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Abstract. We describe the development of the ICSI-SRI speech redognit
system for the National Institute of Standards and TeclgyoItNIST) Spring
2006 Meeting Rich Transcription (RT-06S) evaluation, Hhigiting improve-
ments made since last year, including improvements to tteg/dad-sum algo-
rithm, the near-field segmenter, language models, postesiged features, HMM
adaptation methods, and adapting to a small amount of neéwréedata.

Results are reported on RT-05S and RT-06S meeting data. &echpo the RT-
05S conference system, we achieved an overall improvendft celative in the
MDM and SDM conditions, and 11% relative in the IHM conditidbn lecture
data, we achieved an overall improvement of 8% relative enSBM condition,
12% on MDM, 14% on ADM, and 15% on IHM.

1 Introduction

Despite ongoing advances in automatic speech recognéimblogy, natural multi-
person meetings continue to be challenging. The acousticoement, especially with
desktop microphones, is quite variable. Noises such as twow slams, and paper
rustling all contribute to the acoustic background. Regeation and echo can also be a
significant problem. Typically, recordings from differesites (and even within the same
site) use many different types of microphones. Anotheragsuthat meetings contain
large amounts of overlap — people end each other’s senteimtesupt, encourage
(“uh huh”), laugh, and so on. Finally, the relative paucifyimdomain training data
makes it vital to leverage methods and data that have beeslaged for other genres
of speech, such as conversational telephone speech (C@8y@adcast news (BN).

As for all our recent meeting evaluation systems, our deurakent strategy for RT-
06S was to base the system on the SRI-ICSI-UW RT-04F corti@nshtelephone
speech recognition systehwith improvements incorporated from the previous year’s
NIST evaluation systems [1, 2]. This year, we improved thiaydand-sum algorithm
by using a global histogram to discard frames with low catieh and also by us-
ing delays selected among the N-best delay scores ratheiotiig the one-best. The
near-field segmenter now uses log-energy ratio featuresdition to Mel frequency
cepstral coefficients [MFCCs]) integrated directly withidden Markov model (HMM)

4 As explained later, we also made use of acoustic modelsafsseifor BN.



segmenter. Language models were updated by the inclusitwe ofew conference and
lecture room transcripts, as well as with additional Webadat new procedure was
used to train the phone posterior features, including seé@adaptation for both the
nearfield and farfield sources (whereas the RT-05S systenadased only from the
nearfield data). HMM adaptation was improved using a dadaéed regression class
trees (rather than hand-crafted classes). For the leaiore condition, we used a small
amount of additional in-domain training data, as well agadiaim the TED Corpus [3].
Finally, farfield models were trained using both the farfigfl nearfield data (instead
of just the farfield data).

The evaluation task and data are described in Section Zo8&cgives the system
description, focusing on new developments relative to B@bXystem [1]. Results and
discussion appear in Section 4, followed by conclusionsfanute work in Section 5.

2 Task and Data

2.1 Testdata

Evaluation data The RT-06S conference room evaluation data (eval06) caolscf
two meetings each from the University of Edinburgh, CMU (@agie Mellon Univer-
sity Interactive Systems Laboratory), NIST (National ituge of Standards and Tech-
nology), and VT (Virginia Tech), and one meeting from TNOgtietherlands Organi-
zation for Applied Scientific Research). Systems were megiio recognize a specific
18-minute segment from each meeting; however, data frorenktiee meeting was al-
lowed for processing.Separate evaluations were conducted in three conditions:

MDM multiple distant microphones (primary)
IHM individual headset microphones (required contrast)
SDM single distant microphone (optional)

The lecture room data consisted of 120 minutes of seminaosded by the Computers
In the Human Interaction Loop (CHIL) consortium. In additim the above conditions,
lecture data included the following recording conditions:

ADM all distant microphones (optional)
MBF pre-beamformed signal from the Multiple Mark 11l microptoarray (MM3a,
optional)

Microphones varied substantially by type and setup, evehinveach condition.
For example, some of the AMI IHM data were recorded with herainted lapel mi-
crophones, and MDM recording devices ranged from low- agfiHgjuality individual
table-top microphones to AMI’s circular microphone arrayteeting participants in-
cluded both native and nonnative speakers of English (@milCTS evaluations).

5 We did not find significant gains from adapting on entire nregstj and, except in the acoustic
preprocessing, used only the designated meeting excerpts.



Development data The RT-05S evaluation data were designated as developraent d
for RT-06S, and used by us as an unbiased test set (designatib). For the con-
ference room task, the data consisted of ten 12-minute ptscef meetings from AMI,
CMU, ICSI, VT, and NIST. For the lecture room task, the datasisted of 120 minutes
of seminars recorded by the CHIL consortium. We also usedah® development set
as was used in RT-05S [1] for additional tuning.

2.2 Training data

Training data for the conference room task were identictéh#b used in RT-05S, and
included data from AMI (35 meetings, 16 hours of speech aégmentation), CMU
(17 meetings, 11 hours), ICSI (73 meetings, 74 hours), ar®iTNIL5 meetings, 14
hours). The CMU data were of limited use in that only lapel aadlistant microphone
recordings were available. For the lecture room task, whidledl the small amount
of available CHIL data that were not in the development $dtkese data consisted
of only the near-field signals from excerpts of 38 meeting&ling about 7 hours of
speech. We also included the Translingual English Data@&®) [3], using the boom-
microphones only and consisting of 39 lectures for abouti®$worth of speech.

Background training data for the (pre-adaptation) acoustidels consisted of the
publicly available CTS and BN corpora. These included aB800 hours of telephone
speech from the Switchboard, Call[Home English, and Fisbiégations, and about 900
hours of BN data from the Hub-4 and TDT corpora.

3 System Description

3.1 Signal processing and segmentation

Distant microphone processing All distant microphone channels (in both training
and test) were Wiener-filtered for noise reduction using terfileveloped for the
Qualcomm-ICSI-OGI Aurora system [4]. The process was idahto last year [1].

Subsequently, for the ADM and MDM conditions, a delay-andisdeamforming
technique was applied to combine all available distant omilabne channels into a sin-
gle “enhanced” channel. The system is very similar to theus®el for speaker diariza-
tion this year [5], and is based on last year’s system [6] Wit primary improvements.

The first improvement affects the noise filtering based orvitige returned by the
generalized cross-correlation algorithm (GCC-PHAT [Flames with a low correla-
tion value indicate increased uncertainty as to whetherghgned delay represents the
actual TDOA (time delay of arrival). In last year’'s submdgsiwe filtered out any value
smaller than 0.1, assigning the previous nonfiltered delayuth frames (ensuring de-
lay continuity). This caused fewer frames to be filtered ile&ner” acoustic conditions
than in noisy conditions or with worse microphones. Thisrigesubmission computed
a global histogram of all delays in all channels and deteeahithe threshold so that
10% of frames are dropped.

Another improvementthis year involves the delays seleatedng the N-best GCC-
PHAT computed. At every position, we consider the tradeeffleen selecting the main

® These data were provided only after the evaluation hackstart



peaks of the GCC-PHAT function and ensuring a continuitylmngelected delays in
the region surrounding that point. To do so, we apply a tvep-$iterbi decoding at two
levels. First, at a channel level, we decide which 2-bestydehre most probable in each
position. Second, at a global level, all combinations ofitteal 2-best among all chan-
nels are considered, and the best combination is choseachstep, each possible state
has an emission probability equal to the GCC-PHAT value &mhedelay/combination,
and the transition probability between two nodes is inversportional to the distance
between its delays/combinations, ensuring that the N{mredtabilities in a particular
instant sum up to 1. We apply a relative weight of 25 to empeatie transition prob-
abilities.

This newly introduced technique aims to find the optimum ecftibetween reli-
ability (cross-correlation) and stability (distance beém contiguous delays). Stability
is vital, as our aim is to obtain an optimally improved signahile avoiding quick
changes of the beamforming between acoustic events.

Once the enhanced signal was generated, speech regionsdemtiied using a
speech/nonspeech two-class HMM decoder. Resulting ségmame combined and
padded with silence to satisfy certain duration constsaimit had been empirically op-
timized for recognition accuracy. The algorithm and moaedse unchanged from last
year [1]. Finally, the segments were clustered into acoakyihomogeneous partitions,
which serve as pseudo-speaker units for normalization dagtation. This system was
also identical to last year’s system.

Close-talking microphone processing The IHM input channels are segmented
(without Wiener filtering) into speech and nonspeech regjiosing an HMM-based
speech/nonspeech segmenter [8]. The segmenter is a tam+dldM decoder with
each class represented by a three-state phone model. Tée ata modeled by 256-
component multivariate Gaussian mixtures with diagonahdance matrices. The seg-
mentation proceeds via decoding of the full IHM channel viaxma, potentially in a
multi-pass fashion with decreased transition penalty betwthe speech and nonspeech
classes. This is done so as to generate segments that daaetlé80 seconds in length.

The segmenter uses both single- and cross-channel feé&tuigseech activity de-
tection. The single-channel features consist of 12th+oktiel-frequency cepstral co-
efficients, log-energy, and first and second differences. drbss-channel features are
maximum and minimum log-energy differences. The log-enélifierence represents
the log of the ratio of the short-time energy between a gieeget channel and a non-
target channel. The maximum and minimum values are seléztelotain a fixed num-
ber of feature components, given that the number of chanmeles between meet-
ings. These cross-channel features are included spelificalddress errors caused by
cross-channel phenomena such as crosstalk. All featueesoanputed over a window
of 25 ms advanced by 20 ms.

A later (i.e., post-evaluation) enhancement to the systensisted of an energy
normalization technique being applied prior to computhrglbg-energy difference fea-
tures. For a given channel, the minimum frame log-energhefthannel is subtracted
from all log-energy values in that channel. That is, for arated: at framen

Enorm(n) = Ez(n) - Emin,i (1)
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Fig. 1. SRI CTS recognition system. Rectangles represent decatipg. Parallelograms repre-
sent decoding output (lattices or 1-best hypotheses)d &olows denote passing of hypotheses
for adaptation or output. Dashed lines denote generatiarserof word lattices for decoding.
Crossed ovals denote confusion network system combinsteps.

whereFE represents log-energy. The minimum frame log-energy id asean estimate
of the noise floor and has the advantage of being largely mmfggnt of the amount
of speech activity in the channel. This normalization waselto compensate for any
significant differences in microphone gains and yieldedstatial performance im-
provements over the unnormalized features.

No speaker clustering was performed on the IHM channelsesirwas assumed
that each IHM channel corresponds to exactly one speaker.

3.2 Acoustic modeling and adaptation

Decoding architecture To motivate the choice of acoustic models, we first describe
the SRI-ICSI-UW RT-04F CTS system, on which the meetingesyss based (see Fig-
ure 1). An “upper” (in the figure) tier of decoding steps isddhsn MFCC features; a
parallel “lower” tier of decoding steps uses perceptuadinprediction (PLP) features.
The outputs from these two tiers are combined twice usinglweonfusion networks
(denoted by crossed ovals in the figure). Except for theaihitecodings, the acous-
tic models are cross-adapted to the output of a previoussiapthe respective other
tier using maximum likelihood linear regression (MLLR).ttiees are generated ini-
tially to speed up subsequent decoding steps. The lattieesegenerated once later
to improve their accuracy, after adapting to the outputdheffirst combination step.
The lattice generation steps use noncrossword (honCWiptni@ models, and decoding
from lattices uses crossword (CW) models. Each decodipgererates either lattices
or N-best lists, both of which are rescored with a 4-gram leayge model (LM); N-best
output is also rescored with duration models for words angea [9].

The final output is the result of a three-way system combamatf MFCC-nonCW,
MFCC-CW, and PLP-CW decoding branches. The entire systesinunder 20 times



real time (20xRTY. The “fast” subset consisting of just two decoding steps litite-
shaded boxes in the figure) runs in about 3xRT, but was notinshdés year’s evalua-
tion.

Baseline models and test-time adaptatioriThe MFCC recognition models were de-
rived from gender-dependent CTS models in the RT-04F systénh had been trained
with the minimum phone error (MPE) criterion [10] on abouf0ours of data. (All
available native Fisher speakers were used, but to saventgaiime, statistics were
collected from only every other utterance). The MFCC modsksd 12 cepstral coef-
ficients, energy, first-, second-, and third-order diffeesnfeatures, an?l x 5 voicing
features over a 5-frame window [11]. Cepstral features wersputed with vocal tract
length normalization (VTLN) and zero-mean and unit vare@aper speaker/cluster. The
62-component raw feature vector was reduced to 39 dimensisimg heteroscedas-
tic linear discriminant analysis (HLDA) [12]. After HLDA, &5-dimensional Tan-
dem/HATs feature vector estimated by multilayer percemr(MLPSs) [13,14] was
appended. Both within-word and crossword triphone modesewvrained, for lattice
generation and decoding from lattices, respectively. Pldélets were based on full-
bandwidth analysis, producing 12 coefficients, energyt-fisecond- and third-order
differences, and then reduced to 39 dimensions using HLNAMpicing or MLP fea-
tures were used in this case.) These models were origimallyetd on about 900 hours
of broadcast news data from the Hub4, TDT2, and TDT4 cobesti PLP models are
gender-independent. All models were trained using detisiee-based state tying.

In testing, all models underwent unsupervised adaptaditimet test speaker or clus-
ter, using MLLR with multiple, data-induced regressionssldarees. The first MFCC
and PLP adaptation passes used a phone-loop reference; tatetgbasses adapted to
prior recognition output. In addition, all but the first deldeg used constrained MLLR
in feature space, which was also employed in training (speadtaptive training) [15].

Acoustic model task adaptation The models were adapted to the distant microphone
meeting domain using the ICSI, NIST, and AMI training megsinplus ICSI, NIST,
AMI, and CMU close-talking microphone data. Just as in l&siris system, we did not
delay-sum the training data for the multiple microphoneditons; rather, we pooled
all the individual distant microphone signals into onertiiag set, and used the same
pooled adaption data for all meetings. The weight for adaptadata statistics was
empirically optimized, and set at 20.

Last year, we applied maximum a posteriori adaptation withaximum mutual
information criterion (MMI-MAP) only to the IHM models, andsed the standard,
less-involved maximum likelihood (ML) MAP procedure on tlistant microphone
models. This year, MMI-MAP was used for all PLP models, and-MRP for all the
MFCC+MLP models.

MLP feature adaptation The MLPs used to estimate Tandem and HATS features were
originally trained to perform frame-level phone discri@iion using a large subset of

" Runtimes given assume operation with Gaussian shortistse RT-06S did not impose a
runtime limit we ran the system without shortlists, in ab25xRT.



the CTS training data [14]. To improve the match to the adogsinditions of the meet-
ing domain, these were adapted by applying four additiopatks of backpropagation
using ICSI, AMI and NIST meeting data as training materidieTKarhunen-Loeve
transform (KLT) used to reduce the feature dimension fron{thé size of the phone
set) to 25 was kept unchanged from the CTS system, in ordeedp khe features
compatible with existing models. Unlike the ICSI/SRI RTS8ystem, in which MLPs
were only adapted to nearfield sources, separate MLPs wapetifor the nearfield
and farfield conditions. In the case of the HATS, only the reefldLP was adapted,
and the 15 critical band networks were left unchanged. Thialitearning rates were
set to be equal to those at the conclusion of training of thg ®ILPs, and halved after
each epoch. The input acoustic parameters used an 8-kHzfndrto match that used
in the original CTS MLP trainings.

The MLPs for the farfield adaptation were initialized withethearfield-adapted
MLPs after one epoch, and adapted only on regions where thaseno overlap-
ping speech. The labels were generated from alignments mradee nearfield data.
Initial experiments followed our approach to farfield adousnodel adaptation, in
which all available farfield channels were used as trainirmgemal. Recognition ex-
periments on a development set using these MLPs gave worfggrpance than using
nearfield-adapted MLPs. One possible cause was overtgaiainthe MLP was being
presented with as many as eight noisy versions of each spegrhent during each
epoch. We therefore selected a single channel at randonotadprthe data for each
segment (though input normalizations were calculated ailtlesegments for a given
speaker/channel combination). This approach led to imgataesults. Adapting the
MLP features to the meeting domain led to reductions in wardrerate (WER), in
particular for the SDM and MDM conditions, and on the lectdega.

3.3 Language models

Three LMs were used in decoding: a multiword bigram for tattyjeneration, a mul-
tiword trigram for decoding from lattices, and a word 4-gréon lattice and N-best
rescoring. The same set of language models is used for dkE@nte meeting sources
(we found no advantage in tuning LMs to the meeting sourcesedond set of LMs is
used for the lecture task.

For the conference room domain, the LMs were linearly irdkied mixtures of
component LMs trained from the following sources: (a) Shiitcard CTS transcripts,
(b) Fisher CTS transcripts, (c) Hub-4 and TDT4 BN transetipd) AMI, CMU, ICSI,
and NIST meeting transcripts, and (e) World Wide Web datayeuwallected to match
different topics and styles, namely, RT-04S meeting sauesel AMI meetings, and
525M words of Fisher-like conversational Web data colléced published by the
University of Washington for the RT-04F evaluation. The tane weights were tuned
to minimize perplexity on heldout AMI, CMU, ICSI, LDC, and NT transcripts. The
LM vocabulary consisted of 54,524 words, comprising alldgin our CTS system (in-
cluding all Hub-5 and all nonsingleton Fisher words), alrdsin the ICSI, CMU, and
NIST training transcripts, and all nonsingleton words ia #MI training transcripts.
The out-of-vocabulary rate was 0.40% on eval04 transcriptd 0.19% on the 2005
AMI development transcripts.



For the lecture room domain, additional LM mixture compasemere built from
(f) 70K words of CHIL development transcripts and (g) 32M d®iof speech confer-
ence proceedings (suggested by [16]). Also, the Fishewael Web data were replaced
by about 512M words of the newly collected Web data relatetieédCHIL transcripts.
The lecture LM mixture was then optimized on CHIL developitiganscripts. The
lecture LM vocabulary was an extension of the conference loigabulary, with 3791
additional frequent words found in the proceedings date.dut-of-vocabulary rate on
the CHIL development data were 0.18%.

The main difference of this year's meeting and lecture LMsfithe last year’s LMs
is in the Web data LM component. The new Web data collectedytbar employed a
different selection criterion for the-gram queries submitted to the search engine. In-
stead of using the most frequelRgrams in the target corpus, we used4hgrams with
the highest likelihood ratio between a target LM trained loa available meeting or
lecture data, and a background LM from all the other data. [@éjvever, overall, we
did not see any significant perplexity or WER improvementdast year’s LMs in the
eval05 meetings test set (the perplexity of the final prufigdam meetings LM was
115). On the eval05 lectures task, the new LMs reduced perplexibut5% relative
to 119, but this improvement did not bring any significant improwsrin WER. Nev-
ertheless, the updated LMs are used in the evaluation, bedhay might provide a
better coverage for the new test sets due to the inclusiorooé mecent Web data, and
the CHIL lecture transcripts.

4 Results and Discussion

Note that all results are reported on non-overlapping spéesing an overlap limit of
1 in the NIST scoring software) in order to be comparable $oyaar’s results.

4.1 |HM crosstalk filtering

Table 1 shows IHM recognition results using the eval05 datale conference room
condition. For each row, we show for each meeting recorditegtise score using un-
normalized features and normalized features as describgedtion 3 (missing entries
were not run for lack of time). We also show the effect of udingg SDM channel as a
“stand-in” for participants without a microphone. Usingt8DM channel does a good
job of detecting speech when there is no IHM signal contagittiie foreground speaker.
Notice the dramatic improvement in using normalization #rel SDM signal for the
NIST meeting, in which there was known to be a speaker witlheiatophone (on a
speaker phone). The “Reference” row shows the results ofatitiy experiment in
which the reference segmentation was used. It shows theveesin expect to achieve
using an automated method. Though we are approaching teshibld, there is clearly
more work that can be done.

The SDM approach was not used in the RT-06S evaluation direce tvere known
to be no speakers without a microphone.

Table 2 summarizes the results of the IHM segmenter usinguasystems on both
the eval05 and eval06 evaluation sets.



Table 1.IHM word error using the RT-06S system for the evalO5 set erctinference room data
with and without energy normalization and with and withdw SDM signal.

Word Error
Segmenter Methagt A I TeMUTICSINIST] VT
Raw 25.622.0( 23.5/20.9 37.3|23.8
Raw + SDM 24.7 33.0
Norm + SDM  |22.7|21.9] 23.1|20.6| 25.2|22.9
Reference 19.5(19.2| 19.9|16.8| 21.4|20.6

Table 2. IHM word error using various segmentation systems on thdecence data from the
RT-05S and RT-06S evaluations.

Segmenter Method eval05 datgeval06 data
Baseline 29.3

RT-05S system 25.9

RT-06S system (raw energies) 24.7 24.0
RT-06S system (normalized energies) 22.7 22.8
Reference 195 20.2

4.2 Acoustic modeling

To highlight the improvementin acoustic modeling, Tablé&8vgs the word error on the
SDM and IHM conditions using models from RT-05S and RT-06Sttie@ conference
room and lecture room results. Since IHM and MDM do not useydsbmmed sig-
nals, these results exclude changes in the delay-sumtigoiThe IHM columns were
computed using the same segmentation algorithm. Noticenmental improvements in
all conditions.

Table 3.Word error for SDM and IHM conditions on the conference roord kecture room data
using 2005 and 2006 models.

RT-05S Confereng®T-05S Lecture
SDM IHM SDM| IHM
RT-053 40.9 24.7 51.9| 30.8
RT-063 39.3 24.1 47.4| 28.6

U

Model

4.3 Result summary

Table 4 summarizes results on last year’s and this yearls&¥an sets on the confer-
ence room condition. Numbers in parentheses indicatetsabait were obtained using
the new energy normalization technique after the eval endetitive gains 08.9%
for SDM, 4.0% for MDM, and6.9% (11.2% post-eval) for IHM were achieved on the
eval05 data. The difficulty of the eval06 set is comparablthtoeval05 set, with the
possible exception of the MDM condition, which is slightiyorge. We have not yet
analyzed this discrepancy.

Table 5 summarizes all the results for the lecture room taskguhe RT-05S and
RT-06S systems on the eval05 and eval06 data sets. Nottoei86 was overall much



Table 4. Word error for conference room data using the 2005 and 2085 on the 2005 and
2006 evaluation sets. Numbers in parentheses indicatiesebtained after the official evaluation
had ended.

MDM |SDM| IHM
eval05 data
RT-05S systemn30.2 | 40.9] 25.9
RT-06S system29.0 | 39.3|24.1 (23.0
eval06 data
RT-06S system34.2 | 41.2|24.1 (22.8

System

more difficult than eval05, possibly because of more nomaatpeakers, more variation
in recording sites, and more channels in the IHM conditi@uging high insertion rate
from crosstalk).

Using more microphones generally improved the resultscatohg that the delay-
sum combination method works well. Compared to last yegstesn, this year's sys-
tem is also more robust. Whereas in last year’s system, th&MEsults were worse
than the SDM results, this year’s system shows nice imprevesusing multiple mi-
crophones.

Using the RT-06S system, we achieved significant improvesnehthe RT-05S
system. On the eval05 set, the gains weiés relative for the SDM condition], 1.9%
for MDM, 13.8% for ADM, and15.0% for IHM.

For the MBF (multiple microphone beam-formed) conditiom, k&n essentially the
same code as the SDM system using the beamformed signalaskiopthe evaluation,
the University of Karlsruhe provided a single beamformegaal based on all the signal
from the MM3a microphones [18] (“UKA’ in the table). Since beamformer was
specifically tuned to reduce word error, while Karlsruheasviuned for localization
accuracy, we were curious to compare the ICSI beamformér tvé signal provided
by Karlsruhe. Using the same delay-sum beamformer as tescim Section 3, we
generated a new beamformed signal and ran an otherwiséciaesytstem as with the
signal provided by Karlsruhe (“ICSI” in the table). The “diesults are from an older,
more buggy version of the evaluation transcripts. The “nexgults are from the most
up-to-date version of the transcripts. As we have not yet@8i's beamformer on the
“new” transcripts, only the “old” value is reported for th€3l beamformed case. It
is interesting to note that the MBF condition performed wedisan the MDM despite
the large number of microphones (64) in the array. One plessitplanation is that the
MM3a arrays were located farther from the main speaker thawther microphones.

Table 5.Word error for the lecture room task using the RT-05S and &3€)stems on the eval05
and eval06 data sets.
IHM |SDM|MDM |ADM |UKA/MBF new|UKA/MBF oId|ICSI/MBF old

System eval05 data

RT-05S systen®8.0[ 51.9| 52.0| 44.8 - - -

RT-06S systen®3.847.7| 45.8| 38.6 - - -
eval06 data

RT-06S systeff8L.0[57.3[ 55.5] 51.0] 56,5 | 583 | 56.9




5 Conclusions and Future Work

We continue to make progress in the automatic transcrigifoconference and lec-
ture room meetings, as measured on NIST evaluation dataetgdins were achieved
in the conference room domain, with the bulk of the improvetreming from the
use of integrated cross-channel features in the IHM segmedubstantial gains were
achieved in the lecture room task through the use of conferémrained distant micro-
phone MLP features, more robust delay-sum, the use of CHILT&D data to adapt
the models, and a small LM improvement. Most of this gain wetsieved within a
couple of weeks before and during the evaluation!

There remains plenty of work for the future. We would like s tMMI-MAP for the
distant microphone data. Methods of estimating variousesyparameters (such as LM
weights and insertion penalties) could be improved. Feanapping techniques could
reduce mismatch of background training data. Given theelamgmber of nonnative
speakers of English, models adapted to particular acceaysinmprove performance.
Finally, although overlapped speech was considered thegpyicondition in this year's
evaluation, we made no special effort to handle overlape@#tn and processing of
overlap would clearly improve results on overlapped speech
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