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Abstract. We describe the development of the ICSI-SRI speech recognition
system for the National Institute of Standards and Technology (NIST) Spring
2006 Meeting Rich Transcription (RT-06S) evaluation, highlighting improve-
ments made since last year, including improvements to the delay-and-sum algo-
rithm, the near-field segmenter, language models, posterior-based features, HMM
adaptation methods, and adapting to a small amount of new lecture data.
Results are reported on RT-05S and RT-06S meeting data. Compared to the RT-
05S conference system, we achieved an overall improvement of 4% relative in the
MDM and SDM conditions, and 11% relative in the IHM condition. On lecture
data, we achieved an overall improvement of 8% relative in the SDM condition,
12% on MDM, 14% on ADM, and 15% on IHM.

1 Introduction

Despite ongoing advances in automatic speech recognition technology, natural multi-
person meetings continue to be challenging. The acoustic environment, especially with
desktop microphones, is quite variable. Noises such as fans, door slams, and paper
rustling all contribute to the acoustic background. Reverberation and echo can also be a
significant problem. Typically, recordings from differentsites (and even within the same
site) use many different types of microphones. Another issue is that meetings contain
large amounts of overlap — people end each other’s sentences, interrupt, encourage
(“uh huh”), laugh, and so on. Finally, the relative paucity of in-domain training data
makes it vital to leverage methods and data that have been developed for other genres
of speech, such as conversational telephone speech (CTS) and broadcast news (BN).

As for all our recent meeting evaluation systems, our development strategy for RT-
06S was to base the system on the SRI-ICSI-UW RT-04F conversational telephone
speech recognition system,4 with improvements incorporated from the previous year’s
NIST evaluation systems [1, 2]. This year, we improved the delay-and-sum algorithm
by using a global histogram to discard frames with low correlation and also by us-
ing delays selected among the N-best delay scores rather than only the one-best. The
near-field segmenter now uses log-energy ratio features (inaddition to Mel frequency
cepstral coefficients [MFCCs]) integrated directly with a hidden Markov model (HMM)

4 As explained later, we also made use of acoustic models developed for BN.



segmenter. Language models were updated by the inclusion ofthe new conference and
lecture room transcripts, as well as with additional Web data. A new procedure was
used to train the phone posterior features, including separate adaptation for both the
nearfield and farfield sources (whereas the RT-05S system wasadapted only from the
nearfield data). HMM adaptation was improved using a data-induced regression class
trees (rather than hand-crafted classes). For the lecture room condition, we used a small
amount of additional in-domain training data, as well as data from the TED Corpus [3].
Finally, farfield models were trained using both the farfieldand nearfield data (instead
of just the farfield data).

The evaluation task and data are described in Section 2. Section 3 gives the system
description, focusing on new developments relative to the 2005 system [1]. Results and
discussion appear in Section 4, followed by conclusions andfuture work in Section 5.

2 Task and Data

2.1 Test data

Evaluation data The RT-06S conference room evaluation data (eval06) consisted of
two meetings each from the University of Edinburgh, CMU (Carnegie Mellon Univer-
sity Interactive Systems Laboratory), NIST (National Institute of Standards and Tech-
nology), and VT (Virginia Tech), and one meeting from TNO (the Netherlands Organi-
zation for Applied Scientific Research). Systems were required to recognize a specific
18-minute segment from each meeting; however, data from theentire meeting was al-
lowed for processing.5 Separate evaluations were conducted in three conditions:

MDM multiple distant microphones (primary)
IHM individual headset microphones (required contrast)
SDM single distant microphone (optional)

The lecture room data consisted of 120 minutes of seminars recorded by the Computers
In the Human Interaction Loop (CHIL) consortium. In addition to the above conditions,
lecture data included the following recording conditions:

ADM all distant microphones (optional)
MBF pre-beamformed signal from the Multiple Mark III microphone array (MM3a,

optional)

Microphones varied substantially by type and setup, even within each condition.
For example, some of the AMI IHM data were recorded with head-mounted lapel mi-
crophones, and MDM recording devices ranged from low- and high-quality individual
table-top microphones to AMI’s circular microphone arrays. Meeting participants in-
cluded both native and nonnative speakers of English (unlike in CTS evaluations).

5 We did not find significant gains from adapting on entire meetings, and, except in the acoustic
preprocessing, used only the designated meeting excerpts.



Development data The RT-05S evaluation data were designated as development data
for RT-06S, and used by us as an unbiased test set (designatedeval05). For the con-
ference room task, the data consisted of ten 12-minute excerpts of meetings from AMI,
CMU, ICSI, VT, and NIST. For the lecture room task, the data consisted of 120 minutes
of seminars recorded by the CHIL consortium. We also used thesame development set
as was used in RT-05S [1] for additional tuning.

2.2 Training data

Training data for the conference room task were identical tothat used in RT-05S, and
included data from AMI (35 meetings, 16 hours of speech aftersegmentation), CMU
(17 meetings, 11 hours), ICSI (73 meetings, 74 hours), and NIST (15 meetings, 14
hours). The CMU data were of limited use in that only lapel andno distant microphone
recordings were available. For the lecture room task, we included the small amount
of available CHIL data that were not in the development sets.6 These data consisted
of only the near-field signals from excerpts of 38 meetings, totaling about 7 hours of
speech. We also included the Translingual English Database(TED) [3], using the boom-
microphones only and consisting of 39 lectures for about 9 hours worth of speech.

Background training data for the (pre-adaptation) acoustic models consisted of the
publicly available CTS and BN corpora. These included about2300 hours of telephone
speech from the Switchboard, CallHome English, and Fisher collections, and about 900
hours of BN data from the Hub-4 and TDT corpora.

3 System Description

3.1 Signal processing and segmentation

Distant microphone processing All distant microphone channels (in both training
and test) were Wiener-filtered for noise reduction using a filter developed for the
Qualcomm-ICSI-OGI Aurora system [4]. The process was identical to last year [1].

Subsequently, for the ADM and MDM conditions, a delay-and-sum beamforming
technique was applied to combine all available distant microphone channels into a sin-
gle “enhanced” channel. The system is very similar to the oneused for speaker diariza-
tion this year [5], and is based on last year’s system [6] withtwo primary improvements.

The first improvement affects the noise filtering based on thevalue returned by the
generalized cross-correlation algorithm (GCC-PHAT [7]).Frames with a low correla-
tion value indicate increased uncertainty as to whether thereturned delay represents the
actual TDOA (time delay of arrival). In last year’s submission, we filtered out any value
smaller than 0.1, assigning the previous nonfiltered delay to such frames (ensuring de-
lay continuity). This caused fewer frames to be filtered in “cleaner” acoustic conditions
than in noisy conditions or with worse microphones. This year’s submission computed
a global histogram of all delays in all channels and determined the threshold so that
10% of frames are dropped.

Another improvement this year involves the delays selectedamong the N-best GCC-
PHAT computed. At every position, we consider the tradeoff between selecting the main

6 These data were provided only after the evaluation had started.



peaks of the GCC-PHAT function and ensuring a continuity on the selected delays in
the region surrounding that point. To do so, we apply a two-step Viterbi decoding at two
levels. First, at a channel level, we decide which 2-best delays are most probable in each
position. Second, at a global level, all combinations of thelocal 2-best among all chan-
nels are considered, and the best combination is chosen. In each step, each possible state
has an emission probability equal to the GCC-PHAT value for each delay/combination,
and the transition probability between two nodes is inverseproportional to the distance
between its delays/combinations, ensuring that the N-bestprobabilities in a particular
instant sum up to 1. We apply a relative weight of 25 to emphasize the transition prob-
abilities.

This newly introduced technique aims to find the optimum tradeoff between reli-
ability (cross-correlation) and stability (distance between contiguous delays). Stability
is vital, as our aim is to obtain an optimally improved signal, while avoiding quick
changes of the beamforming between acoustic events.

Once the enhanced signal was generated, speech regions wereidentified using a
speech/nonspeech two-class HMM decoder. Resulting segments were combined and
padded with silence to satisfy certain duration constraints that had been empirically op-
timized for recognition accuracy. The algorithm and modelswere unchanged from last
year [1]. Finally, the segments were clustered into acoustically homogeneous partitions,
which serve as pseudo-speaker units for normalization and adaptation. This system was
also identical to last year’s system.

Close-talking microphone processing The IHM input channels are segmented
(without Wiener filtering) into speech and nonspeech regions using an HMM-based
speech/nonspeech segmenter [8]. The segmenter is a two-class HMM decoder with
each class represented by a three-state phone model. The states are modeled by 256-
component multivariate Gaussian mixtures with diagonal covariance matrices. The seg-
mentation proceeds via decoding of the full IHM channel waveform, potentially in a
multi-pass fashion with decreased transition penalty between the speech and nonspeech
classes. This is done so as to generate segments that do not exceed 60 seconds in length.

The segmenter uses both single- and cross-channel featuresfor speech activity de-
tection. The single-channel features consist of 12th-order Mel-frequency cepstral co-
efficients, log-energy, and first and second differences. The cross-channel features are
maximum and minimum log-energy differences. The log-energy difference represents
the log of the ratio of the short-time energy between a given target channel and a non-
target channel. The maximum and minimum values are selectedto obtain a fixed num-
ber of feature components, given that the number of channelsvaries between meet-
ings. These cross-channel features are included specifically to address errors caused by
cross-channel phenomena such as crosstalk. All features are computed over a window
of 25 ms advanced by 20 ms.

A later (i.e., post-evaluation) enhancement to the system consisted of an energy
normalization technique being applied prior to computing the log-energy difference fea-
tures. For a given channel, the minimum frame log-energy of the channel is subtracted
from all log-energy values in that channel. That is, for a channeli at framenEnorm(n) = Ei(n)�Emin;i (1)



Fig. 1. SRI CTS recognition system. Rectangles represent decodingsteps. Parallelograms repre-
sent decoding output (lattices or 1-best hypotheses). Solid arrows denote passing of hypotheses
for adaptation or output. Dashed lines denote generation oruse of word lattices for decoding.
Crossed ovals denote confusion network system combinationsteps.

whereE represents log-energy. The minimum frame log-energy is used as an estimate
of the noise floor and has the advantage of being largely independent of the amount
of speech activity in the channel. This normalization was done to compensate for any
significant differences in microphone gains and yielded substantial performance im-
provements over the unnormalized features.

No speaker clustering was performed on the IHM channels, since it was assumed
that each IHM channel corresponds to exactly one speaker.

3.2 Acoustic modeling and adaptation

Decoding architecture To motivate the choice of acoustic models, we first describe
the SRI-ICSI-UW RT-04F CTS system, on which the meeting system is based (see Fig-
ure 1). An “upper” (in the figure) tier of decoding steps is based on MFCC features; a
parallel “lower” tier of decoding steps uses perceptual linear prediction (PLP) features.
The outputs from these two tiers are combined twice using word confusion networks
(denoted by crossed ovals in the figure). Except for the initial decodings, the acous-
tic models are cross-adapted to the output of a previous stepfrom the respective other
tier using maximum likelihood linear regression (MLLR). Lattices are generated ini-
tially to speed up subsequent decoding steps. The lattices are regenerated once later
to improve their accuracy, after adapting to the outputs of the first combination step.
The lattice generation steps use noncrossword (nonCW) triphone models, and decoding
from lattices uses crossword (CW) models. Each decoding step generates either lattices
or N-best lists, both of which are rescored with a 4-gram language model (LM); N-best
output is also rescored with duration models for words and pauses [9].

The final output is the result of a three-way system combination of MFCC-nonCW,
MFCC-CW, and PLP-CW decoding branches. The entire system runs in under 20 times



real time (20xRT).7 The “fast” subset consisting of just two decoding steps (thelight-
shaded boxes in the figure) runs in about 3xRT, but was not usedin this year’s evalua-
tion.

Baseline models and test-time adaptationThe MFCC recognition models were de-
rived from gender-dependentCTS models in the RT-04F system, which had been trained
with the minimum phone error (MPE) criterion [10] on about 1400 hours of data. (All
available native Fisher speakers were used, but to save training time, statistics were
collected from only every other utterance). The MFCC modelsused 12 cepstral coef-
ficients, energy, first-, second-, and third-order differences features, and2 � 5 voicing
features over a 5-frame window [11]. Cepstral features werecomputed with vocal tract
length normalization (VTLN) and zero-mean and unit variance per speaker/cluster. The
62-component raw feature vector was reduced to 39 dimensions using heteroscedas-
tic linear discriminant analysis (HLDA) [12]. After HLDA, a25-dimensional Tan-
dem/HATs feature vector estimated by multilayer perceptrons (MLPs) [13, 14] was
appended. Both within-word and crossword triphone models were trained, for lattice
generation and decoding from lattices, respectively. PLP models were based on full-
bandwidth analysis, producing 12 coefficients, energy, first-, second- and third-order
differences, and then reduced to 39 dimensions using HLDA. (No voicing or MLP fea-
tures were used in this case.) These models were originally trained on about 900 hours
of broadcast news data from the Hub4, TDT2, and TDT4 collections. PLP models are
gender-independent. All models were trained using decision-tree-based state tying.

In testing, all models underwent unsupervised adaptation to the test speaker or clus-
ter, using MLLR with multiple, data-induced regression class trees. The first MFCC
and PLP adaptation passes used a phone-loop reference model; later passes adapted to
prior recognition output. In addition, all but the first decoding used constrained MLLR
in feature space, which was also employed in training (speaker adaptive training) [15].

Acoustic model task adaptation The models were adapted to the distant microphone
meeting domain using the ICSI, NIST, and AMI training meetings, plus ICSI, NIST,
AMI, and CMU close-talking microphone data. Just as in last year’s system, we did not
delay-sum the training data for the multiple microphone conditions; rather, we pooled
all the individual distant microphone signals into one training set, and used the same
pooled adaption data for all meetings. The weight for adaptation data statistics was
empirically optimized, and set at 20.

Last year, we applied maximum a posteriori adaptation with amaximum mutual
information criterion (MMI-MAP) only to the IHM models, andused the standard,
less-involved maximum likelihood (ML) MAP procedure on thedistant microphone
models. This year, MMI-MAP was used for all PLP models, and ML-MAP for all the
MFCC+MLP models.

MLP feature adaptation The MLPs used to estimate Tandem and HATS features were
originally trained to perform frame-level phone discrimination using a large subset of

7 Runtimes given assume operation with Gaussian shortlists.Since RT-06S did not impose a
runtime limit we ran the system without shortlists, in about25xRT.



the CTS training data [14]. To improve the match to the acoustic conditions of the meet-
ing domain, these were adapted by applying four additional epochs of backpropagation
using ICSI, AMI and NIST meeting data as training material. The Karhunen-Loeve
transform (KLT) used to reduce the feature dimension from 46(the size of the phone
set) to 25 was kept unchanged from the CTS system, in order to keep the features
compatible with existing models. Unlike the ICSI/SRI RT-05S system, in which MLPs
were only adapted to nearfield sources, separate MLPs were adapted for the nearfield
and farfield conditions. In the case of the HATS, only the merger MLP was adapted,
and the 15 critical band networks were left unchanged. The initial learning rates were
set to be equal to those at the conclusion of training of the CTS MLPs, and halved after
each epoch. The input acoustic parameters used an 8-kHz front end to match that used
in the original CTS MLP trainings.

The MLPs for the farfield adaptation were initialized with the nearfield-adapted
MLPs after one epoch, and adapted only on regions where therewas no overlap-
ping speech. The labels were generated from alignments madeon the nearfield data.
Initial experiments followed our approach to farfield acoustic model adaptation, in
which all available farfield channels were used as training material. Recognition ex-
periments on a development set using these MLPs gave worse performance than using
nearfield-adapted MLPs. One possible cause was overtraining, as the MLP was being
presented with as many as eight noisy versions of each speechsegment during each
epoch. We therefore selected a single channel at random to provide the data for each
segment (though input normalizations were calculated overall segments for a given
speaker/channel combination). This approach led to improved results. Adapting the
MLP features to the meeting domain led to reductions in word error rate (WER), in
particular for the SDM and MDM conditions, and on the lecturedata.

3.3 Language models

Three LMs were used in decoding: a multiword bigram for lattice generation, a mul-
tiword trigram for decoding from lattices, and a word 4-gramfor lattice and N-best
rescoring. The same set of language models is used for all conference meeting sources
(we found no advantage in tuning LMs to the meeting source). Asecond set of LMs is
used for the lecture task.

For the conference room domain, the LMs were linearly interpolated mixtures of
component LMs trained from the following sources: (a) Switchboard CTS transcripts,
(b) Fisher CTS transcripts, (c) Hub-4 and TDT4 BN transcripts, (d) AMI, CMU, ICSI,
and NIST meeting transcripts, and (e) World Wide Web data newly collected to match
different topics and styles, namely, RT-04S meeting sources and AMI meetings, and
525M words of Fisher-like conversational Web data collected and published by the
University of Washington for the RT-04F evaluation. The mixture weights were tuned
to minimize perplexity on heldout AMI, CMU, ICSI, LDC, and NIST transcripts. The
LM vocabulary consisted of 54,524 words, comprising all words in our CTS system (in-
cluding all Hub-5 and all nonsingleton Fisher words), all words in the ICSI, CMU, and
NIST training transcripts, and all nonsingleton words in the AMI training transcripts.
The out-of-vocabulary rate was 0.40% on eval04 transcripts, and 0.19% on the 2005
AMI development transcripts.



For the lecture room domain, additional LM mixture components were built from
(f) 70K words of CHIL development transcripts and (g) 32M words of speech confer-
ence proceedings (suggested by [16]). Also, the Fisher-relevant Web data were replaced
by about 512M words of the newly collected Web data related tothe CHIL transcripts.
The lecture LM mixture was then optimized on CHIL development transcripts. The
lecture LM vocabulary was an extension of the conference LM vocabulary, with 3791
additional frequent words found in the proceedings data. The out-of-vocabulary rate on
the CHIL development data were 0.18%.

The main difference of this year’s meeting and lecture LMs from the last year’s LMs
is in the Web data LM component. The new Web data collected this year employed a
different selection criterion for then-gram queries submitted to the search engine. In-
stead of using the most frequent4-grams in the target corpus, we used the4-grams with
the highest likelihood ratio between a target LM trained on the available meeting or
lecture data, and a background LM from all the other data [17]. However, overall, we
did not see any significant perplexity or WER improvement over last year’s LMs in the
eval05 meetings test set (the perplexity of the final pruned4-gram meetings LM was115). On the eval05 lectures task, the new LMs reduced perplexity about5% relative
to 119, but this improvement did not bring any significant improvement in WER. Nev-
ertheless, the updated LMs are used in the evaluation, because they might provide a
better coverage for the new test sets due to the inclusion of more recent Web data, and
the CHIL lecture transcripts.

4 Results and Discussion

Note that all results are reported on non-overlapping speech (using an overlap limit of
1 in the NIST scoring software) in order to be comparable to last year’s results.

4.1 IHM crosstalk filtering

Table 1 shows IHM recognition results using the eval05 data for the conference room
condition. For each row, we show for each meeting recording site the score using un-
normalized features and normalized features as described in Section 3 (missing entries
were not run for lack of time). We also show the effect of usingthe SDM channel as a
“stand-in” for participants without a microphone. Using the SDM channel does a good
job of detecting speech when there is no IHM signal containing the foreground speaker.
Notice the dramatic improvement in using normalization andthe SDM signal for the
NIST meeting, in which there was known to be a speaker withoutmicrophone (on a
speaker phone). The “Reference” row shows the results of a cheating experiment in
which the reference segmentation was used. It shows the bestwe can expect to achieve
using an automated method. Though we are approaching this threshold, there is clearly
more work that can be done.

The SDM approach was not used in the RT-06S evaluation since there were known
to be no speakers without a microphone.

Table 2 summarizes the results of the IHM segmenter using various systems on both
the eval05 and eval06 evaluation sets.



Table 1. IHM word error using the RT-06S system for the eval05 set on the conference room data
with and without energy normalization and with and without the SDM signal.

Segmenter Method
Word Error

ALL AMI CMU ICSI NIST VT
Raw 25.6 22.0 23.5 20.9 37.3 23.8
Raw + SDM 24.7 33.0
Norm + SDM 22.7 21.9 23.1 20.6 25.2 22.9
Reference 19.5 19.2 19.9 16.8 21.4 20.6

Table 2. IHM word error using various segmentation systems on the conference data from the
RT-05S and RT-06S evaluations.

Segmenter Method eval05 dataeval06 data
Baseline 29.3
RT-05S system 25.9
RT-06S system (raw energies) 24.7 24.0
RT-06S system (normalized energies) 22.7 22.8
Reference 19.5 20.2

4.2 Acoustic modeling

To highlight the improvement in acoustic modeling, Table 3 shows the word error on the
SDM and IHM conditions using models from RT-05S and RT-06S for the conference
room and lecture room results. Since IHM and MDM do not use delay-summed sig-
nals, these results exclude changes in the delay-sum algorithm. The IHM columns were
computed using the same segmentation algorithm. Notice incremental improvements in
all conditions.

Table 3.Word error for SDM and IHM conditions on the conference room and lecture room data
using 2005 and 2006 models.

Models
RT-05S ConferenceRT-05S Lecture
SDM IHM SDM IHM

RT-05S 40.9 24.7 51.9 30.8
RT-06S 39.3 24.1 47.4 28.6

4.3 Result summary

Table 4 summarizes results on last year’s and this year’s evaluation sets on the confer-
ence room condition. Numbers in parentheses indicate results that were obtained using
the new energy normalization technique after the eval ended. Relative gains of3:9%
for SDM, 4:0% for MDM, and6:9% (11:2% post-eval) for IHM were achieved on the
eval05 data. The difficulty of the eval06 set is comparable tothe eval05 set, with the
possible exception of the MDM condition, which is slightly worse. We have not yet
analyzed this discrepancy.

Table 5 summarizes all the results for the lecture room task using the RT-05S and
RT-06S systems on the eval05 and eval06 data sets. Notice that eval06 was overall much



Table 4.Word error for conference room data using the 2005 and 2006 systems on the 2005 and
2006 evaluation sets. Numbers in parentheses indicate results obtained after the official evaluation
had ended.

System
MDM SDM IHM

eval05 data
RT-05S system30.2 40.9 25.9
RT-06S system29.0 39.3 24.1 (23.0)

eval06 data
RT-06S system34.2 41.2 24.1 (22.8)

more difficult than eval05, possibly because of more nonnative speakers, more variation
in recording sites, and more channels in the IHM condition (causing high insertion rate
from crosstalk).

Using more microphones generally improved the results, indicating that the delay-
sum combination method works well. Compared to last year’s system, this year’s sys-
tem is also more robust. Whereas in last year’s system, the MDM results were worse
than the SDM results, this year’s system shows nice improvements using multiple mi-
crophones.

Using the RT-06S system, we achieved significant improvements of the RT-05S
system. On the eval05 set, the gains were8:1% relative for the SDM condition,11:9%
for MDM, 13:8% for ADM, and15:0% for IHM.

For the MBF (multiple microphone beam-formed) condition, we ran essentially the
same code as the SDM system using the beamformed signal as input. For the evaluation,
the University of Karlsruhe provided a single beamformed signal based on all the signal
from the MM3a microphones [18] (“UKA” in the table). Since our beamformer was
specifically tuned to reduce word error, while Karlsruhe’s was tuned for localization
accuracy, we were curious to compare the ICSI beamformer with the signal provided
by Karlsruhe. Using the same delay-sum beamformer as described in Section 3, we
generated a new beamformed signal and ran an otherwise identical system as with the
signal provided by Karlsruhe (“ICSI” in the table). The “old” results are from an older,
more buggy version of the evaluation transcripts. The “new”results are from the most
up-to-date version of the transcripts. As we have not yet runICSI’s beamformer on the
“new” transcripts, only the “old” value is reported for the ICSI beamformed case. It
is interesting to note that the MBF condition performed worse than the MDM despite
the large number of microphones (64) in the array. One possible explanation is that the
MM3a arrays were located farther from the main speaker than the other microphones.

Table 5.Word error for the lecture room task using the RT-05S and RT-06S systems on the eval05
and eval06 data sets.

System
IHM SDM MDM ADM UKA/MBF new UKA/MBF old ICSI/MBF old

eval05 data
RT-05S system28.0 51.9 52.0 44.8 - - -
RT-06S system23.8 47.7 45.8 38.6 - - -

eval06 data
RT-06S system31.0 57.3 55.5 51.0 56.5 58.3 56.9



5 Conclusions and Future Work

We continue to make progress in the automatic transcriptionof conference and lec-
ture room meetings, as measured on NIST evaluation data. Modest gains were achieved
in the conference room domain, with the bulk of the improvement coming from the
use of integrated cross-channel features in the IHM segmenter. Substantial gains were
achieved in the lecture room task through the use of conference-trained distant micro-
phone MLP features, more robust delay-sum, the use of CHIL and TED data to adapt
the models, and a small LM improvement. Most of this gain was achieved within a
couple of weeks before and during the evaluation!

There remains plenty of work for the future. We would like to use MMI-MAP for the
distant microphone data. Methods of estimating various system parameters (such as LM
weights and insertion penalties) could be improved. Feature mapping techniques could
reduce mismatch of background training data. Given the large number of nonnative
speakers of English, models adapted to particular accents may improve performance.
Finally, although overlapped speech was considered the primary condition in this year’s
evaluation, we made no special effort to handle overlap. Detection and processing of
overlap would clearly improve results on overlapped speech.
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