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Abstract
This paper proposes the idea that by viewing an inversion map-
ping MLP from a Multitask Learning perspective, we may be
able to relax two constraints which are inherent in using elec-
tromagnetic articulography as a source of articulatory informa-
tion for speech technology purposes. As a first step to evaluat-
ing this idea, we perform an inversion mapping experiment in
an attempt to ascertain whether the hidden layer of a “multi-
task” MLP can act beneficially as a hidden representation that
is shared between inversion mapping subtasks for multiple ar-
ticulatory targets. Our results in the case of the tongue dor-
sum x-coordinate indicate this is indeed the case and show good
promise. Results for the tongue dorsum y-coordinate however
are not so clear-cut, and will require further investigation.
Index Terms: Multitask learning, acoustic-articulatory inver-
sion, multilayer perceptron

1. Introduction
Mainstream speech technology focuses closely on the acoustic
speech signal. The acoustic domain is where the speech signal
exists in transmission between humans, and moreover, we can
easily measure an acoustic representation of speech. Neverthe-
less, it is recognised that the acoustic speech signal is ultimately
the result of events in a speaker’s articulatory system, and there
has long been interest in ways to exploit the underlying articula-
tory information for speech technology. An articulatory repre-
sentation of speech has certain attractive properties which may
be exploited in modelling. Articulators move relatively slowly
and smoothly, and their movements are continuous. The mouth
cannot “jump” from one configuration to a completely different
one. Using speech production knowledge could improve speech
processing methods by providing useful constraints. Previously
suggested applications include, for example, automatic speech
recognition [1, 2], low bit-rate speech coding [3], speech analy-
sis and synthesis [4], and animating talking heads.

To use articulatory information in speech processing ap-
plications, the articulatory representation itself must somehow
be obtained. In recent years, electromagnetic articulography
(EMA) has become one of the most promising sources for ar-
ticulatory data. The advantages of EMA include its relatively
low cost, negligible impact on articulation and low danger to
the subject! In addition, because EMA records the movements
of fixed points on the articulators rather than “images” of the
articulatory structures, the need for postprocessing to extract ar-
ticulatory movements from the raw data is greatly reduced. For
these four main reasons, we can now record reasonably large
amounts of articulatory data using EMA (e.g. MOCHA [5]),
which in turn means the use of machine learning algorithms in
common use today in speech technology is viable.

Despite the advantages of using EMA to collect articula-
tory data for speech technology, one or two drawbacks or un-
certainties remain. First, there is the possibility that the seven

or eight sensor coils that are typically recorded in EMA cor-
pora are not sufficient to provide a full description of the vocal
tract, and so important information is missing. There are two
reasons for this limitation. The first is that the EMA machines
available only provide a limited number of coils. The second,
more fundamental problem, is that it is impractical to fix more
than a small number of coils to a speaker’s articulators at any
one time. Attaching coils is a time consuming procedure, so
attaching a great number becomes prohibitive. The presence
of a great number of receiver coils increases the likelihood of
impairing the speaker’s articulation. Finally, the coils may in-
terfere with each other; coils in closer proximity to each other
than 8mm may affect signal measurement accuracy. In addition,
physical collisions between two coils may cause either or both
of them to dislodge. For example, care must be exercised when
placing coils on the velum and the back of the tongue; if these
coils collide during normal articulation, it is likely that one or
both of them will become detached.

Even in absence of collisions, EMA coils may sponta-
neously become detached during the recording of a corpus of
significant size. This is a second significant problem, as placing
the coils accurately is somewhat difficult, and so the position
and orientation at which a coil is re-attached is unfortunately
only approximately the same. This introduces the problem of
inconsistency of the data throughout the corpus.

We can attempt to normalise the differing positions of coils
which have been re-attached, but success may be limited, de-
pending on the extent and nature of the difference. Further-
more, normalisation does not help with the problem of the lim-
ited number of coils. In contrast, this paper addresses both
these shortcomings jointly by considering the inversion map-
ping from a Multitask Learning perspective.

Caruana [6] provides a compelling review and demonstra-
tion of the potential benefits of Multitask Learning. In Multitask
Learning, a single empirical learning model (e.g. a multilayer
perceptron (MLP)) is trained to perform multiple related tasks
at the same time. The tasks are made to share the same hidden
representation (e.g. the MLP hidden layer), which introduces
the possibility that the training signals for each task act as an
inductive bias for the other tasks. In other words, what the MLP
learns for one task can help the MLP for the other related tasks.
This principle is termed inductive transfer.

Intuitively, estimating the movements of multiple articula-
tory points from the same acoustic signal when performing the
inversion mapping is a set of interrelated tasks1. The degree of
this interrelation depends on which articulators one considers.
We might expect the relationship between the inversion map-
pings for two points on a rigid structure such as the lower jaw
to be closely related. Whereas, the relationship between the
velum and the jaw is less obvious. Nevertheless, they are all

1Although inversion mapping studies have frequently modelled the
inversion mapping for each articulator channel separately (e.g.[7]).



in some sense related tasks. Therefore, in an MLP designed
to perform the inversion mapping for multiple articulators, it is
natural to ask to what extent we can view the hidden layer as a
shared internal representation of vocal tract configuration.

If the hidden layer were to function as a shared underlying
representation to a significant degree, then we would be able
to tackle the two problems with collecting EMA data described
above. First, to address the problem of the limited number of
sensor coils, it might prove viable to move the EMA coils part
way through recording a large corpus and “overlay” the dif-
ferent coil configurations in an inversion mapping MLP. This
would yield a fuller final representation of the vocal tract. Sim-
ilarly, if a coil were to become spontaneously detached, it may
subsequently turn out to be possible to exploit a shared hid-
den representation in order to make full use of the EMA data
recorded from the coil in that position. The mechanism for shar-
ing the hidden representation in this way differs slightly from
the straightforward method employed in typical applications of
MLP-based Multitask Learning, although is still quite elemen-
tary. This method is described in Section 2.1.

Addressing the above two issues is the ultimate goal of this
line of research. At this preliminary stage, the purpose of this
paper is primarily to detail the proposed idea itself, and sec-
ond to investigate whether there is indeed significant evidence
of sharing in the hidden layer of an MLP trained to perform
inversion for multiple articulators.

2. Inversion mapping experiment
We will first describe the principle by which multitask learning
might be implemented in an MLP, in accordance with the goal
of addressing the issues presented in Section 1. We will then
describe the dataset used in this investigation. Finally, we will
provide the details of the experiment conducted.

2.1. Implementation of a shared representation

In standard applications of Multitask Learning to MLP training,
units which are fully connected to the hidden layer may simply
be added to the output layer. Target output values in the train-
ing set may then accordingly be augmented with the targets for
additional related tasks. In this way, all output units for the sep-
arate subtasks naturally share the hidden representation for the
whole training set. In this approach, the target data is defined
for all tasks and for the whole training set.

To address the two problems described in Section 1, how-
ever, we cannot assume that each subtask’s target data is defined
for all training patterns. By way of explanation, consider an ex-
ample where we have a total training set of 1,000 utterances,
and where we may have recorded 500 utterances with coils at-
tached in some configuration “A” and 500 utterance with coils
in configuration “B”. Ultimately, we want a single MLP which
can estimate the positions of coils in configurations A and B at
the same time and in response to the same acoustic input pat-
tern. We aim to train a single MLP on these two subtasks, while
promoting the development of shared hidden representation.

This condition requires a different approach to implement-
ing Multitask Learning. Fortunately, we can achieve the desired
effect of sharing the hidden representation in our case by a slight
modification to the backpropagation training in the multitask
MLP. Specifically, we do the following:

1. Construct an MLP with output units corresponding to all
target articulator positions available in the training set (in
our example case, those for configurations A and B).
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Figure 1: EMA receiver coil locations for MOCHA speaker
fsew0. Table 1 gives a key to the coil positions.

label articulator label articulator
UL Upper lip TT Tongue tip
LL Lower lip TB Tongue body
LI Lower incisor TD Tongue dorsum
V Velum

Table 1: Key for coil locations for MOCHA speaker fsew0.
Coil locations may be suffixed with “ x” and “ y” to refer to
the x- and y-coordinate in the midsagittal plane respectively.

2. Concatenate all subsections of the training data with
coils in configurations A and B.

3. Where a target value for a coil is not known for a partic-
ular input acoustic vector, it is set to a value “undefined”.

4. During MLP error calculation and backpropagation, the
error for an undefined target is set to 0.0.

For a training pattern recorded with coils in configuration
A, the target outputs for coils in configuration B will be unde-
fined, and the corresponding error will be 0.0. Therefore, during
error backpropagation only the signals from the coils from con-
figuration A will affect the fully connected shared hidden rep-
resentation. This situation will be reversed for a training pattern
which was recorded with coils in configuration B. In this way,
both subtasks corresponding to coil configurations A and B will
affect and, hopefully, benefit from the shared hidden layer.

2.2. MOCHA articulatory data

The multichannel articulatory (MOCHA) dataset [5] gives the
acoustic waveform recorded concurrently with electromagnetic
articulograph (2D EMA) data. The sensors in Figure 1 provide
x- and y-coordinates in the midsagittal plane at 500Hz sample
rate. Speakers were recorded reading a set of 460 phonetically-
balanced British-TIMIT sentences. The data of a single speaker,
female fsew0, was used for the experiments here.

2.2.1. Data processing

The acoustic signal was converted to frames of 20 melscale fil-
terbank coefficients using a Hamming window of 20ms with a
shift of 10ms. These were z-score normalised and scaled to the
range [0.0,1.0]. The EMA trajectories were downsampled to
match the 10ms shift rate, then z-score normalised and scaled
to the range [0.1,0.9] using the normalisation method described
in [8]. Frames of silence at the beginning and end of files were
discarded, using the labelling provided with MOCHA.

368 utterances were used for the full training set (this was
reduced by varying amounts for the various networks trained;



Num utts Num frames Num utts Num frames
23 4200 184 44159
46 9806 207 48993
69 15351 230 54781
92 20778 253 60768
115 26503 276 67028
138 33105 299 73862
161 38830 322 79367

Table 2: 14 subsets of contiguously recorded utterances from
MOCHA speaker fsew0 used as training data for the tongue
dorsum coil.

see Section 2.3), and the validation and test sets contained 46
utterances each. All fsew0 MOCHA files with filename num-
bers ending in “2” were selected for the validation set, while all
files ending in “6” were selected for the test set. This is the same
scheme as used elsewhere [9, 7], and means the three datasets
are drawn uniformly from the database taken in recording order.

A context window of 20 consecutive acoustic frames was
used as network input, which increased the order of the acoustic
vector paired with each articulatory vector to 400.

2.3. Experimental details

The aim of this initial experiment is to verify whether any ben-
efit is observed from sharing the hidden layer in an MLP as
described in Section 2.1. To achieve this, we have taken the
MOCHA dataset in Section 2.2, and simulated various amounts
of missing, or undefined, data for one of the coils: the tongue
dorsum. Table 2, lists the 14 training sets we have created to
simulate this. These training sets differ in the number of utter-
ances for which the tongue dorsum x- and y-coordinates are de-
fined. For example, in the first training set, the tongue dorsum
coil is defined for only the first 23 utterances (4200 frames),
while in the next training set, it is defined for 46 utterances
(9806 frames) and so on. We have purposely divided up the
training set into blocks of consecutively recorded utterances, as
this matches what we are likely to encounter when coils become
detached and are re-attached during EMA recording. It also
matches the condition where we might choose to move coils
part way through recording in order to get a richer representa-
tion of inferred vocal tract shape via an inversion mapping.

Next, using each of these 14 training sets, we trained the
following network configurations:

1. An MLP with 14 outputs trained on data for all coils. We
will refer to this as the multitask (MT) MLP.

2. An MLP with 2 outputs trained on only the tongue dor-
sum data which is defined within the various training sets
in Table 2. We will call this the single task (ST) MLP.

Thus, a total of 28 MLPs were trained, all with a single hid-
den layer of 80 units. All output units used a linear activation
function. The scaled conjugate gradients non-linear optimisa-
tion algorithm was run for a maximum of 4000 epochs, and the
separate validation set was used to identify the point at which
an optimum appeared to have been reached. The unseen test
set was then used to compare the performance of the inversion
mapping for the tongue dorsum coil by the MT and ST MLPs.

3. Results
Figure 2 shows the correlation of network output with target tra-
jectories for the tongue dorsum x-coordinate on the test set for
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Figure 2: Correlation for the tongue dorsum x-coordinate as a
function of number of training utterances. Results for the mul-
titask (MT) and single task (ST) MLPs are shown.
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Figure 3: RMSE(mm) for the tongue dorsum x-coordinate as a
function of number of training utterances. Results for the mul-
titask (MT) and single task (ST) MLPs are shown.

all 28 networks trained. Figure 3 gives RMS error, expressed
in millimetres, between the network output and the test set tar-
get trajectories for the tongue dorsum x-coordinate. These plots
indicate the multitask MLP does indeed derive benefit from the
shared hidden representation, with increased performance over
the single task MLP when the training data for the tongue dor-
sum coil is reduced by varying amounts.

This is a very encouraging result and suggests, for example,
that by exploiting the shared hidden representation, the mul-
titask MLP is able in this case to perform the inversion map-
ping equally well when trained with only around 184 utterances.
This potentially implies that during recording of a future EMA
dataset, we could move the coil from this location after collect-
ing around this number of utterances (or seconds) and collect
additional data from a different articulator location. Alterna-
tively, it implies that if this coil had become detached during
recording after around only 92 utterances, we would still be able
to use this data to learn the inversion mapping for this articula-
tory position to a level only fractionally worse than with the coil
firmly attached at this location for the whole corpus.
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Figure 4: Correlation for the tongue dorsum x-coordinate as a
function of number of training utterances.
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Figure 5: RMSE(mm) for the tongue dorsum y-coordinate as a
function of number of training utterances.

Figures 4 and 5 present the equivalent results for the tongue
dorsum y-coordinate. With a reduced training set of up to
around 69 utterances, we observe the same benefit of the shared
hidden representation in the multitask MLP; correlation is in-
creased and RMS error is reduced compared with the single
task MLP trained on the same amount of tongue dorsum data
alone. With a training set of data for this channel larger than
around 161 utterances, however, we observe that the multitask
MLP performance is consistently worse than that of the single
task MLP. This partly contradicts the previous results, and is not
what we would expect according to the theory of MLP learning.

4. Discussion
One possible explanation for the results observed is that a
shared hidden representation really is detrimental in the case
of the inversion mapping for the y-coordinate of the tongue dor-
sum. Before accepting this conclusion though, further investi-
gation is needed to rule out other causes. No straightforward
explanation has yet been isolated, but potential causes range
from the possibility that the multitask MLP does not contain
sufficient hidden units to the possibility that the data for other
coils is somehow corrupt or inconsistent (for example, during

recording, the velum coil was reattached at utterance 125, and
the tongue body coil was reattached at utterance 284).

In addition to explaining the results observed here, we will
in future investigate how the sharing effect varies among artic-
ulator locations. We also have the opportunity to use a larger
EMA dataset of 1,263 utterances to establish the behaviour of
the effect with larger overall amounts of training data. For ex-
ample, we would like to evaluate the effect of overall database
size on the minimum data required for each articulatory loca-
tion; with a total dataset of 1,263 utterances, it might be the
case we need less data from any individual coil to give the same
performance overall.

5. Conclusions
This paper has put forward the idea that by viewing an inver-
sion mapping MLP from a Multitask Learning perspective, we
might address at least two difficulties of using EMA to provide
articulatory data for speech technology purposes.

As a first step, we have investigated whether there is any
evidence that the hidden layer of an inversion mapping MLP
can act beneficially as a shared representation. Our results in
the case of the inversion mapping for the tongue dorsum x-
coordinate are promising. They demonstrate there is indeed
evidence to suggest this is the case. However, our results for
the tongue dorsum y-coordinate indicate there may be compli-
cations which prohibit a straightforward approach to exploiting
a shared hidden representation. More work will be required be-
fore clearer conclusions may be drawn.
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