROVER combination was
axis parameterised by a warping factor. Such a frequenggp"ed to the meeting transcription task.

This work was partly supported by the EU 6th FWP IST Integrétegect
AMIDA (Augmented Multiparty Interaction with Distance Acse IST FP6-

033812, publication AMIDA-34). II. PITCH-SYNCHRONOUS ANALYSIS
The authors are with the Centre for Speech Technology Rasear . . .
University of Edinburgh, Edinburgh EH8 9LW United Kingdonenail: The short time Fourier transform (STFT) involves the com-

{g.garau,s.renaj@ed.ac.uk). putation of a separate Fourier transform for each frame of
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the signal waveform under a sliding window. This procesmprovement was observed on a digit recognition task. An al-
is affected by the uncertainty principle, which states tihat ternative pitch-adaptive representation, pitch syncbusrzero

is impossible to have an arbitrary resolution in both timd arcrossing peak-amplitude (PS-ZCPA), has also shown some
frequency [13]. The effect of this physical law is that the 0§ promise in reducing errors on noisy speech (the AURORA-2J
a long window in time (longer than two fundamental periodsorpus) [22].

of the signal) leads to a good resolution in frequency andlIrino et al. [23] employed the pitch-synchronousrIGHT
poorer time resolution, whereas a short window in time leadspresentation, discussed in the next section, using it as
to the converse, good time resolution at the cost of frequenihe underlying spectral representation for the extractién
resolution. For speech the fundamental frequency of theasigMFCCs. SRAIGHT-based MFCCs were compared with con-
varies over time, and if a fixed size window is applied, thementional MFCCs in HMM-based speech recognition on a
its effect will be evident on the spectrum, particularly fogh small database, but no significant improvement in accuracy
pitch speakers. This effect will be apparent even after theas observed. In this work, we explore the use DRSIGHT-
application of a mel-scaled filterbank, in which the staddabased acoustic features, in conjunction with speaker rnlerma
filter bandwidth in the lower frequency region is usuallysation using VTLN, and in combination with conventional
around 200-300 Hz. This is not broad enough to remove th#=CC and MF-PLP features.

harmonic structures for high pitched speakers, usuallafes)

although it is able to provide a smooth representation for I1l. STRAIGHT-BASED FEATURES

males [14]. It is therefore of interest to investigate the Us grpaiGHT [12] is a vocoder consisting of analysis and

of a pitch-eynchronous window that adapts according to t@?nthesis parts. The spectral analysis aRSIGHT uses a
current estimate of the fundamental frequency. _pitch-adaptive window which gives equivalent resolutiattb

In speech synthesis and speech coding, where it is iff- time and frequency domains. An interpolation is then
portant to generate the correct fundamental frequenoghit ortormed on the partial information given by the adaptive

synchronous analyses have been well studied (e.g., [188. Tyindowing. This results in a smoothed time-frequency repre

use of pitch-synchronous features has also been investigaleation which is not affected by interference arisingrfro
for speaker recognition. Voice source information, as fieshi signal periodicity.
in the pitch, is a speaker-specific characteristic, andc®uUr \ya derived SRAIGHT-based MECCs by replacing the clas-

features derived from a pitch—synchronoue.analysis haea t_’esic STFT, which typically uses a Hamming window, with the
proposed as features for speaker recognition [16], [178Zi grpp\cHT spectral analysis using a window that is Gaussian
et al [18] proposed a pitch-adaptive analysis, referredsto Both in time and frequency:

“depitching”, which attempts to filter out pitch informatio

from the speech signal. Although depitched features alone wi(t) = iexp(—n(t/m)z) (1)
resulted in lower accuracy for speaker recognition, comigin To

systems using conventional and depitched MFCCs resulted
in a significant improvement, with a more uniform error V21

distribution across speakers. _ . _ This window was chosen by Kawahara et al. [12] because of
The fundamental frequency provides prosodic informatiqfy jsometric properties (it is the only smooth non-zeraction

and mformanon about the speaker but, for non-tonal IaWhich transforms to itself) and its unique property of mioim

guages, pitch is not used to encode words and phonemgge pandwidth product. The shape of the window depends on

Therefore, factoring out the pitch information in speech,q estimated fundamental frequerfay= 1/To = 211/cp. If we

recognition should result in a system with greater speak&gmpare it with a 25 ms Hamming window: fdg = 80 Hz

independence. Two basic.approaches have been.reporteghgy are almost equivalent; while fdip < 80 Hz the pitch
the literature: the use of pitch-synchronous acoustiaufes! gy nchronous window gives a better frequency resolution and
and acoustic models in which the pitch is explicitly modelle|j, o temporal resolution; and fof, > 80 Hz it provides a

as a variable. An example of the latter approach [19] USESiier temporal resolution and lower frequency resolution
dynamic Bayesian networks (DBNs) in which the variables 1o yajue offy used for the window computation can be
corresponding to the MFCCs are conditioned on the pitCBgtimated using various algorithms. TEMPO, the algoritbm f
although this did not result in a significant improvement Bitch tracking provided in the TRAIGHT framework [12], is

accuracy. _ _ , ~ based on the use of the so-callashdamentalness measure,
Bozkurt et al. [20] investigated a pitch-synchronous asialy ohtained using a wavelet Gabor filter designed to highlight

based on group delay features (the negative of the diff@lente fundamental frequency (maximal filter output) and to
phase spectrum) extracted using a window centered at gt harmonic replicas. However, other pitch trackerg bea
glottal closure instant, from which a phase spectrum W@geq and most of our experiments employed the RAPT pitch
computed. Applying these features to ASR, in combinatiqf,cking algorithm [24] which is based on cross-correlation in
with MFCCs, resulted in a significant increase in accuragje time domain. As discussed further in section V, although
over a baseline MFCC system on the AURORA-2 COrpUg, significant difference between the use of the two pitch

Holmes [21] proposed the use of “excitation synchronOUgacrers was found when using clean read speech, RAPT
windows for the extraction of MFCCs. In comparison with

features extracted using “fixed interval” windows, a sigm@ifit ~ ‘Implemented as ESPS géd, available from: www.speech.kth.se/snack/

W (00) = —% exp(—Ti(w/wn)?) - @)
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Fig. 1. Example of STFT spectrogramTRAIGHT spectrogram, fO and MFCCs piece-wise linear frequency warping
specral analysis window width in the time domain for a teleghspeech
signal, with a sample rate of 8 kHz. Fig. 2. A block diagram of S8RAIGHT MFCCs extraction with VTLN

frequency warping

proved to be more reliable for conversational telephonedpe . . . i . .
as well as being more computationally efficient. warping factors are estimated using maximum likelihoodn t

The STRAIGHT pitch spectrogram of a telephone Speecﬁcoustic model training process [8], the speaker-spec#ipw

signal is compared with a conventional STFT spectrogram actora being set to maximise the likelihood of the normalised
figure 1. The harmonic structure, visible in the STFT, is n coustic observation feature vect€8, given a transcription

present in the smootherT8AIGHT spectrogram. The lower and an acoustic modzI[8], [9]. This approach is consistent

part of the figure shows the pitch value plotted along with th\gIth the O\I)erall optl?lza_tlon_ or_\t/kgsz;coustlc models, and ha
width of the analysis window in the time domain (measur oven to be very e ective in N .

at 1/3 of the height of the window in number of samples), An exhaustive search for the_ optimal warping factor for
illustrating how the spectrogram resolution follows théuea a hspee;)ker would _be collmput';anonatljly hexp?]nmlv ©, I_Eomqever,
of the fundamental frequency of the signal. A reliable pitcrﬁ asxa et;\nv\(/ax;;]enmenta yb OI' ST)NE .t at .the 0g-likelthoo
estimate is important, since pitch tracking errors suchits p 0gp(X* | A, W) as a parabolic behavior wit respectap
doubling can lead to a very wide window in the frequencTher,efore aong—dlmensmnal Brent search was used to find the
domain and poor spectral resolution. For unvoiced spee%}‘?mmum of this curve.
a default value of about 10 ms was used for the window

width (measured at/B of the maximum window amplitude), IV. FEATURE COMBINATION

corresponding to a fundamental frequency of 160 Hz. Different acoustic representations have different stitesg
Figure 2 shows a block diagram of the extraction procedus@éd weaknesses for ASR. Approaches to combine representa-
for STRAIGHT derived MFCCs. The log BRAIGHT (power) tions, at the feature, model and system level, have proven to
spectrogram is processed through a mel scaled filterbask effective in reducing the word error rate. Feature combin
and decorrelated using the discrete cosine transform. iShision may be carried out directly at the feature vector level
similar to the feature extraction process presented in 28] by concatenating feature vectors, followed by a dimension
here we perform a normal DCT instead of a warped DCreducing transform such as linear discriminant analysBA(L
because we do not require feature inversion. MF-PLPs hayeheteroscedastic LDA (HLDA) [25], indirectly at the model
also been extracted from the log®AIGHT spectrogram, by level [1], [3], or as a postprocessing procedure appliechéo t
mel scaling, followed by equal loudness pre-emphasis, cubetputs of multiple recognizers [26]. As mentioned in sacti
root compression and linear predictive cepstral analysis. |l the combination of pitch-synchronous and conventional
In addition, we have employed a VTLN frequency warpinfeatures at the decoding level has been shown to be effective
procedure, shown in figure 2. The centres of the filters of tlier speaker and speech recognition [16], [18], [20].
mel scaled filterbank are moved according to a piecewisaline The simplest form of direct feature combination involves th
frequency warping function where different warping fastar concatenation of the acoustic feature vectors. This approa
are defined for different frequency bandwidths (depictetthén has a number of drawbacks including a substantial increase i
VTLN box in figure 2). This takes into account the inverséhe dimensionality of the feature space to be modelled, and
proportionality between formant positions and the length ¢he introduction of strong correlations between companent
the vocal tract, such that a change of scale by a factor éf in the concatenated vector, which can cause problems for
results in a scaling of the frequency axis by a faatorThe acoustic models based on diagonal covariance Gaussiatiis. Bo
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these problems are addressed through the use of dimengiansform matrixA is computed by periodically reestimating
reducing, decorrelating transforms such as LDA, HLDA anidividual rowsay as follows:

principal components analysis (PCA). PCA estimates a ¢jloba

transform, and has been found to be much less well-suited d = cGHh-1 N .
to the task compared with LDA and HLDA, which allow the CkG(k)*lCI
decorrelating transforms to be estimated on a per-class Sor _ , 1
per-state) basis. i IS theith row vector of co-factor matri€ = |A|A~- for the

Zolnay et al [3] have demonstrated that discriminant festurCUTent estimate ok and

4

level combination may be nested successfully inside a model J Vi 2()

based combination approach, and this has resulted in réduce Z Wz k<p

word error rates for two LVCSR tasks, VerbMobil-Il and the gk — = A (5)
European Parliamentary Plenary Sessions corpus. Moratrece N

work by this group [4], involving the investigation of aualiy- k> p.

—
inspired features from a gammatone filterbank, have ineltcat A28y
that a system level combination using ROVER [26] results iy} is the number of training feature vectors belonging to the

a significant reduction in word error rate. jth class.
The main characteristic which sets apart HLDA from LDA
A HLDA is the requirement to estimate a different covariance matri

| . i h f d feat level for each class. In LDA the within class covariance matrix is
bi ntpur ex_penr;'"nl(_a[r;:, we have Ipertprmef L(?AurgLT)VAe COMpproximately the weighted sum of the individual HLDA class
ihation using » & generalisation o ) €N- covariance matrices. A minimum amount of in—class data is

ables the derivation of a linear projection that decoresatnecessary to find reliable estimates for the individual HLDA

concatenated feature vectors, and performs a dImensnjon"j‘govariance matrices. Therefore, in order to avoid datas#iyar

reduction. In both HLDA and LDA, each feature vector thalrhe type of classes used to estimate the HLDA transformation

g. used to d::r[{\r/]e the ':ran?f(:rr]matmtn Irs1 ?53'9”?0' tto a Claﬁ?atrices should be carefully considered. We experimented
ince one of the goals of these techniques 1S 10 IMProygy, v possible choices of classes (section V): (1) classe

the discrimination between the .classes used during d(.agpdif,]orresponding to the HMM triphone states of our models; (2)
HLDA and LDA classes are typically HMM states or MIXtUreés 5 ussian mixture components of monophone motlels.
components, obtained using Viterbi alignment.

Hunt [27] proposed the use of LDA to improve discrimina-
tion between syllables, and in later work used LDA to combin®@. System-level combination
feature streams from an auditory model front end [28]. Given |n addition to feature-level combination, we also explored
an n dimensional feature vector the goal of LDA is to find the use of system-level combination using ROVER [26], a
a linear transformatio®™ : 0" — OP with p < n such as to technique to combine the output of multiple speech recagnit
projectx in a p dimensional space accordingye=87x. The systems. In ROVER, the transcriptions are first compared by
transform is chosen to maximise the between class COVHiaIa(IJgning them using dynamic programming to minimise the
2, and to minimise the within class covarianég, using number of substitutions, deletions and insertions. Thignal
the eigenvectors corresponding to tpelargest eigenvalues ment depends on the word sequence chosen as the reference.
of ZpZyt. The multiple alignments are then combined using a voting
LDA makes two assumptions: first, all the classes follow &pproach, performed either by choosing the most frequently
multivariate Gaussian distribution; second, they shagestime recognised hypothesis (majority voting) or by selecting th
within-class covariance matrix. HLDA (introduced by Kumahypothesis with the highest confidence score (maximum con-
and Andreou [29]) relaxes the second assumption and mayfignce score voting). The choice of the voting criteria i$ no
considered as a generalisation of LDA. In HLDA, the optimajmited to these two techniques and any approach able to dis-
transformation matriyA is found by maximising the likelihood ambiguate between multiple transcriptions can be adapied [

of the original datax It is also possible to obtain a lower bound on the word error
nN rate achievable by ROVER, by using an oracle combination
logL(x;A) = —7+ in which the closest available word sequence to the correct

transcription is selected. A disadvantage of ROVER is the

i Mlog (detA)? 3) need to train and decode each component system separately,
& 2 (Zn)nl_”():l aki(l)al HE:p-&-lakiaI ’ in contrast to HLDA which requires a single decoding pass.
wheres ands" are the global and per class covariance matrix V. EXPERIMENTS

estimates respectively, anlandN; are the total and per class TN attempts to normalise for the variation of the vocal
number of training vectors. Since the maximisation of (3 hg;act length across different speakers, which is approtéipa

no closed-form solution, an iterative algorithm is emplbye constant over time. In a previous study about the use of VTLN
We have used a method implemented by Burget [25], [30],

inspired by the approach proposed by Gales [31] in which theZMonophone models are estimated as part of the triphone tgajincess.
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for multiparty meetings, we found that the VTLN warpingdescribed in detail in [32]. VTLN was applied both to the
factors estimated using ML exhibited significant variapili standard MFCC system and to therRIGHT derived MFCC
over time [32]. This variation was partly explained by theystem.

fact that warping factor estimates were correlated witlipit  We carried out a number of experiments to determine
It is therefore of interest to investigate the use of a spéctthe sensitivity of the SRAIGHT-based features to the pitch
representation which is less pitch-dependent, in conjonct tracking algorithm that was used. An initial set of experirise
with VTLN. employed the Keele pitch extraction reference corpus [36].

We expect VTLN to benefit from the smoother pitchThis corpus features ten British English speakers reading a
independent spectral representation provided WRASGHT. phonetically-balanced story, for which the fundamentat fr
The main goal of the experiments described below, is tlggiency ground truth was obtained from a laryngograph signal
exploitation of this representation in a range of LVCSR $askThe corpus is not large enough to re-estimate the acoustic
In particular we hypothesise that female speakers, withnaodels, and it is from a different domain to any of the domains
higher fundamental frequency, will benefit the most from studied here. Since it consists of British English read epgee
pitch synchronous representation, since for these spe#ker we used WSJCAMO acoustic and language models (described
Mel filter bandwidths are not sufficiently wide to smooth thén detail in section V-B) to automatically transcribe it.&hse
harmonic lines due to pitch interference. However, theee aof these models, which were not well-matched to the domain
disadvantages to the TEAIGHT representation. SRAIGHT of the Keele corpus, resulted in rather high word error rates
provides a smoother pitch synchronous spectral reprdsmmta (over 40%): there was no available development data to adapt
that is sensitive to pitch tracking errors and may be lessrinf the models to this domain. We extractedrR3IGHT derived
mative than the conventional STFT, owing to over-smoothiny)FCCs both using the reference pitch, and the TEMPO and

Given these advantages and disadvantages, we have fe-RAPT pitch trackers, observing less than 1% difference
formed extensive experiments in which the feature streammsword error rate between features using the ground truth
are combined. Recent experience in LVCSR has indicatpdch track (43.6%), versus features using the TEMPO or
that while it is rarely straightforward to obtain signifitanRAPT algorithms (both 44.7%). Although there is a small,
and consistent speech recognition accuracy gains froml nobet significant, improvement in using the reference pitch
features, it may be possible to obtain consistent improveésnetracks, we conclude that both of the automatic pitch tragkin
by combining conventional and novel features. This has bealgorithms offer acceptable accuracy. Although traininghw
the case for gammatone features [4] and for features baseférence pitch tracks might result in further improversent
on posterior probability estimates [2], as well as for pitch database suitable for speech recognition with laryngbgra
synchronous features [16], [18], [20]. signals is not available.

We have used HLDA to combine feature streams. &enl  For this data, and for WSJCAMO, the ASR performance
et al. [33] have argued that numerical problems can arif® systems using TEMPO and RAPT was almost identical.
when strongly correlated features are combined using LDEor the CTS domain we observed that RAPT resulted in
Such problems did not arise in our experiments, since thignificantly lower word error rates compared with TEMPO
feature streams are not highly correlated due to the differgsee table Ill). Since RAPT also has lower computational
analysis windows employed. In addition to HLDA, systendemands, we used this pitch tracker for all our experiments
level combination experiments were performed using migjori(except where stated otherwise).
voting ROVER.

B. WSICAMO

A. Experimental setup Our first set of experiments was performed on the WSJ-
Our ASR experiments have been performed using an HMNLAMO corpus [37], recorded at Cambridge University, and
based speech recognition system with Gaussian mixturelmodensisting of native British English read speech, using tex
(GMM) output distributions, using the Hidden Markov Modefrom the Wall Street Journal (WSJO) corpus. WSJCAMO
ToolKit (HTK) software [34]. The overall training and decod was recorded in an acoustically isolated room with head-
ing structure was that developed for the AMI-ASR systemmounted microphones, and has a training setrjsconsisting
[35]. The baseline acoustic models were trained on coof 7861 utterances, corresponding to around 15 hours of
ventional MFCCs (computed using a 25ms window with apeech, spoken by 39 female and 53 male speakers. We tested
10ms shift); for each domain we also trained models usimgn the 20000 words “open vocabulary” task development
STRAIGHT derived MFCCs. For each representation 12 cepet (sidt20a) which has 10 female and 10 male speakers
stral coefficients plus the zeroth cepstral coefficient (@8)e (consisting of about 41 minutes of speech). We used the
estimated, and first and second derivatives were also ceupustandard MIT Lincoln Labs 20k Wall Street Journal trigram
resulting in a 39-element feature vector (13 coefficients3+ language model.
A + 13 AA). The acoustic models were state clustered cross-Table | shows our baseline results for this corpus. The top
word triphones with 16 mixture components per state. We alfmur lines show the word error rates for the conventional and
performed VTLN during both training and testing, using aBTRAIGHT-based MFCC systems, with and without VTLN.
iterative method which alternated the estimation of wagpinThe conventional system has a lower word error rate than
factors and the estimation of acoustic model parametetise STRAIGHT-based system, with the difference between the
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TABLE |
WORD ERROR RATES ON THEVSJCAMOSI_DT20A DATASET, the other approaches.
COMPARING CONVENTIONAL AND STRAIGHT-BASED MFCCS, WITH AND
WITHOUT VTLN. THE COMBINED SYSTEM(BOTTOM LINE) USED

CONCATENATED FEATURE VECTORS WITH NO DIMENSION REDUCTION  C, Conversational Telephone Speech

Dimension Total [FemaledMale The next set of experiments used CTS data, based on a 72
S STD MFFggS gg ﬁ-i g? 122 hour training set containing 57 hours from Switchboard-1, 8
TRAIGHT S . . . .
STD MECCs + VTLN | 39 1255 | 12.0 [13.0| hours from Switchboard—2, and 7 hours from the Call Home
STRAIGHT MFCCs + VTLN 39 13.0 | 125 |135| English corpus. This training set, a subset of a training set
STRAIGHT + STD MFCCs + VTLN | 78 154 | 152 |157] we have previously used [38], was prepared such that each

of the three parts had equal numbers of male and female
TABLE Il speakers. Our test set was the NIST Hub5 EvalO1 evaluation

ERROR RATES AFTER COMBINING CONVENTIONAL ANDSTRAIGHT o .
DERIVED MFCCs USINGHLDA, TESTING ONWSJCAMOsI_pT20a. THe  S€E consisting of around 6 hours of speech in total, equally
XWRD/STATES CONDITION INDICATES THAT THE STATES OF CROS®ORD  distributed between Switchboard—1 (SW1), Switchboard—2

TRIPHONE MODELS ARE USED ASHLDA CLASSES THE (S23) and Switchboard-cellular (Cell), comprising 60 rmeatel
MONO/COMPONENTS CONDITION INDICATES THATGAUSSIAN

COMPONENTS OF MONOPHONE MODELS ARE USED AHLDA CLASSES 60 female speakers.
We used clustered cross-word triphone acoustic models

Dimension | HLDA content/classey Total | Female | Male with about 5400 tied states. For this task we conducted
52 xwrd/states 12.3 11.9 12.8 . . . .
39 swrd/states 124 121 | 127 several experiments in which we compared the accuracies of
52 mono/components | 12.3 | 11.9 | 12.8 systems using conventional andrfAIGHT derived MFCCs,
39 mono/components | 12.1 | 11.4 | 12.8 with and without cepstral mean and variance normalisation

(CMN/CVN), and with and without VTLN. We also com-

pared the use of the TEMPO and RAPT pitch trackers for
two reduced by half in the case of VTLN. The final row ofSTrAIGHT, in this case on systems without normalisation
the table shows the baseline feature combination expetimgio CMN/CVN and no VTLN). We used the same trigram
in which the two feature vectors are simply concatenated [ahguage model in all cases, with a vocabulary of 50000
each frame, ending up with a 78-element feature vector. Thi®rds, trained on various additional sources including web
resulted in a considerable increase to the word error rate,daita, broadcast news transcripts and email text [38].
might be expected. To minimise the correlations within the Word error rates for various configurations are shown in
combined feature vector, and to reduce the overall dimensiqaple I1I. The first three rows show results in the case of no
ality, we applied HLDA to the concatenated features. Table hormalisation, including a comparison between TEMPO and
summarises the main results of these experiments, in tekmgRAPT pitch trackers for SRAIGHT. Conventional MFCCs
the word error rates with respect to the reduced dimenstgnakesult in the best performance, and RAPT gives a significant
and the choice of class in the HLDA. decrease in word error rate of 4% relative compared with

The upper part of table Iixwrd) shows the results obtainedTEMPO. We note that pitch tracking telephone speech is sig-

when the HLDA statistics were estimated using the states wificantly more challenging owing to the bandpass filterind a
the cross-word triphone HMMs, a total of 1927 classes. Thgher channel effects [39]. Applying CMN/CVN and VTLN
lower part (nono) shows the results obtained using monophonesults in a decrease in word error rate by over 10% for both
mixture components as classes — 2208 in total (46 phones;ghventional and BRAIGHT-based systems. As in the WSJ-
states/phone, 16 gaussians/state). fwel condition is more CAMO task, the gap between conventional antRSIGHT-
focused on discriminating between triphone states, afigwibased systems is considerably reduced when VTLN is applied:
consistency between the HLDA classes and the acoustic frideed, there is no significant difference in error rate leetw
phone models (used during recognition). On the other hamd the normalised conventional andGaIGHT-based systems on
mono condition, using mixture components as classes, ensu®BS. This is evidence that the smoother spectral repres@mta
that the distribution of the feature vectors corresponding offered by SRAIGHT is well-matched to VTLN, which uses
each class are more gaussian. Once the 78 dimension feegquency warping to normalise speech to increase speaker
tures were projected and decorrelated in the HLDA featuiiedependence.
space, a complete training from scratch—following exadty/ t  We combined the two normalised systems using HLDA both
same procedure used for the single feature stream systemgsing triphone states and monophone mixtures as classas. Ea
was performed, obtaining state clustered cross-worddriph combination yielded an 8% relative improvement compared
models. For each HLDA class type, we experimented witg the baseline, a conventional MFCC system with VTLN
different dimension reductions, with the best results geirand CMN/CVN. The improvements are consistent for both
obtained with a reduction from 78 to 39 dimensions. F@emale and male speakers and for all the testing subsets. Thi
comparison we also show results using 52 dimensions. Tigea significant result, since the baseline system is strong,
best results were achieved using monophone state mixtgigen the training set of 72 hours, and the fact that addition
components as classes, yielding 3.2% relative improvemesthniques such as maximum likelihood linear transfornts an
compared with the baseline standard MFCC system. We alfigcriminative training are not applied.
performed experiments using LDA and smoothed HLDA [25],
with HLDA consistently performing at least as accurately as3http://www.nist.gov/speech/tests/ctr/[E01/index.htm
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TABLE IlI TABLE IV
WORD ERROR RATES ON THECTS NIST HUB5 EVALO1 DATA FOR WORD ERROR RATES FOR MEETING TRANSCRIPTIOHM CONDITION)
CONVENTIONAL AND STRAIGHT DERIVED MFCCs, AND THEIR USING THERTO4SEVAL TESTING SET RESULTS ARE GIVEN FOR BASELINE
COMBINATION USING HLDA. TEMPO AND RAPT PITCH TRACKERS ARE ~ SYSTEMS USING CONVENTIONAL ANDSTRAIGHT-DERIVED MFCCs, AND
COMPARED FORSTRAIGHT FEATURES(LINES 2—3). BOTH TRIPHONE FOR COMBINED FEATURE VECTORS OBTAINED USINGILDA.

STATES AND MONOPHONE MIXTURE COMPONENTS ARE USED ABILDA
CLASSES FOR A FEATURE REDUCTION FROM 8 TO 39 DIMENSIONS
(LINES 6—7). CMNAND CVN ARE CEPSTRAL MEAN AND VARIANCE

NORMALISATIONS.

8
O = |

'_
(<)
P4
MFCC+VTLN (A) [[38.4([38.5 38.342.7 23.9 52.1 30.p
31
37

TOTAL|
Femalg
Male
M
CSl

FE: o | a STRAIGHT+VTLN (B) |[39.3|[38.3 39.744.7 24.8 53.1 31.2
615 2|2 8 3 MFCC+STRAIGHT  |42.1|[44.4 41.045.6 285 554 37.0
Flle =2 | n O +VTLN
MFCC (no CMN/CVN) [|42.7]/41.8 43.636.5 43.3 47.9 MFCC+STRAIGHT 37.3|37.6 37.241.4 23.8 51.9 29.4
STRAIGHT (TEMPO no CMN/CVN) [l47.6{46.0 49.140.7 49.0 52.% VTLN+HLDA xwrd (E)
STRAIGHT (RAPT no CMN/CVN) [[45.7(144.5 46.940.0 46.6 50.3 MFCC+STRAIGHT 36.6([36.3 36.741.0 22.5 51.2 28.b
MFCC+CMN/CVN+VTLN [[37.6]37.0 38.331.8 37.1 43.j IVTLN+HLDA mono (F)
STRAIGHT (RAPT) [[39.2(|38.2 40.133.6 39.0 44.1

+CMN/CVN+VTLN

MECC + STRAIGHT (RAPT) |[34.6][33.6 35.628.3 34.5 401
+CMN/CVN+VTLN+HLDA(xwrd) _ _ , , ,
MFCC + STRAIGHT (RAPT) |34.7|33.8 35.628.6 347 405 Stream by concatenation and dimension reduction using HLDA

+CMN/CVN+VTLN+HLDA(mono) (using both monophone Gaussian components and cross-word
triphone states as classes). The resulting systems conasgp
to a sub-system (denoted VTLN enhanced P1) of the AMI-
D. Multiparty meetings ASR meeting transcription system [40] which participatad i

Our final, and most extensive, set of experiments was in tH€ NIST RT evaluation 2006, with the difference that MFCC
domain of multiparty meetings. For this task the training s¢€atures were used rather than MF-PLP features.
which was the same used for the AMI-ASR systems [40] in The results for the IHM condition are shown in table IV.
the NIST RTOS and RTO6 evaluations [41], consisted of a tot#he SrrAIGHT derived MFCCs result in slightly higher word
of over 100 hours of conversational meeting speech from fogror rates than conventional MFCCs; we note that pitch
corpora of multiparty meeting recordings: 70 hours from thextraction is also challenging in the meeting domain. Lower
ICSI corpus, 13 hours from the NIST corpus, 10 hours frogror rates are observed for female speakers USIRASHT,
the CMU-ISL corpus and 16 hours from the AMI corpus, witlwhile for male speakers lower error rates are observed for
115 male and 49 female speakers. The testing set consiste@drventional MFCCs. Combination of the two systems using
the NIST Rich Transcription Spring 2004 evaluatior*smtd HLDA with monophone Gaussian component classes results in
is composed of about 100 minutes excerpted from 8 meetingsignificant absolute reduction in word error rate of 1.8% (5
recorded in four different data collection sites (CMU, ICSlrelative) compared with the baseline conventional MFCCs.
LDC and NIST).

The NIST meeting recognition evaluation has two princ'\-/

) . 0 .
pal testing conditions, individual headset microphoneM)H In this case there is a 2% absolute difference between

; . . the baseline conventional andr@aIGHT systems, which is
and multiple distant microphones (MDM). We conducte .
. X " . .~ “Targer than for the IHM case. Beamformed signals from remote
experiments using both conditions, training separate stmu

microphones have increased additive and channel noise, com

models for the each condition. For the MDM task, the speec%red with the IHM condition, leading to less reliable pitch

IS ret_:orded using a n_umber of m|cr_o_phones placed n tr%cking, and hence less reliable estimates of the piteipiad
meeting room. The microphone positions, which were not: ' L
window in STRAIGHT. However, the combination of the two

provided, varied depending on the site where the data Welstems by HLDA using monophone Gaussian classes results
collected. The additional processing in the MDM systemy y 9 P

i i 0,
included Wiener filtering of each distant channel, estioratif in a substantial decrease in word error rate of 3.6% absolute

: 7.3% relative), which is consistent over the different saib.
the energy scaling factor and of the delay of each channel hy ; .

. i : ; Is possible that when conventional andrIGHT MFCCs
generalised cross correlation with respect to a given eafsr

are,combined, BRAIGHT mis-estimations are compensated for

channel, and th_e use of these parameters to perform delay %{/]dconventional MFCCs and conversely conventional MFCCs
sum beamforming [35].

. . a]re enhanced by the smoother and more accurafaISHT
We used clustered cross-word triphone acoustic moc’%éectral representation

with 16 mixture components per state and around 6 600 tie
states in total, and trained a set of models for each comditio There is also a large difference between word error rates for
using VTLN. We used a vocabulary of 50000 words an@ale and female speakers. Beamforming is known to have less
a trigram language model trained on web collected dagirectionality at lower frequencies, while it has some sifig
meeting data and CTS data [38]. As before, we constructatl higher frequencies. Since, in male voices, information
baseline systems using the conventional amg/8cHT-based contentand the fundamental frequency is concentrateavat lo

systems independently, then produced a combined featflgguencies, itis possible that the higher error rate aleskfor
males results from this limited directionality at low fremncies

“http://www.nist.gov/speech/tests/rt/rt2004/spring/ and therefore less reliable pitch tracking.

Word error rates for the MDM condition are shown in table
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TABLE V TABLE VII
WORD ERROR RATES FOR MEETING TRANSCRIPTIOWMDM CONDITION) MF-PLPEXPERIMENT ONRTO4SEVAL TESTING SET USINGVTLN
USING THERTO4SEVAL TESTING SET RESULTS ARE GIVEN FOR BASELINE FEATURES FOR THEIHM CONDITION. FROM TOP TO BOTTOM
SYSTEMS USING CONVENTIONAL ANDSTRAIGHT-DERIVED MFCCs, AND CONVENTIONAL MF-PLPS 39 DIMENSIONS; STRAIGHT MF-PLPs 39
FOR COMBINED FEATURE VECTORS OBTAINED USINGHLDA. DIMENSIONS; HLDA COMBINATION FROM 78 TO 39 DIMENSIONS USING
MONOPHONE MIXTURES AS CLASSES
T 4
P ]
ElleE 212 5 9 L o=
elg 213 ¢ 8 = SElE 22 5 9 &
MFCC+VTLN [49.5|46.8 50.855.7 26.2 60.1 33.1 FlIle =|0C Q@ I =
STRAIGHT+VTLN [51.5(48.6 52.957.4 26.2 63.4 34.p MF-PLP+VTLN (G)|[37.4[[35.8 38.342.5 23.3 50.8 30.4
MFCC+STRAIGHT |146.8(142.2 49.152.5 24.3 58.1 29.b STRAIGHT MF-PLP +VTLN (H)|38.4|[37.4 38.943.7 24.4 51.9 30.B
VTLN+HLDA xwrd MF-PLP+SrRAIGHT MF-PLP 36.2((36.0 36.340.0 22.4 51.0 28.5
MFCC+STRAIGHT |45.9|42.7 47.450.8 21.3 57.7 30.1 VTLN+HLDA mono (l)
\VTLN+HLDA mono

TABLE VI .

EXTENDED DIMENSIONALITY EXPERIMENT ON RTO4SEVAL TESTING SET tation based 0_” that of HTK [34] was used, where the mel
USING VTLN FEATURES FOR THEIHM CONDITION. FROM TOP TO frequency scaling is performed on th&FA\IGHT spectrogram.

BOTTOM: 39 DIMENSIONS CONVENTIONAL AND STRAIGHT DERIVED Similarly to MFCCs, twelve cepstral coefficients plus Co

MFCCs; 63 DIMENSIONS CONVENTIONAL AND STRAIGHT DERIVED

MECCs. were extracted along with their first and second derivatives

Word error rates of systems based omRS8IGHT derived
MF-PLPs have been compared with those of conventional
MF-PLPs extracted by HTK and these two feature streams
have been concatenated and reduced through HLDA from 78
to 39 dimensions using monophone mixture components as
classes. Results are shown in table VII. Word error rateg wer
somewhat lower both for the individual feature systems and
for the combination through HLDA, compared with the MFCC
experiments. The combination by HLDA yields a word error
rate reduction of 1.2% absolute (3.2% relative) comparet wi
E. Further eXpe”n"EntS on mesti ngS Conventiona' PLPs.

2 5 O
(7]
3 ©

Female
Male
NIST

[a)]
-
MFCC+VTLN (A) 38.4([38.5 38.342.7 23.9 52.1 30.
STRAIGHT+VTLN (B) 39.3([38.3 39.744.7 24.8 53.1 31.
MFCC+VTLN (C)|[63([37.1|[38.5 36.441.3 22.2 51.5 31.
STRAIGHT+VTLN (D) [|63[36.7([36.4 36.841.0 22.3 50.8 30.

& ¥ Dimensions
TOTAL

O TN TN O

Higher order cepstral coefficients are known to be the most
affected by the spectral harmonic components due to thh piE:
[23], hence systems using conventional MFCCs typicallytlim’ -
their dimensionality to twelve coefficients plus CO or the To fully exploit the complementarity of conventional and
log energy. However, using the smoothetR8IGHT spectral pitch synchronous representations, we performed combimat
representation, which is not affected by spectral harnsoni@xperiments at the system level using majority voting ROVER
we should be able to exploit the information in higher ordefor the IHM condition of the meeting domain. We considered
coefficients. To assess this possibility, we carried outtaobe all the different IHM systems discussed in the previous sub-
experiments using the first 20 cepstral coefficients (pluy Céections, with the exception of the simple feature comibnat
and their first and second temporal derivatives, resulting with no dimension reduction. Results are reported in table
63-dimension acoustic feature vectors, in the IHM meetinglll, where we also present WERs for the ROVER oracle
domain both for the STFT-based MFCCs and our pitche provide a lower bound on the achievable word error rates
synchronous MFCCs. for each combination. Results for each individual system ar

The results of these experiments are shown in table Vgported in tables IV, VI and VII, and each of the nine systems
where we repeat the results of the 39-dimension systemmsdentified by a letterA and B denote the conventional and
to facilitate comparison. It is interesting to observe tttee STRAIGHT derived systems for lower order MFCCs, while
system based on higher ordemA\IGHT derived MFCCs andD are the same but for higher order MFCEsandF are
has a lower word error rate than both lower and highéine HLDA combinations oA andB with monophone Gaussian
order conventional MFCC based systems. In particular tlekasses and triphone state classes respectively; fiaéind
higher order MFCC system does not result in fewer errors fbr are the MF-PLP systems from conventional armRSIGHT
female speakers: this is due to the fact that for high pitche@rived spectral representations, wHilés their combination
speakers the mel filter bandwidths are not sufficiently bitoad using HLDA and monophone Gaussian classes.
remove the harmonic structure which affects the higherrorde First of all comparing the combinatio®®CG (STFT spec-
coefficients. On the other handr®AIGHT derived features, tral representations) anBDH (STRAIGHT representations),
which are not influenced by pitch harmonics, are able tge observe that while they have similar accuracies overall,
exploit the information of higher order coefficients evem foSTRAIGHT representations seem to favour female speakers
female speakers for which they perform significantly bettevhile male speakers are recognised better by the convahtion
than STFT based features. STFT based features. When they are merged together in

We also performed some experiments on the use ABCDGH the greatest improvement is still maintained for
STRAIGHT for MF-PLP extraction. Here a PLP implemenfemales.

ROVER combination experiments on meetings
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TABLE VIl
SYSTEM LEVEL COMBINATION IN THE MEETING DOMAIN (IHM CONDITION) ON RTO4SEVAL IHM, USING ROVER. THE LEFT HAND TABLES SHOW
MAJORITY VOTING ROVERRESULTS AND THE RIGHT SHOWSROVER ORACLE RESULTS FOR COMPARISONNINE SYSTEMS ARE COMBINEDQ LABELLED
A—Il, AND RESULTS FOR THE INDIVIDUAL SYSTEMS ARE SHOWN IN TABLESV, VI AND VII.

ROVER voting ROVER oracle
TOT [ F [ M [JCMU JICSI [ LDC [ NIST TOT[[ F | M [ CMU JICSI [ LDC [ NIST
A C G 36.0 ] 35.8] 36.1]] 406 | 220 | 49.8 | 29.0 2791 268 2841 31.8 [ 159 40.1 | 21.0
B D H 36.4 || 35.2 | 370 417 | 222 | 498 | 288 29.6 || 284 30.2 | 346 | 17.0 | 414 | 226
A BCD G H 349 335 356 || 39.8 | 21.0 | 485 | 27.2 239 226 | 246 281 | 132 | 345 | 173
A BCDETF 341 ]| 333 345 387 | 205 476 | 26.8 2241 213 230 263 | 123 | 33.0 | 156
A B CD 349 [ 334356 398 | 21.0 | 485 | 27.1 26.2 || 252 26.7 || 30.6 | 145 | 376 | 194
G H I 354 343 ] 359 40.0 | 215 | 493 | 278 273 25,8 281 315 | 157 389 | 20.6
A B EF 35.1 (| 3443551 398 | 213 | 49.2 | 27.2 259 || 245] 266 | 30.0 | 146 | 37.7 | 185
A B G H 365 || 35.1| 37.2 || 418 | 22.6 | 49.7 | 288 28.0 || 26.3 ] 289 | 328 | 16.1 | 39.7 | 20.9
A B EFGHI 3490 338 354 || 39.7 | 211 | 488 | 26.8 230 [ 21.3| 239 270 | 129 | 335 | 16.2
A BCDETFGHI 338 | 326 | 344 384 | 201 | 472 | 26.6 209 || 195 216 | 247 | 114 | 30.6 | 145

ROVERIng the HLDA system outputs with those of the Combining conventional andT®AIGHT-based features us-
original ones used for the combination gives a substantia HLDA reduced the word error rate in all cases. Con-
improvement with respect to the HLDA feature combinationsentional MFCCs are affected by pitch interference but they
ABEF gives a 1.5% improvement compareddalone, while are extracted from a sharper representation, whilRASGHT
ABCDEF is 0.8% better tha\BCD; similarly for PLPs,GHI features are affected by pitch tracking errors, but are shewo
improves the HLDA combination systern by 0.8% also. and devoid of pitch interference. The two spectral represen
This is of interest because it indicates that ROVER acts intations are thus complementary and their combination pro-
complementary way to HLDA, being able to further improveides consistent improvements. Pitch tracking errors oatu
the already combined systems. telephone speech because of the band-pass filtering channel

Complementarity between MFCC- and PLP-based systeeitect, in the meeting domain because of the presence of
is more difficult to exploit than that between conventionadla cross-talk, and in case of beamformed signals because of
STRAIGHT-based systems. When we consider the combinatitive decreased directionality at lower frequencies. Nbedgss
of all the MFCC based system&BCD with the PLP-based the combination using HLDA is able to yield consistent
systemsGH, we observe thaABCDGH has a similar error improvements even in more challenging domains (CTS and
rate to ABCD for the majority voting experiment, althoughMDM meetings), where the relative improvement is, in fact,
there was a substantial improvement in the oracle case. ©n gineater.
other hand, the contribution of the higher order repregiems In order to analyse our experiments, and to better exploit
(CD) is significant (around 1% absolute), and occurs consigie complementarity of the pitch synchronous spectralerepr
tently when comparing\BCDEF with ABEF, ABCDGH with  sentation, we investigated system combination using RQVER
ABGH, and ABCDEFGHI with ABEFGHI. These experiments confirmed thatFAIGHT is well-matched

Finally the best result is obtained by combining all théo female speakers, the importance of the information con-
available system&BCDEFGHI, consistent with Sckiter et tained in higher order coefficients (which can be exploited
al. [4]. This yields a substantial decrease in word errcg cit thanks to the pitch synchronicity of TRAIGHT), and the
2.4% absolute (6.6% relative) compared with the best HLD&omplementarity of HLDA and ROVER techniques.
systeml| (HLDA combination of PLPs), and 2.9% absolute
(7.9% relative) compared with the best single stream system VI. CONCLUSIONS

D (higher order $RAIGHT derived MFCCs). Overall, by ) ) ] ]
combining HLDA and ROVER we were able to reduce the We have investigated a pitch synchronous acoustic parame-

word error rate by 4.6% absolute (12% relative) compardgrisation for speech recognition, derived from tERSIGHT
with the baseline normalised lower order MFCC system. TH@Proach to time-frequency analysis, with a particulaugoc
oracle results indicate that it is possible to further eitgdom- ON Speaker normalisation (VTLN) and combination with con-

plementarity between representations and thus reduce wyfdtional features using HLDA. We performed experiments on
error rates more. three large vocabulary domains, using standard data sdts an

evaluation protocols: WSJCAMO, conversational telephone
) ) speech and multiparty meeting transcription, considebioiip
G. Discussion close-talking and microphone array conditions in the tatte
STRAIGHT derived features offer the most benefit in condomain.

junction with VTLN, as expected. However, they mostly did In each domain we observed significant reductions in
not result in an overall improvement in accuracy, comparedrd error rate through the combination of conventional and
with conventional features, although improvements were 0BTRAIGHT-based features using HLDA. The resulting systems
served for female speakers. The elimination of pitch imeterf based on these combined representations were able to @chiev
ence effects also proved to be important when higher ordetative reductions in word error rate of 3.2% on WSJCAMO,
coefficients were used. 8% on conversational telephone speech, and for the meeting
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domain 4.7% for the IHM condition and 7.3% for the MDM[10]
condition. In both the WSJCAMO and CTS domains, we found
that STRAIGHT derived features benefit the most from VTLN;q;

(because of their smoother representation). Experimentiseo

CTS domain showed that the influence of the pitch tracker i

of importance for SRAIGHT derived feature extraction.

Experiments on the use of pitch synchronous MF-PLPs
for the meeting IHM task showed a 3.2% relative WER

improvement when combined with conventional MF-PLP

%

using HLDA. On the same task the use of higher order4]

coefficients (20 MFCCs plus C0) was evaluated both for st

dard and pitch-synchronous features, finding thek 8GHT-

Rio)

based features performed better than conventional feture

particularly for female speakers. In fact, for STFT derive

features, higher order coefficients are strongly affecteplitch

FlG]

interference which is more evident in high-pitched spesker17]
Finally ROVER system level combination was applied on

top of HLDA feature level combination finding that furtherg

improvements can be achieved merging the output of the

baseline systems with the correspondent HLDA combin
system; therefore showing that ROVER is complementary

HLDA.

synchronicity from the smoothing effect off8AIGHT to help

us understand whether speech recognition errors are du

pitch misestimations or to an excessive smoothing.
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