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Recognition of Dialogue Acts in Multiparty
Meetings using a Switching DBN

Alfred Dielmann and Steve RenalSlember, IEEE

Abstract—This paper is concerned with the automatic recogni- may be automatically analysed and interpreted in termsef th
tion of Dialogue Acts (DAs) in multiparty conversational speech. group discourse and interaction. Example applicationse hav

We present a joint generative model for DA recognition in which jn¢jyded automatic summarisation [1], topic segmentation
segmentation and classification of DAs are carried out in parallel. ;

Our approach to DA recognition is based on a switching and_ I_abelllr_lg [2], [3], group a_ctlon detection [4], [3], [6]
dynamic Bayesian network (DBN) architecture. This generative Participant influence [7], and dialog structure annota{i8h
approach models a set of features, related to lexical content The reliable recognition of the DA sequence in a meeting,
and prosody, and incorporates a weighted interpolated factored and the resulting knowledge of the discourse structurejspla

language model. The switching DBN coordinates the recognition 4 jmnortant role in the development of such applications.
process by integrating the component models. The factored

language model, which is estimated from multiple conversational In this paper,_ we pres_e_nt a erX|bIe_ tralnab_le approach
data corpora, is used in conjunction with additional task specific for the automatic recognition of DAs in meetings, based
language models. In conjunction with this joint generative model, on a switching dynamic Bayesian network (DBN) model, a
we have also investigated the use of a discriminative approach, factored language model, and discriminative re-ranking. W
g?fﬁg ;’é‘g‘r:r?:r?t'ggngxsandom fields, to perform a reclassification asent results on the AMI meeting corpus, in which we
We have carried out experiments on the AMI corpus of Ccompare DA re_co_gnltlon accuracy on manual and aut_omatlc
multimodal meeting recordings, using both manually transcribed Meeting transcriptions, and compare the effect of the riffe
speech, and the output of an automatic speech recogniser, andcomponents of the overall approach.
using different configurations of the generative model. Our reslis The DA recognition task comprises two related sub-tasks:

indicate that the system performs well both on reference and gegmentation, and classification or tagging. These tasks ma
fully automatic transcriptions. A further significant improvement

in recognition accuracy is obtained by the application of the be performed _JO'nFIy or sequentially. I_n a sequential appo
discriminative reranking approach based on conditional random the conversation is first segmented into unlabelled DA seg-
fields. ments, then each detected segment is tagged with a DA label.
Index Terms—Dialogue Act, DBN, Interpolated FLM, CRF, The joint approach performs both tasks concurrently, dieigc
AMI corpus. DA segment boundaries and assigning labels in a single step.
The joint approach is able to examine multiple segmentation
EDICS Category: SPL-UNDE and classification hypotheses in parallel, whereas only the
most likely segmentation is supplied to the DA classifier in a
I. INTRODUCTION sequential approach. The joint approach is potentiallyabbgp
IALOGUE acts (DAs) form a useful level of represenof greater accuracy, since it is able to explore a wider $earc
tation for the interpretation of conversations. A DA is &Pace, but the optimisation problem can be more challenging
construct that describes the role that an utterance plags it @ sequential system the two sub-tasks can be optimised
conversation and provides a bridge between an orthograpiiigependently.
word-level transcription, and a richer representatiorhefdis- ~ We present an approach to DA recognition that takes
course. A conversation may be segmented into a sequenc@@fantage of both techniques by employing a joint generativ
DAs, with each DA assigned a label that describes the functihfrastructure followed by a discriminative classifier. tBo
played by that utterance within the conversation. DA labe®y/stem components make use of supervised learning from
may incorporate syntactic, semantic and pragmatic factofganually annotated data. The joint recognition is coorteitia
in addition to providing information about the structureaf Py a switching DBN which integrates a discourse language
dialogue and the course of a conversation, DAs are also apledel, six lexical and prosodic features, and two factored
to capture, at a coarse level, individual speaker attities language models trained on the orthographic transcrigtion
intentions, their interaction role and their level of inveient. The recognised sequence of DA units is then re-classifiegjusi
Multiparty meetings have been intensively researched owg€onditional random field DA tagger trained using the leiica
the past several years, with a growing focus on how a meetig@ntent and a set of discrete features.
We have performed tagging, segmentation and recognition

This work was partly supported by the European Union 6th FWP ISexperiments using the joint generative approach on unseen
Integrated Project AMI (FP6-506811) and AMIDA (FP6-0338pRblication

AMIDA-33). This paper only reflects the authors’ views andding agencies Meetings with three different deG”Iﬂg conflgurau'o'nssetm
are not liable for any use that may be made of the informationaioeti 0N both manual and automatic speech recognition (ASR)

herein. , transcriptions. We demonstrate in additional experimehist
The authors are with the Centre for Speech Technology Rdseal

I . . e
University of Edinburgh, Edinburgh EH8 9LW, United Kingdofemail: the accura_cy of DA recognltlon us_'ng th.IS joint approach can
{a.dielmann,s.renai@ed.ac.uk). be further improved through discriminative post-procegsi
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Il. MULTIPARTY CONVERSATIONAL DATA RESOURCES

In our main experiments, we have used the AMI meeting
corpus [9], which is a multimodal collection of annotated

TABLE |

THE SIX BROAD CATEGORIES AND FIFTEEN SPECIALISEIDA CLASSES
USED IN THEAMI CORPUSDA ANNOTATION SCHEME, WITH THE
PERCENTAGE OFDAS IN EACH CLASS

meeting recordings. It consists of about 100 hours of mgstin

i ; : . Category | DA class Proportion %
cqllected in three mstrumgnted meetmg rooms. Abou_t twoe Information 1 inform 566
thirds of the corpus consists of meetings elicited using a exchange | elicit inform 3.4
scenario in which four meeting participants, playing difet 'nd'V'dualt_Or Slfirggest Ig
. . group action | offer .
roIe_s in a team, tak_e a product de_velopment project from elicit offer or suggestion 05
beginning to completion. The scenario portion of the corpus Comment on | assess 16.7
consists of a number of meeting series, with four meetings pe previous discussion | elicit assteszmetnt derstand i;
H H H H comment about understandin .
series. Each series of four meetmgs_ mvolyes the same four elicit comment understanding 02
participant roles, and comprises project kick-off, fuontl Social function | be positive 18
design, conceptual design, and detailed design meetirgs. T - be negative 0.1
remaining meetings in the corpus, “non-scenario”, are -natuN® speaker intention ls’;‘flkcr‘a””e' 1;-2
rally occurring meetings, with 3-5 participants. fragment 13.0
The aim of the corpus collection was to obtain a multimodal Other | other 18

record of the complete communicative interaction betwéen t
meeting participants. To this end, the meeting rooms were
instrumented with a set of synchronised recording devices,

including lapel and headset microphones for each parti¢jpa™ore than 1000 unique DA labels [12]. This large set of DA

an 8-element circular microphone array, six video camerg@sses may be transformed (by rule) to a set of five broad
(four close-up and two room-view), capture devices for t classes: statements (52.2% of annotated DAS), questions

whiteboard and data projector, and digital pens to caphae £8:2%), disruptions(12.9%), fillers (10.3%) and backclesin

handwritten notes of each participant. The corpus has bddg-3%)- Itis notfeasible to build a mapping between thelICS
manually annotated at several levels, including orthdgiap 31d AMI DA classes.

transcriptions, various linguistic phenomena includingsp ~ The Fisher corpus consists of more than 16000 English
head and hand movements, and focus of attehtibhe DA telephone conversations on a wide range of elicited topics,
annotation scheme for the AMI corpus, outlined in table [€sulting in about 2000 hours of recorded speech, which has
is based around a categorisation tailored for group detisiBeen orthographically transcribed. Although it is not finies
making, and consists of six broad categories and a total t8fuse these corpora directly as training data for DA recogni
15 DA classes. Each DA unit is assigned to a single clagi¥n (using the AMI corpus annotation scheme) they repriesen
corresponding to the speaker’s intent for the utterance Tyaluable additional sources of transcribed conversaltidaiz.
distribution of the DA classes, shown in table I, is rathefhe Fisher corpus was of particular utility, since it contai
imbalanced, with over 60% of DAs corresponding to one of tfever 10 million words, making it an order of magnitude larger
three most frequent classes (inform, backchannel or gssefi@n the AMI and ICSI corpora.

Over half the DA classes account for less than 10% of the
observed DAs.

We performed our experiments on the 138 meetings that
form the scenario subset of the AMI corpus, following the o -
subdivision into training, development, and test sets estggl Ve have developed a joint approach to DA recognition
in the corpus documentation. There were 98 meetings in th@Sed on a switching DBN generative model. The observed
training set, 20 in the development set, and 20 in the test §g@tures that are generated by this model are the words spoke

We have used two further corpora in this work: the |CSpY the meeting participants, together with a set of worcsdas
meetings corpus [10] and the Fisher corpus [11]. The |Cg[oso_d|c features related to timing, intonation and eneryg
meetings corpus consists of 72 hours of naturally occurrifg@PPing from DA labels to word sequences was modelled
research group meetings at the International Computen&eieUSing @ factored language model (FLM) and an interpolated
Institute in Berkeley during the years 2000-2002, record&dM- The probability of observing a certain sequence of DA
using close-talking microphones worn by each participant (Iqbels (discourse model) was represented through a simple
addition, there were also four tabletop microphones). T@i| {rigram language model over DAs. The set of continuous
corpus has been orthographically transcribed and anmbinate""_ord'ba_SEd prosodlc_ featu_res was integrated into the recog
terms of DAs. However, the DA annotation scheme is differeR{S€r Using a Gaussian mixture model (GMM). The overall
to the one used for the AMI corpus—it is not possible to test/§C0gnition process is actively controlled by a switchinghd
DA recognition system developed on the AMI data on the jc¥yhich integrates information denveq from word_s, prosodic
corpus or vice-versa. The ICSI corpus was annotated aciprdi€atures and language models. Section Ill-A outlines tee us
to the Meeting Recorder Dialog Act (MRDA) scheme, whicl@f an automatic speech recogniser to produce a transariptio

utilises 11 generic tags and 40 specific subtags resultingdfRd the extraction of the prosodic features. Sections lRE
[1I-C discuss the factored language models and the swigchin

1The annotated corpus is freely available from http:/cerpmiproject.org DBN model that underlie the DA recognition system.

IIl. JOINT DA RECOGNITION SYSTEM
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A. Feature extraction Audio signals

Language
Model

We have used two sets of features in the DA recognition
system: the transcription of the spoken words obtainedgusin
an ASR system (section 1lI-Al) and the continuous prosodic
features (section IlI-A2).

Automatic Speech
Recognition system
(or forced alignment)

Acoustic
Models

1) Speech recognitionEully automatic DA recognition re- Fom—o o K
quires speech recognition. The AMI corpus has been manually Word temporal Orthographic
transcribed at the word level, as well as being processed by boundaries \ trangeriptions
an ASR system, thus enabling us to assess the robustness of v 1 | ,[
the DA recognition system to speech recognition errors. ESPS s | Word

Large Vocabulary Continuous Speech Recognition (LVCSR) pitch e relevance
of conversational speech is a significant research domaih, a extraction !
the recognition of speech in meetings has been intensively + *__ _ Tl_t : _ :. _TI_ -5
studied and evaluated in recent yéar&utomatic transcrip- 2'- ----- -~-~--o:~-r~--- ------- r=
tions of the AMI meeting corpus were obtained using the AMI- vy v
ASR system [13]. This LVCSR system is based on decision Word Pauses
tree clustered crossword triphone hidden Markov modeld, an length estimation
a trigram language model. For the multiparty meeting domain
the front end was enhanced using acoustic echo cancellation v v

and the perceptual linear prediction acoustic featuresewer
processed using heteroscedastic linear discriminaniysinal
The acoustic feature space was normalised by speaker, u$igdi. Data-flow of the automatic speech transcription aatlfe extraction
vocal tract length normalisation, and the model space werscess.
adapted using maximum likelihood linear regression.

The meeting domain acoustic models were trained on the
AMI corpus data. To recognise the complete corpus, a fivgat require any manual intervention.

fold cross-validation was employed using equal splits & th P dic feat S i dic feat
corpus. Two transcription versions were generated in eachz) rosodic Teatures. Six - continuous -prosodic Teatures

case: a fully-automatic one achieved by applying the fuyyere extracted for each word, using the audio signal and the

system to automatically segmented audio files; and a Serggnscription (figure 1): mean and variancg of the fundamerjt
automatic transcription obtained using a manual segmrientat requency (F0), mean energy, word duration, pause duration

into utterances. The “manual segmentation” system alsd u d word relevance. For the reference transcription thegim

a simpler ASR component, in which speaker adaptation wa vyord boundgries were obtained usjng a forced alignment
not used. The fully automatic system resulted in an ove;??ya'grsnti;gesaxg'rg' ES{;IT z':\ssEz:rrfg?ctrr:z“(r)g;;zei}ti\(l)vr?rgrg?:ggs
word error rate (WER) of about 36%; the simpler syste ) ) '
using manual segmentation, resulted in a WER of about 39%?6 FO track; were estimated using EngiTE%h_fO [14], "’?”dh

In both cases the system operated on signals recorded fr%m mean and variance were computed. The mean pitch was
the close-talking microphones. also normalised by speaker and by the average pitch for that

The automatic DA recognition experiments performed otﬁrm' with the obje_zctl\_/e of having a speaker md_epe_r_ldent
the AMI corpus (section V-B) compared both transcriptiomeasure_ able to .h'gh“ght content words_wnh a 5|gn|f|c_ant
versions. The speaker adapted “automatic segmentatioR® A itch shift. A similar normalisation technique was applied

output offers an overall improvement in terms of WER con%-g:ring RMS energy estimation with the aim of compensating

Feature vector (6 continuous components)

pared with the “manual segmentation” ASR output. Howev r different channel gains and to highlight emphasiseddsior

entire utterances may be deleted by the automatic acou 8rd duration was “term normalised”, being thus divided by

segmentation, and consequently whole DA segments aretﬂ? average word duration for that term, in order to highligh

redeemably lost (section V). Moreover, the word boundal ortdts Wh'CS l?tlsé motr.e (or [(tasr]s) thgn e usual occurr_enc:(ajstof
times of the “manual segmentation” ASR output, are mo at term. Lnit duration, prich and energy were assigned to

accurate, compared with the reference orthographic trgasc V\?ords Vgh'ICh appe;r ogly on(;ecin Fhe :raltr) mgbs?t ‘?d rtlz fOUt'
tion, since they cannot cross the manually annotated nttera O’ vocabulary worads observed during testing but absemniro

boundaries. Accurately timed word boundaries are desiralgme training set. Inter-word pauses were also estimateu fro

for the extraction of prosodic features at the word level ar{He vlordt boun?tary tt|_mes. qusif are Ioftent aisomateq th
are also required to evaluate segmentation into DAs. speaker turn afternations and other relevant changes in the

Although both ASR versions offer valuable insights durin orlv?rzzatlo:loa\llli dpero;:evsaslusalit)(lzg gjet?g:CDT";tZ’ r?lr;(:ltgtilc?nk{] 1%V]\In
the evaluation of our system, the “automatic segmentatio y P 9 '

ASR output represents the main test condition since it do 56]' Word relevan_ce_ was estimated as the ra_mo betweer loca
term frequency within the current conversation and absolut

2NIST  rich  transcription  meeting  recognition  evaluationt€M frequency across the whole meetings collection, thus

http:/Awww.nist.gov/speech/ assigning high scores to globally infrequent terms whiotuoc
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frequently in the current conversation. FLMs with the same topology may be interpolated, similarly
to word-based n-grams. This enables the construction of
B. Interpolated Factored Language Models combined models, whose component FLMs are trained using
Conventional language models construct a joint proldifferent data resources. We built FLMs for DA recognition
ability distribution over word sequences?(ws,...,w,), using the ICSI meetings corpus and the Fisher corpus of
which is factorised as a product of conditional probabilieonversational telephone speech, in addition to an FLM buil
ties P(wq|w;_1,ws_2, ..., w;_1). This concept can be gener-on the target AMI corpus, integrating them into a single
alised by replacing words, . . ., w, with bundles of factors interpolated factored language model.
vi,...,Vvn, 10 construct a factored language model (FLM) The AMI meetings corpus has a size of 0.97 million words
[17]. Each factor bundley; = {v?,v},...,vf}, is a vector in total, with about 0.47 million words in our training set

whose components are factors such as word identity, paft98 meetings. The ICSI corpus, which is from a similar
of speech tag, word stem, and enclosing dialogue act lab&bmain, contains 0.74 million words. The Fisher corpuscivhi
Conventional LMs can be interpreted as a special case isfbased on two party telephone conversations is much larger
FLMs with a single factor, the actual words; = {w;}. containing 10.62 million words. Building an interpolatedNF
Word identities are usually included in the collection ofrom these data sources, enriches the baseline FLM trained
factors employed in an FLM. The smoothing and discountimgn AMI meetings only, by extending the vocabulary and thus
techniques used for conventional LMs may be applied teducing the out-of-vocabulary, and by improving the nagra
FLMs, with the added flexibility of choosing which factor tocounts with word sequences that are not observed in the
drop when constructing simpler models for interpolation kMl training data-set alone. However, neither the ICSI or
backoff. Moreover, it is possible to drop more than one factéisher corpora are annotated using the AMI DA annotation
at a time and to follow multiple concurrent backoff pathsngsi scheme. (The ICSI corpus has been annotated for DAs, but
generalised parallel backoff17]. FLMs have an increasedusing a different and incompatible scheme.) In the absence
number of degrees of freedom, compared with conventiorafl compatible DA annotations, both the ICSI and FISHER
LMs, and it is possible to choose the factor set, the numbeosrpora were duplicated 15 times when training the FLMs,
of backoff steps, the backoff topology, and the discountirigbeling every sentence with all the 15 possible DA labels in
method associated to each backoff step. the AMI DA annotation scheme. FLMs trained on artificially
We use FLMs to map word sequences into DA units, and vaeliplicated data are obviously not discriminative in a DA
are primarily interested in evaluating these models in seofn classification task, but they are able to enhance the dantjon
DA labelling accuracy, rather than perplexity. It is possito and n-gram counts of the resulting interpolated FLM.
select the optimal FLM topology automatically [18], and we As will be discussed in section V the use of an interpo-
experimented with a simple search algorithm that randomiigted FLM provides an improvement in DA segmentation at
sampled the search space. The resulting models tendedhi® price of slightly reduced DA classification accuracy. To
employ a large number of factors (7 or more), implyingddress this, we conducted experiments with a hybrid approa
many backoff steps. These automatically discovered tgpeso in which the baseline FLM trained on the AMI data is
resulted in a slightly improved DA tagging accuracy (up to 2%ombined with an interpolated FLM at the sequence decoding
absolute) when compared to manually developed FLMs, Hetel by maximising the product of the joint probabilities
the more intricate structure requires a more elaborate DBi¥sociated to the two concurrent FLMs.
infrastructure and substantially increases computaltioost.
In order to reach a trade-off between simplicity, cost an
accuracy, we decided to employ a simpler FLM topolog
with three factors (and two backoff steps). Although this In a DA recognition system, segmentation and classification
topology was initially designed by hand, it was also discede are strongly related—the output of the DA classifier is depen-
by the automatic search procedure (with an improved set @nt on the optimal placement of the DA unit boundaries, and
discounting parameters). the placement of the DA boundaries depends on the labels
The FLM that we used for the DA recognition task wasssigned to the DAs. In this work, we treat the segmentation
based on three factors: the word identity, the dialogue and classification problems jointly and the process is deord
act label d; associated to each word,;, and the relative nated by a switching DBN model [19], implemented using the
word positionn; in the context of the DA unit. The word Graphical Model ToolKit (GMTK) [20].
sequence probability was modelled using a product of wordFigure 2 depicts the switching DBN model [21]. The
bigrams conditioned also on word position and DA labetranscribed words are represented as the sequence oftdiscre
P(w¢|we—1,ny, dy). The model was smoothed using two backebservable nodedy, ..., W;_;, W;. The FLM and inter-
off steps and Kneser-Ney discounting,_; was the first term polated FLM outlined in the previous section are depicted
to be dropped leading to a unigram like ter(w;|n:,d;). using dotted arcs, and each word is observed twice: once for
In the case of a subsequent backoff the DA label factor the baseline FLM and once for the interpolated FLM. The
was the next term to be dropped, leadingR¢w;|n,). The relative position of each wordV; in the current DA unit
FLM was estimated using the training subset of the AMDAY is represented by the discrete nodg. N, relies on
scenario meeting data outlined in section Il (470000 wordsbounded word countet;, which is incremented at every
and a dictionary of about 9000 unique terms). word encountered in the current DA unit. After each block

. Switching DBN architecture
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Withina DA unit (- E,=0) DA unit boundary  (E;=1) automatically selected during training [20]. The GMM rekat
the six-dimensional prosodic features to the two discretes
P BIDA%Y | |oxt, DAY of B, thus helping to predict the DA segmentation.
Z The cardinalities of the discrete random variables refleet t
DAl 'm Al pat| function they serve in the model, thugt;| = 2, |Cy| = 5,
— |DAY| = |DA}| = |DA2| = 15, andW,; has as many states as
/ the number of words in the dictionary. Since the vast majorit
DA% >DA" DA’{  of the DA units have fewer than 75 words, the word block

, counter cardinality has been constrainedAg| = 15.

! The intra DA topology used within a DA unit (figure 2A)

| accumulates the joint probability for a sequencekof- 1
words W;_y,... W, as the product of a FLM and a weighted

2 W B interpolated FLM given the current DA label hypothesist?

and the deterministic counter nodé$ and C;. The two

E, E, language model probabilities (FLM and interpolated FLM)

are combined by using an equally weighted stream weighting

Y, Y, combination:
(A) (B)

. . . . . P(Wyg,..., Wy | DA®) =
Fig. 2. Switching dynamic Bayesian network model for the jaliglogue
act recognition task: (AJntra-DA topology adopted within a DA unit; (B) ¢
Inter-DA topology used at DA boundaries. The model switches between H {Prrrar(W; | Wi_1, Ny, DA®)-
the two operating conditions (topologies) according to skete of the DA

boundary detector nodE. Square nodes represent discrete random variables, =tk 0

round nodes are continuous variables. Shaded nodes reprasservable 'PFLM(Wi | Wi_1,N;, DA )} 3
features, unshaded nodes are hidden variables. Plain &ually encode

statistical dependences between random variables aneddatts highlight where P(W;_y, ..., W, | DA®) represents the joint probabil-

the dependences implied by FLMs. ity for the observed utterand®’;_y,... W;, given the current

DA classification hypothesiD A%, Prpy and Prppa are

of 5 words, C, is reset to zero andV, is incremented, thus fche probabilities respectively provided by the baseling e

indicating to which “block of five words” the current woidl’; interpolated FLMs. T
The absence of a DA boundary implies that the DA recog-

belongs to: " : .
_ g nition history remains unaltered, hence the contenbef]
ifCa<4:  Cri=Ca+1 needs to be cloned inth A} and similarly DA? := DA? |.
if i1 =4: Cy:=0 Ny =Ny 1 +1 Since the word sequend®;_y,... W, has been generated by

the same DA unit with labeD A?, and no DA boundaries have

The final length of an automatically detected DA unit is NQ{gep, spotted between timte— & and timet, it follows that
known a priori, and is only available at the end of the D%Ai_k =...=DAl_, = DA for j = [0,2].

recognition process, therefore it is impractical to esteweord

o< , If a DA boundary is hypothesisedt{_; = 1), then the
position features normalised for DA length.

model switches to the inter DA topology (figure 2B), which

The DA recognition history is represented by ghe Culrreri“tegrates the probability from the 3-gram discourse LMint
and the two previous DA labelling hypothesd3A;, DA;  he gverall recognition process and starts the evaluatfoa o

andDA?. This history is needed by the DA boundary detectofa\y DA unit, reinitialising the counter nodes; = 0, N, — 0.

the hidden binary variablé. £, is the principal switching e pa recognition history is updated and a new set of DA
variable in the model, switching from zero to one when @,ggification hypothesdaA?, for the next DA unit beginning

boundary between two disjoint DA units is detected. In thgih 1y, is generated following the 3-gram discourse language
absence of a DA boundaryE{_; = 0) the DBN assumes model P(DA? | DA |, DA? ).

the intra-DA topology shown in figure 2A; when a boundary Whent = 0 a slightly modified intra DA topology&_; —

is likely to be presentf;_, = 1) the model adopts the ) heeys to be adopted, with both the DA recognition history
alternativeinter-DA topology depicted in figure 2B. and the counter nodes initialised to zed@ A} = DAZ = 0,
The dependency of the observable prosodic feature vect S_ 0, Ny = 0)

Y; on E, is modelled using a Gaussian mixture model (GMM

. Segmentation and classification are carried out concuyrent
with n components:

The classification process accounts for the joint prokigbili
) n o of the transcriptionW;_,, ..., W, accumulated by the two
Pi=y|E=1i)= Z C(i,))N(y; pig: ¥ij) - (2)  concurrent FLMs given the current classification hypothesi
J=t DAY, the probability ofDA? given the two previously recog-
where N (y; p1; j, 2;.;) is a Gaussian density with mean ; nised DA units, and the segmentation hypothesis (a DA unit
and covarianc&; ;, evaluated a. C(3, j) is the conditional starting at timet — k& and ending at time). Several alternative
prior weight of each mixture componerif and the optimal segmentation hypotheses are generated, with the prdigabili
number of mixture components for each state = [0,1] is of each segmentation combining the likelihood of genegatin
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TABLE II .
DA SEGMENTATION AND recognitionEVALUATION METRICS skewed toward very low error rates. The DSER metric is the
complement of the percentage of correctly detected DA units
I Normal\i;eddby: o similarly the Strict metric can be defined as the percentage
oundaries oras units . . . .
Tolerant NIST-SU Boundary of wgrd; belonging to mcorrect_ly s_egmented units. Thec§tri
1 matching boundary NIST-SU metric is a severe metric heavily influenced by the length of
Rigorous: Strict DSER DA units in terms of words.
2 matching boundaries Strict DER

Since the DA recognition task combines segmentation and
tagging, it is possible to translate most of the segmemntatio
metrics into recognition metrics by requiring that the dede
DA unit labels match the reference annotation. Therefoee th
) N .  NIST-SU, Strict, and DSER (usually referred as DA Error Rate
A pruned Viterbi decoding is used to find the most “ke%r DER in the recognition task) metrics can be easily adapted

sequence of labeled DA segmehts fo the recognition task by adding the constraint that wrpngl

Since this approach cannot generate a DA Segmentat|8[3eled units will be scored as errors even if their boursdari

V.VithOUt an as_sociated DA Ial_)eling hypothesis, Fhe segmenig, o perfect match. This added requirement implies thaethe
tion accuracy is assessed by ignoring the recognised DAsIabg

Classificati f the DA units f ¢ i ecognition metrics will result in error rates at least asagas
asstiication ot the DA units for a reference segmentatam Cyp, o, segmentation counterparts. The Boundary segmentati
be achieved by constraining the state of the boundary dete

Fhetric is an exception, since it is translated into the Lenie

nodesE. recognition metric [15], which is defined as the percentage
of correctly classified words independent of the segmentati
IV. EVALUATION Since it is focused exclusively on tagging accuracy, thigrime

DA tagging accuracy can be easily evaluated by scoriﬁﬁ'owd be regarded as a DA classification metric rather than a

the automatic DA classification output on a test set agairi@nuine recognition metric. ,
the corresponding reference DA annotation. The percemtige | he reference DA annotation is produced in terms of the
correctly classified DA units, or its complement the Clasaifi manually transcribed word sequence. When processing ASR
tion Error Rate, is a standard metric for the DA tagging tasRUtPUt, the DA tags will be applied to a different word
along with class-based precision and recall measures [22].S€quence, owing to ASR errors. Since a manual_ re-annotation
The evaluation of DA segmentation accuracy is less straighf th€ ASR output would be extremely expensive, we have
forward. The concept of a “correct’” DA segmentation is ndidopted the evaluation scheme proposed by Ang et al. [15]:
unequivocally defined, since it may be in terms of the overf}SR words are mapped into the manually annotated seg-
sequence of DA units, or may demand precise timing gents accor_dlng to the!r m|qP0|0t5 *'(word_start_tzme—i—
the DA boundaries. Moreover a segmentation metric m rd_end_time), thus |r_1her|t|ng their rgference DA I_abels.
be expressed and normalised in terms of DA units, DRECAUSE of ASR deletions and the time-based alignment,

boundaries or words. A number of different metrics have begfveral DA units will be empty. As we have adopted a word-
proposed, each offering a different perspective on the thskPased approach, these lost segments cannot be successfully

DA segmentation. In this paper we report our results usif§cognised and will be reported as errors by every segmen-
four previously defined metrics: the NIST Sentence like Unfgtion/recognition metric. Conversely on a pure DA tagging
(NIST-SU), Strict, and Boundary metrics [15], and the D,@valuatlor_w task, empty segments will be scored as if they_ew_er
Segmentation Error Rate (DSER) metric [23], [16]. Thed@gged with a randomly drawn label, thus reducing the bgasin

the observed prosodic feature vectdfsand the likelihood
of the DA unit generating the observed word§_,... W;.

metrics are summarised in table II. effect of words and utterances deleted by the ASR system.
According to the Strict and DSER metrics a DA unit
has been correctly detected only when both boundaries are V. EXPERIMENTS

correctly located and no other boundaries fall within the We h d th itching DBN del for taqai
detected unit; the NIST-SU and Boundary metrics focus on ¢ have use € swiching modet Tor tagging,

individual boundaries, rather than on DA units, and al%egmentation, and recognition of DAs in the ICSI and AMI

thus more tolerant. The NIST-SU metric scores the suPHe_e“"Q corpora, gsing t.he three Iangugge model configu-
of missed DA boundaries and false-alarms divided by tﬁgt:jons hdi)s%”ped 'r? .;e::r?or? ![”'B'lFtL'\él’F'EErPOI?ted F(;‘M’
number of reference DA boundaries. In case of a high numiic @ tyt'n n \(Ijvtlr? b € Ilr'] erplglj/le' f 'Sd ocuste on
of insertions (false-alarms) the NIST-SU metric can assurﬁ_ gmentation an € baseline FLVI IS Tocused on tagging.
values well above 100% [16]. The Boundary metric has th ese experiments _extend our p_rew_ously published re_BuIts
same numerator as the NIST-SU metric (missed boundar, @'Ch an ef’_"'y version of the switching DEN model, W'th_O_Ut
+ insertions) but is normalised by the total number of noﬁ_ettrj]selgfsllnterp(z]ated FLMs, V;js us%d for D.A rect:ognltlct)rr]]
boundaries in the reference, which is equivalent to the m@" € meetings corpus [24], and experiments on the

of reference words. Since there are usually many more ref'eﬁlyll corpus using manual transcriptions only [21]. Our ialt

ence words than segmentation errors, this metric tends to eriments, _applylng the complete framework to _the 5 DA
ICSI task, validates the methodology on an established task

3The decoding runtime for this model is about 10 times slower tealime forming the base for our investigations on the novel 15 DA
on a 3Ghz P4 equipped with 1Gb of RAM. AMI task.



DIELMANN AND RENALS: RECOGNITION OF DIALOGUE ACTS IN MULTIPARTY MEETINGS USING A SWITCHING DBN 7

TABLE Il L. . .
DA TAGGING, SEGMENTATION AND RECOGNITION ERROR RATE%) ON « Hybrid: iFLM andFLM combined at the decoding level.

THE ICSI MEETING CORPUS USING A DICTIONARY OF5 BROAD DA These three systems were each run on three transcription
CLASSES RESULTS ARE REPORTED ONB DIFFERENTFLM SETUPS

(BASELINE FLM, INTERPOLATED FLM, AND HYBRID FLM+IFLM) using ~ CONditions, described in section HI-Al:

REFERENCE MANUAL TRANSCRIPTIONS . Manual Hand transcription (WER O%),
Reference transcription o ASRAS ASR with automatic segmentation: fully auto-

[ Task | Metric | FCM [ iFLM [ Hybrid matic system from ASR preprocessing up to DA seg-
T Sy — e mentation and recogriition (WER: 36%; 12.8% of DAs
S [ NIST-SU 356 | 305 | 320 lost due to ASR deletions);

CE; gS_ER gg.g gg.g g;g « ASRMS ASR with manual segmentation: non-speaker

v Bg:frt] dary e g g adapted ASR with manual utterance segmentation (WER:

R NISTSU 568 T 679 595 39%; 5.8% of DAs lost due to ASR deletions).

(E:_ 25'; gi:‘?‘ 22:491 g;:‘?‘ Although ASRMS has a higher word error rate, the manual
Lenient 197 T 303 50,9 segmentation results in fewer complete DAs being deleted.

Most of the deleted DA segments are very short, typically
backchannels or fragments; an example of this is visible at
A. Joint DA recognition of ICSI meetings the bottom of figure 4.

We performed DA tagging, segmentation and recognition The FLM system has a ciassification error rate of gbout
on the ICSI meeting corpus, using the reference manuil’? absolute lower than th&LM system for the tagging
transcriptions. These experiments used the ICSI DA anipatat '@SK: Which uses a predefined segmentation. This is to be
scheme based on the five broad DA categories describecfifPected. since the additional data sources used iiFttd
section II. In order to facilitate comparison with the exigt SYStem. the Fisher and ICSI corpora, do not have DA tags

literature, we used the subdivision of the ICSI corpus defin&°rresponding to the AMI scheme (section IlI-B). Thus al-
by Ang et al. [15]. The results obtained using the thre@ough these additional data sources extend the vocabulary
language model configurations are reported in table I11: t1d n-gram counts, they are unable to provide information to

baseline FLM model [24]; a novel weighted interpolated I:l_l\,b‘lielp discriminate between DA classes. The trigram dis@urs
trained on ICSI, AMI and FISHER data (AMI and FISHERmOdel contributes to these results by about 7.0% absolue: D

tagging experiments using tHeLM system without the dis-
combination of the two ELMs course trigram, resulted in classification error rates o7%

The results on the ICSI corpus indicate that the baselifd:2%° and 59.7% respectively for tieanual ASRMS and
FLM offers the best tagging performance; adoption of @nSRAStranscriptions. o
interpolated FLM improves the segmentation accuracy at the”"ecision and recall of DA tagging is shown by class
cost of tagging. An effective trade-off between DA taggin! figure 3. This graph indicates that DA tagging accuracy
and segmentation, required for DA recognition, was obthin& influenced by the imbalanced distribution of DA labels.

using thehybrid configuration (baseline FLM and interpolatedOt Surprisingly the classifier performs better on the two
FLM used in conjunction). In section VII, we compare thesB10St frequent classesform andbackchannelHowever very

results with the state-of-the-art results reported on tagk Nfrequent classes such @e-positiveand offer have good
[16]. recall and precision scores, suggesting that even if rag th

can be well modelled and discriminated.

For the DA segmentation task, table IV indicates that the
iFLM system results in much lower errors, by a factor of
We performed more extensive experiments using the switahree, compared with the bagit.M approach. In this case the

ing DBN model and the three system configurations on theduced discrimination of th&LM system is outweighed by
AMI meeting corpus. Each of these systems was run on thrg@ extended dictionary and larger language model, olataine
transcription conditions: manual reference transcniptidSR  from the additional ICSI and Fisher corpora.
with manual utterance segmentation, and ASR with automaticSince DA recognition needs both accurate segmentation and
utterance segmentation. As discussed in section Il, the AMbssification, we combined tHe.M andiFLM, resulting in a
meeting corpus uses a set of fifteen DA classes, in contragbrid approach which combines the two models at the decod-
to the five broad DA classes used on the ICSI corpus, thiggy level. The segmentation error rates of tngorid system
results for the two corpora are not directly comparable.  are slightly higher than those provided by iF:M approach,
Error rates for the DA tagging, segmentation and recogmitigind the tagging error rate is slightly higher than fHeM
tasks, using the three system configurations and the thegsroach, but on the joint recognition task, which involves
transcription conditions are shown in table IV. The threpoth classification and segmentation, thgorid provides the
system configurations are as follows: lowest errors.
« FLM: simple FLM trained only on the AMI training set; Compared with the reference transcription, the automati-
o iIFLM: weighted interpolated FLM trained on AMI (rel- cally produced transcription& SR ASand ASR MS result in
ative combination weight of about 58.5%), ICSI (2.7%increased error rates for DA tagging, segmentation andgreco
and FISHER (38.8%) conversational data; nition. For tagging, thé& SR ASsystem results in an increased

were duplicated 5 times, one for each DA class); amylarid

B. Joint DA recognition of AMI meetings
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TABLE IV
DA TAGGING, SEGMENTATION AND RECOGNITION ERROR RATE$%) ON THE AM| MEETING CORPUS RESULTS ARE REPORTED ON8 DIFFERENTFLM
SETUPS(BASELINE FLM, INTERPOLATED FLM, AND HYBRID FLM+IFLM) BOTH ON REFERENCE MANUAL TRANSCRIPTIONS AND ON2 ASROUTPUTS

Reference transcription ASR manual segmentatioh ASR automatic segmentatioh
[ Task [ Metric | FLM T iFLM [ Hybrid FLM [ iFLM [ Hybrid FLM [ iFLM | Hybrid
TAG. | 100 - %Correct 40.9 51.4 42.8 50.7 61.2 53.0 52.7 61.9 54.8
S NIST-SU 70.7 20.4 25.6 77.6 26.5 34.1 102.6 | 30.7 34.0
E DSER 78.0 12.8 17.0 85.5 17.0 22.8 94.2 23.2 25.8
G Strict 74.4 28.5 36.9 81.8 29.4 39.5 91.5 26.9 33.7
M. Boundary 10.8 3.1 3.9 12.8 4.4 5.6 16.7 5.0 55
R NIST-SU 93.1 73.6 71.3 98.3 85.3 85.9 1148 | 84.0 81.2
E DER 85.5 57.0 51.9 91.7 67.0 62.5 96.5 68.6 64.1
C. Strict 83.2 64.4 62.1 89.2 70.7 68.5 94.5 68.3 64.7
Lenient 40.9 51.8 42.2 43.8 59.0 48.3 43.4 57.1 46.9
09 50 TABLE V
o8 == Reference transcription 5 DA TAGGING, SEGMENTATION AND RECOGNITION ERROR RATE$%) ON
ESSIASR-Manual Segmentation THE AMI MEETING CORPUS WITHOUT THE USE OF CONTINUOUS
07 [CJASR-Automatic Segmentation | 4* » PROSODIC FEATURESRESULTS ARE REPORTED ON8 FLM SETUPS BOTH
o - - - DA relative frequency E ON REFERENCE AND FULLY AUTOMATICASR TRANSCRIPTIONS
. [a]
Sos E Reference transcription ASR automatic segm.
3% E [TaskMetric ] FLM [ iFLM | Hybr. FLM T iFLM | Hybr.
£ 04 =
o g Tag.[CER 40.9 514 42.8 52.7 61.9 54.8
= S |NIST-SU 88.5 31.9 51.8 103.0| 45.6 70.9
02 s E |DSER 79.6 24.5 36.0 99.7 47.8 62.1
G [Strict 82.7 50.7 63.2 88.6 51.2 67.5
o M. [Boundary 135 49 7.9 16.8 7.4 115
0 . R |NIST-SU 109.2 | 85.4 | 102.0 1206 | 99.2 | 1234
INFOR BACKC ASSES FRAGM SUGGE STALL ELINF UNDER OTHER BEPOS ELASS OFFER ELSUG ELUND BENEG E IDER 86.3 61.8 61.7 104.8 85.3 87.1
09 DA classes 50 C. [Strict 88.0 74.8 771 92.9 78.4 82.3
p—————— Lenient 40.6 514 44.0 43.0 55.9 49.7
08 ption a5
E=ASR-Manual Segmentation
07 I ASR-Automatic Segmentation | *°
- - - DA relative frequency 5

0.6

the ASRAS with the ASRMS transcription which has an
increased overall WER, but a reduced number of utterance
deletions. Despite its higher WERSR MS performs slightly
better thanASR AS on the isolated DA tagging task, al-
though the lenient metric suggests that the situation isadlgt
inverted when the DA classification is carried out as part
of the joint DA recognition. Because of the lower number
of deleted segmentASR MS outperformsASR AS on the
DA segmentation sub-task using both tR&M and iFLM
systems. A similar discourse applies to the overall redagmi
Figl-(3- Df class bat?]Ed Pfeﬁ_iSiO”/fetC@;!' memﬁ forthe_g;;mgéag?”% performances on the baselifeLM setup. Thanks to the
sk o reference oloraphic nnotaton nd o Verstihs ASK U more ASR tolerant interpolated FLM and to the improved
ASR AS transcription quality, which leads to better dynamic
classification performances (Lenient metriB5R AS offers a
slightly improved DA recognition oveASR MSon bothiFLM
error of about 11% absolute, similar to that recorded on thgg Hybrid setups.
ICSI tagging task [24]. Since the automatic DA segmentation on example of the automatic DA recognition output is
strongly relies on the lexical content, a similar degramtatian  shown in figure 4. The reference manually annotated DA units
also be observed on DA segmentation metrics. iFié and (pold text) have been aligned to the automatic DA recogniser
Hybrid test conditions are less severely affected, suggestiagtput produced using both the reference transcriptioair{pl
that the larger language model results in a greater toleragxt) and theASR AS output (italic text). An excerpt rich in
toward ASR inaccuracies. The full DA recognition task, renteractions has been chosen for this example even if thés of
resenting a trade off between segmentation and classiiicatiresyits in more ASR errors, because of overlapping speech
leads to an increase in the NIST-SU recognition metric yhg cross-talk between microphones, and thus in a lower DA
about 10% onFLM and Hybrid setups and by 20% on therecognition accuracy.
baselineFLM experiment. The switching DBN architecture generates both word se-
However, the 12% of segments that are deleted in tl@ences, using language models, and sequences of corginuou
ASR AS transcription have an effect on the DA recognitioprosodic features (using GMMs). We have performed a set
results. In order to quantify this degradation, we compared experiments to analyse the effect of the prosodic feature

05

Recall

0.4

03

0.2

% of the total number of DA units

01

DA classes
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Table V gives tagging, segmentation and recognition resu
for the manual and ASR AS transcriptions, using a model

that does not include the continuous prosodic features. Th
prosodic features do not contribute to the tagging taskcden

| TABLE VI
t DA RECOGNITION ERROR RATES%) OF A CRFBASED
RE-CLASSIFICATION SYSTEM WITH AND WITHOUT THE USE OF

@ DISCRETISED PROSODIC FEATURESBEST PRIOR RECOGNITION
PERFORMANCES USING THEhybrid APPROACH HAVE BEEN REPORTED IN

BRACKETS
the results in this case are unchanged. For the segmentation
and recognition tasks it can be seen that removing the pimsddRecognitiof — Reference ASR manual | - ASR automatic
. . . . metrics transcription segmentation segmentation
features results in a substantial increase in all the eat®sr —sTsU 592 -593 (713) 703 - 72.6 (85.9) 71.3 - 71.8 (81.2
with the exception of the lenient error metric. DER 46.7 - 46.7 (51.9) 56.1 - 58.0 (62.5) 59.7 - 60.0 (64.1
Strict 542 -545 (62.1) 59.3 - 61.2 (68.5) 57.4 - 58.2 (64.7
Lenient 36.0 - 36.5 (42.2) 40.6 - 43.2 (48.3) 40.5 - 41.7 (46.9

V1. DISCRIMINATIVE RE-CLASSIFICATION OF JOINT

RECOGNITION OUTPUT

The use of static discriminative classifiers to re-rank then ASR AS This confirms that acoustics related features can
output of sequential generative models has proven to be falp to discriminate between DA units with similar lexical
effective technique in domains such as probabilistic parsirealisations, but word identities play a more central rol®A
[25] and statistical machine translation [26]. Discrintiva classification. The experiments reported in table V show tha
approaches have also been used to correct (or validate) phesodic related features have a more substantial impattieon
ASR transcription produced by a generative HMM systergegmentation task, confirming the intuition behind expigit
Support Vector Machines trained on features related to thtee prosodic information in the switching DBN approach only
acoustics are used in [27] to disambiguate confusable wdett segmentation. This approximation also helped to reduce
pairs. In another application of static reranking of LVCSR rthe model's complexity.
best hypotheses, additional phonetic, lexical, syntamtit se-
mantic knowledge were used to discriminate between maltipl

VII.
recognition hypotheses [28]. . . .
This is an attractive approach for several reasons. First,'vIOSt previous work concerned with DA modelling has

since it is a post-processing method it may be applied f[gcused on tagging presegmented DAs, rather than the bveral

any preexisting system leaving it unaltered. Second, tu}-,(ecre:j:oggmon task_wlr_nch _m_cludes segm_entatlon and _tag?mg.
discriminant approaches explicitly optimise an error rafie '"de€d, automatic linguistic segmentation [30], [31] isea

terion, while exploiting temporal boundaries and recadgnit regarded as a research_problem itself. )
candidates estimated by the generative model. Finallys it i The use of an HMM discourse model has underpinned most

possible to add features to the joint recognition systerth wi@PProaches to DA modelling, and a good overview of this
the possibility of lower computational overhead. approach is given by Stolcke et al. [32]. The discourse hjsto

We have applied discriminative re-ranking to automatic DS tyPically modelled using an n-gram over DAs, although
recognition, postprocessing the output of M system approaches such as po'Iygrams [33] have been Fested: Lexical
with a static discriminative classifier based on Conditloné\eatures have_ peen widely used for I_DA tagg'”g’ via cue
Random Fields [29]. CRFs are undirected graphical moddlQrds or statistical language models, including approache
frequently used with a simplifieinear chaintopology (first- SUCh as multiple parallel n-grams [34], hidden event laggua
order CRF) which can be interpreted as a generalisation 'BPd€!S [23], and factored language models [35]. The fadtore

HMMs. Since CRFs are trained to maximise the conditionign9uage model approach of Ji and Bilmes [35], the closest to
likelihood of a given training sequence, rather than thetjoithe work reported here, presents a DA tagg'”g approach for
the ICSI corpus based on a switching DBN, using a set of 62

likelihood, they offer improved discrimination and a bette : ' )
support of correlated features. Moreover, during CRF diegpd DA classes. Several authors have previously investigated t
se of prosody to disambiguate between different DAs with a

the classification decision is taken globally over the entit'S€ ; e i .
sequence and not locally on a single observation. similar lexical realisation [36], and investigated apputoes to

The linear chain CRF has been used to associate DA |ab%hrgomatically select the most informative features [37]'_ .
with the best segmentations provided by the switching DBN. More recently, there have been a number of conditional
The prosodic features that we used in the generative mof¥tde!s applied to DA classification including support vecto

(with the exception of FO variance) were discretised andi usB2chines (SVMs) [38], [39] and maximum entropy classifiers
in conjunction with the lexical information during the CRA34] [15]. Features for these models include both lexical a
re-labeling process, implemented with CRE:++ prosodic cues, as well as contextual DA information [34]. As

Table VI reports the recognition performances after diQutlined in section Vi, generative and conditional applusc

criminative re-classification. The improvement is coreist Can also be combined. For example Surendran et al. [40]

on all the transcription conditions and on all the evaluatigntégrated local discriminative SVM classifiers (usinggwdic

metrics, with reduction of 5-12% absolute. This improvetneﬁnOI I_exica_l feqtures) yvithin the HMM Qiscourse m(_)de_l by
is mainly due to the discriminative use of the lexical Comenapplylng Y|terb| decoding to class posterior probabifitiest-
prosodic features provide a marginal contribution of légst Mated using the SVMs.

0.5% on reference transcriptions, 2.6%&8R MS, and 1.2% Automatic DA recognition, in which segmentation and tag-
B ging are combined, is less well investigated. An early syste

for the integrated joint DA segmentation and classification

RELATED WORK

“http://crfpp.sourceforge.net/
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[33] employed a multi-layer perceptron and a language mod#scourse language model estimated from observed semience
for segmentation, a polygram LM for DA classification, andf DAs; a factored language model interpolated using mieltip
a joint search algorithm to score multiple joint recogmitio conversational data resources, used in conjunction withia p
hypotheses. More recently Ang et al. [15] have proposedFaM trained solely on in-domain data; and a switching DBN
sequential approach to segment the ICSI meetings and lalmeldel with two alternating topologies, which coordinates t
the detected units using five broad DA categories (stateneroint DA segmentation and classification task by integitin
guestions, backchannels, floorgrabbers and disruptidisd. the available resources. Multiple concurrent DA segmenta-
segmentation algorithm is based on an Hidden Event Langudigs and classification hypotheses are evaluated by thig joi
Model (HE-LM) and a DA boundary detector based on inteBA recogniser, enabling the investigation of a larger dearc
word pauses jointly combined through an HMM frameworkspace compared with a two-step sequential segmentation-
A maximum entropy classifier trained on lexical, prosodid arclassification approach.
DA contextual features performs the final DA tagging. Three experimental systems were investigated based on
We have reported some preliminary results using a joiat simple FLM, an interpolated FLM, or a hybrid using
DA recognition system on the ICSI meeting data [24], usingoth. The simple FLM trained only on data from the target
a framework in which components such as the interpolatedrpus offers the most accurate DA classification. However
FLM were missing. The DA segmentation and recognitiotihe interpolated FLM, thanks to its richer dictionary and
results on that system, are similar to those of Ang et alanguage model, reduces the number of segmentation errors
although using a discriminative MaxEnt DA classifier [15by a factor of 2-3, at the cost of a slightly degraded DA
resulted in a 5% lower error rate for the tagging task. In erlatclassification accuracy. A hybrid approach, using both FLMs
work Zimmerman et al. [23] compared two joint approachedlows a trade off between segmentation and classification,
on the same experimental setup. An extended HE-LM akitaprove the overall recognition accuracy. Experimentsigisi
to predict not only DA boundaries but also the type of theach of the three systems on hand-transcribed and two kinds
DA, and a HMM recogniser inspired by HMM based part 0bf automatically transcribed data, showed that these mste
speech taggers, was trained on lexical features and cothpageneralise well to automatic imperfect transcriptionsuiter
using several of the metrics discussed in section IV. Theggnificant improvement in the recognition accuracy, of 5—
joint HE-LM system obtained lower recognition error rate§2%, was obtained using a discriminative DA re-classiforati
than the HMM based DA recogniser, achieving performancesocess based on conditional random fields.
closer to the discriminative sequential approach of [15]. A The degradation when moving from manual transcriptions
further extension of this joint HE-LM DA recogniser [16]to the output of a speech recogniser is less than 15% absolute
included a discriminative maximum entropy DA boundarjor most tasks and metrics. Our experiments indicate that it
detector and tagger trained on discretised interword pauge possible to perform automatic segmentation into DA units
with a lexical context of 4 words. The weighed combinatiowith a relatively low error rate. However the operations of
of the classification probabilities for both systems presid tagging and recognition into fifteen imbalanced DA categgri
the most likely sequence of labelled DA units, which is ableave a relatively high error rate, even after discrimirativ
to outperform the sequential approach of [15]. Our resulteclassification, indicating that this remains a challaggask.
applying the switching DBN model to the ICSI task (sectiols the first complete set of DA recognition experiments
V-A) compare favorably to this novel combined joint apprioac reported on the AMI meetings, this work can also provide
Although for tagging the FLM is less accurate than a dis baseline reference system for future work on this corpus.
criminative DA classifier [15], the situation is inverted tre
DA segmentation task [16], thanks to the added capability to
include additional in-domain data by adopting an interfesla
FLM. Joint recognition experiments, reported in sectioAV- [1] G. Murray, S. Renals, J. Moore, and J. Carletta, “Incoating Speaker
suggest that these two effects can be carefully balancdstithy and Discourse Features into Speech SummarizationProt. HLT-

. i, : : NAACL, June 2006, pp. 367-374.
approach), leading to a competitive DA recogniser WhICWZ] M. Galley, K. R. McKeown, E. Fosler-Lussier, and H. JiriBiscourse
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Manual DA annotation: [A-Inform “So there's no red
REF. DA recognition : [A-Inform "So there's no red
ASR DA recognition : [A-Inform "so there's no red

esign”|[A-Fragment "So that should uh"] [A-Offer "R
esign"][A-Fragment "So that should uh"][A-Inform "R
esign"J[A-Inform "so it should uh huh"J[A-Inform "r

ight so seems to me that the thing that..
ight so seems to me that the thing that..
ight so seems to me that the thing that..

I have to do is is quickly find that uh"]
I have to do is is quickly find that uh"]
i have to do it is is what we find that to"][B-Ass

[B-Suggest "Could we get this on the board just
[B-Suggest "Could we get this on the board just
ess "quick as an"][B-Assess "apologist"][B-Assess "

so we can see"][B-Elicit-Inform “or do..
so we can see"|[B-Elicit-Inform "or do..
we can see"][B-Elicit-Inform "do you me..

you mean do you have the figures there"] [D-Inform
you mean do you have the figures there"] [D-Sugges
an"][B-Inform “java"][B-Fragment “think it's"] [D

"we should plug itin“] [A-Backchannel "Right"]
t "we should plug it in"] [A-Assess "Right"]
-Be-Positive "ish again”] [A-Backchannel "right"]

[D-Sug..
[D-Elicit-Assessment "Do you wanna pl..

gest "Do you wanna plu do you wanna plug it in into
u"][D-Elicit-Inform "do you wanna plug it in into t
[D-Be-Positive "okay and"]

the the back of that one"][A-Backchannel "Okay"]
he the back of that one"][A-Backchannel "Okay"][B-B
[A-Backchannel "O."][A-Ba

[B-Assess "'Kay Alice”]
ackchannel "'Kay"][B-Backchannel "Alice..
ckchannel "O. k."]

[B-Fragment "So sh"][D-Suggest "We could do it as
"|[B-Fragment "So sh"][D-Inform "We could do it as
[D-Inform "we could do is you'd

we d go along the production costs looking at the
we d"][D-Inform "go along the production costs look
call on the production costs look at the prototype

prototype"] [A-Backchannel "R..
ing at the prototype"][A-Backchannel "R..
" [A-Stall "r..

ight"] [B-Inform *'Kay this should b
ight"][B-Backchannel "'Kay"][B-Stall “this should b
ight oh"] [B-Inform "“that should be

e then"] [A-Inform "Okay so by the fact that we've
e then"] [A-Inform "Okay so by the fact that we've
there"] [A-Inform "okay so by the fact that we've

got uh the simple chip and the..
got uh the"][A-Inform "simple chip and ..
got to uh-huh simple chip and the"] [A-..

uh kinetic energy source we've got a single curved
the uh kinetic energy source we've got"][A-Inform "
Inform "uh kinetic energy source we've got a single

case we've got a rubber uh case materials supplemen
a single curved case we've got a rubber uh case mat
curved mm case we've got to"][A-Elicit-Inform “uh

ts"]
erials supplements”]
rubber mm uhuh case materials supplemen..

[A-Inform "So we had decided that we're ha
[A-Inform "So we had decided that we're h
ts"][A-Inform "so we have decided that we're having

ving rubber buttons and"][B-Backchannel "Mm-hmm®]
aving rubber buttons and"][B-Backchannel "Mm-hmm"]
rubber buttons and"] [B-El

[B-Inform "Have a push button..
[B-Elicit-Inform "Have a push button..
icit-Inform "have a push button interfa..

interface"][A-Inform "Okay W- the button supplemen
interface"][A-Inform "Okay W- the button supplemen
ce"] [A-Inform "okay yeah what the button supplemen

ts"]
ts"]
ts"]

Fig. 4. Manually annotated DA units in bold (first row), an@ thutomatic DA recogniser output obtained applying the $uvitt DBN model with aHybrid
FLM configuration to the manual reference (second row) andatitematic ASRAS transcriptions (third row, italic font). The DA segmentavh been
specified using the following format: [Speaker label — DA lahgterance”] where the four interacting speakers havenbegpresented through the capital

letters A, B, C, and D.
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