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Abstract. The automatic processing of speech collected in conference
style meetings has attracted considerable interest with several large scale
projects devoted to this area. This paper describes the development of
a baseline automatic speech transcription system for meetings in the
context of the AMI (Augmented Multiparty Interaction) project. We
present several techniques important to processing of this data and show
the performance in terms of word error rates (WERs). An important
aspect of transcription of this data is the necessary flexibility in terms of
audio pre-processing. Real world systems have to deal with flexible input,
for example by using microphone arrays or randomly placed microphones
in a room. Automatic segmentation and microphone array processing
techniques are described and the effect on WERSs is discussed. The system
and its components presented in this paper yield compettive performance
and form a baseline for future research in this domain.

1 Introduction

Many people spend a considerable time in their working life in meetings, how-
ever the efficiency of meetings is often low and hence approaches for streamlining
the process and for retaining and crystallising the right information have been
developed. So far computers are rarely used to aid this process. Projects like
AMI (which stands for Augmented Multiparty Interaction) aim to investigate
to use of machine based techniques to aid people in and outside of meetings
to gain efficient access to information. Meetings are an audio visual experience
by nature, information is presented for example in the form of presentation
slides, drawings on boards, and of course by verbal communication. The latter
forms the backbone of most meetings. The automatic transcription of speech in



meetings is of crucial importance for meeting analysis, content analysis, sum-
marisation, and analysis of dialogue structure. Widespread Work on automatic
recognition of speech in meetings started with yearly performance evaluations
by the U.S. National Institute of Standards and Technology (NIST) [19]. Work
on meeting transcription was initially facilitated by the collection of the ICSI
meeting corpus [13] which was followed by trail NIST meeting transcription eval-
uations in Spring 2002. Further meeting resources were made available by NIST
[9], Interactive System Labs (ISL) [3] and the Linguistic Data Consortium RT04s
Meeting evaluations [19].

As the number of speech resources for meetings is still relatively small, sim-
ilar to work presented in [22], a recognition system for conversational telephone
speech (CTS) forms the starting point for our work on meetings. This approach
was preferred to bootstrapping from Broadcast News (BN) systems (as for ex-
ample in [21]) as the meeting style is expected to be colloquial rather than pre-
sentational. In the following we give a description of meeting resources followed
by a description of our CTS baseline system. This is followed by an analysis of
meeting vocabulary and linguistic context followed by experimental results with
various approaches to acoustic modelling.

2 Meeting resources

The ICSI Meeting corpus [13] is the largest meeting resource available consisting
of 70 technical meetings at ICSI with a total of 73 hours of speech. The number
of participants is variable and data is recorded from head-mounted and a total of
four table-top microphones. A 3.5 hour subset of this corpus covering 30 minute
extracts of 7 meetings was set aside for testing (icsidev). Further meeting corpora
were collected by NIST [9] and ISL [3], with 13 and 10 hours respectively.Both
NIST and ISL meetings have free content (e.g. people playing games or discussing
sales issues) and number of participants. We make also make use of the RT04s
NIST evaluation set (rt04seval) which also includes meetings recorded by the
LDC.

As part of the AMI project a major collection and annotation effort of the
AMI meeting corpus[4] is currently underway. Data is collected from three dif-
ferent model meeting rooms in Europe (mostly Edinburgh and IDAP at the
moment). Overall more than 100 hours of speech are to be transcribed. The
meeting language is English. Each meeting normally has four participants and
the corpus will be split into a scenario portion and individual meetings. The sce-
nario portion will involve the same participants over multiple meetings on one
specific task. The data used in this paper only originates from scenario meet-
ings. An additional development set (amidev) consisting of 8 meetings from 2
locations is used for testing.

3 The AMI CTS system

All systems in this paper are based on standard speech recognition technology
such as HMM based acoustic models and N-gram based language models. In



the following we briefly outline the front-end and acoustic modelling, dictionary
consruction, and language modelling on this task.

3.1 Acoustic modelling

Font-ends make use of 12 MF-PLP [24,12] coefficients and the Oth cepstral co-
efficient ¢y. These are derived from a reduced bandwidth of 125-3800Hz. First
and second order derivatives are added to form a 39 dimensional feature vector.
Cepstral mean and variance normalisation is performed on complete conversa-
tion sides and hence are implicitly speaker specific. Acoustic models are phonetic
decision tree state clustered triphone models with standard left-to-right 3-state
topology. They were obtained using standard HTKmaximum likelihood training
procedures (see for example [11]). The system uses approximately 7000 states
where each state is represented as a mixture of 16 Gaussians. Speaker adaptive
training is performed in the form of vocal tract length normalisation (VTLN)
both in training and test. Warp factors are estimated using a parabolic search
procedure, a piecewise linear warping function and a maximum likelihood cri-
terion[11]. Speaker adaptation is perfermed using maximum likelihood linear
regression (MLLR) of the means and variances|8].

Feature transformation is applied in the form of smoothed heteroscedastic
linear discriminant analysis (SHLDA) [17]. SHLDA is used to reduce a 52 di-
mensional formed by the standard feature vector plus third derivatives to 39
dimensions. HLDA estimation procedure[16] requires the estimation of full co-
variance matrices per Gaussion. SHLDA uses smoothing of the covariance esti-
mates by interpolating with standard LDA type with-in class covariances.

Ym=aX+(1-a)Xwe (1)

X m is the smoothed estimate of the covariance matrix and Xy ¢ is the LDA
type within-class matrix estimate based on an occupancy weighted average. Val-
ues for a of 0.8 — 0.9 were found to yield satisfactory results.

3.2 Dictionaries

The UNISYN pronunciation lexicon [7] forms the basis of dictionary development
with pronunciations mapped to the General American accent. Normalisation
of lexicon entries to resolve differences between American and British derived
spelling conventions was performed yielding a 115k word base dictionary. Pro-
nunciations for a further 11500 words were generated manually for work in this
paper. For consistency and a simplified manual pronunciation generation pro-
cess hypotheses generation procedures have been developed. Pronunciations for
partial words are automatically derived from the baseform dictionary. Hypothe-
ses for standard words were generated using CART based letter-to-sound rules.
The CART based letter-to-sound prediction module was trained on the UNISYN
dictionary using tools provided with the Festival speech synthesis software [1]
using left and right context of five letters and left context of two phones. This
gave 98% phone error rate and 89% word error rate on the base dictionary., for



Table 1. Size of various text corpora in million words (MW).

Corpus name #words (MW)

Swbd/CHE 3.5

Fisher 10.5

Web (Swtchboard) 163

Web (Fisher) 484

Web (Fisher topics) 156

BBC - THISL 33

HUB4-LM96 152

SDR99-Newswire 39

Enron email 152

ICSI meeting 1

Web (meetings) 128

Table 2. Perplexities on the NIST Hub5E 1998/2001/2002 evaluation test sets.

Hubbe eval sets Bigram Trigram 4-gram
Swbd 104.53 85.97 84.12
Swbd + HUB4 95.00 72.55 69.04

Swbd + HUB4 + Web 90.89  66.75 61.59

manually generated pronunciations the error rates were 89% and 51% respec-
tively. Although the word accuracy is quite low on new words (many of which

were proper names, partial words etc.), the phone accuracy remains relatively
high.

3.3 Language modelling and Vocabulary

Selection of vocabulary for recognition is based on a collection of in-domain
words. However, in the case of insufficient data it is beneficial to augment this
list with the most frequent words from other sources, for example Broadcast
News (BN) corpora. This "padding” technique was used for all dictionaries in
this paper unless stated otherwise. The target dictionary size was 50000 words
and the source of words was BBC news data, the Broadcast News 1996 Hub4
corpus (HUB4-LM96), and Enron data[14] (see table 2).

Language model training data for conversational speech is sparse. Hence
models are constructed from other sources and interpolated (as in e.g. [11]).
This is true for both CTS and meeting data. Hence we have processed a large
number of different corpora to form the basis of our language models. The most
important corpora are listed in Table 1. A full discussion of all source material
would go beyond the scope of this paper. The most important non-standard
data was found to be the the Web collected resources [2] and ICSI meetings. In
total more than 1300 MW of text are used. Each corpus was normalised using
identical processes. Apart from standard cleanup we tried to ensure normalised
spelling and uniform hyphenations across all corpora. For the training and testing
of language models the SRI LM toolkit [23] was used to train models with
Kneser-Ney discounting and Backoff. Table 2 shows perplexity results on the
NIST Hubbe evaluation sets. Note the substantial reduction in perplexity by the
additional web resources.



Table 3. %WER results on the NIST Hub5E 2001 evalution set.

eval0l VTLN MLLR non-HLDA SHLDA

passl 37.2 35.0
pass2 X 33.8 32.1
pass3 X X 32.1 30.6

Table 4. Statistics for meeting corpora.

ICSI NIST ISL AMI

Avg. Dur (sec) 242 3.98 3.21 3.95
#words 823951 157858 119184 154249

#unique wds 11439 6653 5622 4801

3.4 Decoding and overall system performance

Decoding operates in three passes. The Cambridge University speech decoder
HDecode is used for recognition with trigram language models. Table 3 shows
results for each pass. The first pass yields a first level transcription which is
used or VILN warp factor estimation. In the second pass improved output
is generated using VTLN trained models. The final output is obtained after
MLLR adaptation using transforms for speech and silence. The table also gives
a comparison of results with and without SHLDA. Trigram language models as
described above were used in the experiments. A significant reduction in word
error rate (WER) from both VTLN and SHLDA is observed.

4 Language in Meetings

Even though of general conversational nature, meeting data differs substantially
from CTS. First of all the acoustic recoding condition is usually more complex
as the speaker has no feedback on the recording quality. Speech signals of close-
talking microphones are distorted by heavy breathing, head-turning and cross-
talk. Table 4 shows raw statistics on several meeting corpora. Average utterance
durations are larger than on CTS, however with great variation. We can also
observe that corpus size is not a good predictor for the number of unique words
in the corpus and hence complexity.

4.1 Vocabulary

We shall loosely define a domain as a set of sub-corpora that, when used in a
combined non-discriminative fashion, yield better performing models than the
parts. This definition is not strict and will show a tendency to combine small
corpora. However for the purpose of model training the question of how to use
data is most important. Table 5 shows on the left hand side Out Of Vocabulary
(OOV) rates using vocabulary derived from each meeting corpus. The OOV rates
do not correlate perfectly with vocabulary sizes (Table 4). On the right hand side
the wordlists are padded as described in section 3.3. It is evident that overall
the effect of vocabulary mismatch is greatly reduced uniformly for all cases.
This suggest that only a very small amount of meeting specific vocabulary is
necessary. Hence padding was used in all further experiments.



Table 5. %00V rates of meeting resource specific vocabularies. Columns denote the
word list source, rows the test domain.

No padding Padding to 50k
ICSI NIST ISL AMI ICSI NIST ISL AMI
1CSI 0.00 4.95 7.11 6.83 0.01 0.47 0.58 0.57
NIST 4.50 0.00 6.50 6.88 0.43 0.09 0.59 0.66
ISL 5.12 5.92 0.00 6.68 0.41 0.37 0.03 0.57
AMI 4.47 4.39 5.41 0.00 0.53 0.53 0.58 0.30

COMBINED 1.60 4.35 6.15 5.98 0.16 0.42 0.53 0.55

Table 6. Cross meeting room perplexities on subsets of of rt04seval and rtO5samidev.
COMBINED denotes training or testing using all meeting data.

Test Corpus ICSI NIST ISL AMI COMBINED

ICSI 68.17 74.57 73.76 77.14 67.97
NIST 105.91 100.87 102.01 105.95 101.25
iSL 104.68 99.45 98.45 106.39 102.86
AMI 115.56 114.26 114.41 88.91 94.08
LDC 97.78 90.66 88.87 92.44 93.84

COMBINED 107.46 105.93 105.73 90.62 92.74

4.2 Content

Apart from the raw word difference it is important understand the effect of
the wide range of topics covered in the various meetings. A set of experiments
was conducted to compare meeting resource optimised language models on the
basis of the meeting resource specific (MRS) padded vocabularies. Language
models are obtained by optimisation of interpolation weights for the components
outlined in Table 1. Table 6 shows perplexities on all corpora. In all cases that
the best perplexities are achieved on the originating corpus, however with little
margin. Note also that the MRS LMs significantly outperform the generic LMs
only in the case of ISL and AMI. In general the perplexity of ICSI test data is
very low. This appears to be a property of this data set.

5 Meeting transcription

Common for all meeting rooms is that audio is recorded either by close-talking
microphones or via single or multiple distant microphones. The latter may be
arranged in a fixed array configuration. Due to interaction between speakers the
system must be capable of speech detection and and speaker grouping as well as
recognition. In the following we first outline techniques for audio segmentation
and microphone array processing, followed by a description of model training
procedures and recognition results.

5.1 Automatic segmentation

Speech activity detection (SAD) for close talking microphones poses a significant
challenge. The high levels of cross-talk and non-speech noise (such as breath or



contact noise) prohibit the use of threshold based techniques, the standard in
more ‘friendly’ recording conditions. The system used here is a straight-forward
statistical based approach with additional components to control cross-talk be-
tween channels. Statistical approaches to SAD typically use HMM or GMM
based classifiers with special feature vectors such as channel cross-correlation
and kurtosis (e.g. [20,25]). A 14 dimensional PLP [12] feature vector is used to
train a Multi-Layer-Perceptron (MLP) classifier with a 101 frame input layer, a
20 unit hidden layer and an output layer of two classes. Parameters are trained
on 10 meetings from each meeting resource totalling around 20 hrs of data.
Further 5 meetings from each corpus are used to determine early stopping of
the parameter learning. The utterance segmentation uses Viterbi decoding and
scaled likelihoods derived from the MLP and a minimum segment duration of
0.5 seconds.

Cross talk suppression is performed at the signal level using adaptive-LMS
echo cancellation[18]; Additons to the basic system are: the use of multiple refer-
ence channels in cancellation; automatic channel delay estimation and offsetting
of reference signals to account for this delay; automatic cross-talk level estima-
tion; and ignoring of channels which produce low levels of cross-talk. Updates
are further made on a per sample basis to account for non-stationary ‘echo’ path.
On the classifier level additional features were introduced to aid the detection
of cross-talk:

N
RMS iorm (477 (4)) = log (RMS (z/17(4))) — log ZRMS (@G |, @
7j=1
t+L t+L\4
(D) — {xtL t—L)}
K ( t— L) { x?_% ii‘% )2}2’ (3)
Cep (a/7F) = max, (F loguf ()] ). @)

where xt+ is the signal x windowed over 2 - L samples and P, and P, are the

minimum and maximum pitch period over which peak picking is carried out
(corresponding to 50-300Hz). Eq. 2 describes across-meeting normalised RMS
energy, Eq. 3 signal and spectrum kurtosis, and Eq. 4 as a voicing strength
measure based on the maximum amplitude in the speech cepstrum in the range
of frequencies 50-300Hz.

5.2 Microphone array processing

Audio from multiple distant microphones (MDMs) can be used in variety of ways.
The AMI baseline system uses an enhancement based approach. Recordings from
a number of microphones placed in the meeting rooms are combined to arrive
at a single, enhanced output file that is then used as input for recognition. The
system is required to cope with a number of unknown variables: varying numbers
of microphones; unknown microphone placement; unknown numbers of talkers;
time variant skew between input channels introduced by the recording system;
and different room geometry and acoustic conditions.



The MDM processing operates in a total of four stages. First gain calibration
is performed by normalising the maximum amplitude level of each of the input
files. Then a noise estimation and removal procedure is run. This in itself is a
two pass process. On the first pass the noise spectrum @,,(f) of each input
channel is estimated as the noise power spectrum of the M lowest energy frames
in the file (M = 20 was used for the current experiments). On the second pass
a Wiener filter with transfer function %&”‘(ﬁ (where ¢y, (f) is the input
signal spectrum) is applied to each channel to remove stationary noise. The noise
coherence matrix @, estimated over the M lowest energy frames, is also output
at this time. In the third stage delay vectors between each channel pair are
calculated for every frame in the input sample. The delay between two channels
is the time difference between the arrival of the dominant sound source and is
calculated by finding the peak in the Generalised Cross Correlation [15] between
input frames across two channels. The delay vector is given as the delays for all
pairs with respect to a single reference channel - there are therefore N delays
in each vector, with the delay for the reference channel equal to 0. Further a
vector of relative scaling factors is calculated, corresponding to the ratio of of
frame energies between each channel and the reference channel. The start and
end times in seconds, along with the delay and scaling factors are output for
each frame. Finally The delay and scaling vectors are then used to calculate
beamforming filters for each frame using the standard superdirective technique
[5,6]. The superdirective formulation requires knowledge of the noise coherence
matrix. However this is not available as the microphone positions are not known.
Either a unity coherence matrix may be used (leading to delay-sum filters) or
the @ matrix estimate in the second stage may be used. Each frame is then
beamformed using the appropriate filters and the output subsequently used for
recognition.

5.3 Model building

As outlined above the the fact that meeting resources are still comparatively
small, bootstrapping from CTS models was used. However, as CTS data is only
available at a bandwidth of 4kHz this poses additional questions on the initiali-
sation and training procedure.

Bandwidth and Adaptation Table 7 shows recognition performance on the
icsidev test set using various model training strategies. The baseline CTS systems
yield a still reasonable error rate. Training on 8kHz-limited (NB) ICSI training
data yields a WER of 27.1%. Using the full bandwidth (WB) reduces the WER
by 1.8%. The standard approach for adaptation to large amounts of data is
MAP [10]. As CTS is NB only, adaptation to WB ICSI data was performed
using MAP adaptation in an iterative fashion. However the performance of the
adapted NB system was still poorer than that of the system trained on WB data.
The results show that MAP adaptation from CTS models while using wideband
data is desirable. In our implementation the adaptation model set is used for
two purposes: for computation of state level posteriors and to serve as a prior.



Table 7. %W WER results on icsidev for several different training strategies and a trigram
LM optimised for the ICSI corpus.

data bandwidth adapt #iter HWER

CTS NB - - 33.3
ICSI NB - - 27.1
ICSI WB - 25.3
ICSI NB MAP 26.5

1

ICSI NB MAP 8 25.8
ICSI WB MLLR + MAP 8 24.6
ALL WB MLLR + MAP 8 25.8

Table 8. %WER on the rtO4eval sets . TOT gives WERS overall, while MRS denotes
the use of language models focusing on specific meeting rooms

TOT ISL ICSI NIST LDC
MRS ISL 40.2 44.7 25.8 34.1 53.8
MRS ICSI  40.2 45.2 25.1 34.7 53.5
MRS NIST 40.2 44.6 26.2 34.1 53.6
MRS AMI  41.0 45.1 26.9 35.8 54.2
COMBINED 40.0 44.5 25.6 34.4 53.4

Even if the former is performed well, NB models cannot be used to serve as prior
directly. In order to overcome this problem the means of the CTS models were
modified using block-diagonal MLLR transforms. One transform for speech and
one for silence was estimated on the complete ICSI corpus using models trained
on ICSI NB data. After an initial step with MLLR~adapted CTS models iterative
MAP adaptation is resumed as before. The use of more detailed modelling of
the transition from NB to WB by the use of more transforms was not found to
yield a significant performance improvement. After 8 iterations a further 0.9%
reduction in WER is obtained.

Meeting resource specific language modelling The language and vocab-
ulary in meetings differs substantially. We have found evidence that his is also
true for the acoustics However the advantage of having more data outweighs the
differences. Hence we use acoustic models trained on the all meeting resources.
Table 8 shows WER results using acoustic models trained on the complete meet-
ing data and specific language models. An initial observation makes clear that on
average the best strategy is to combine all the resources (similar to the acoustics).
Further the variation of scores is modest whereby AMI data is distinct from all
other resources. A moderate beneficial effect can be observed from using meeting
room specific language models.

IHM Processing The sections above gave an outline of the components re-
quired for a baseline system on meeting transcription. The task of combining
the components in a sensible complex. For optimal performance many of the
techniques cannot just simply be ”plugged” together. Table 9 shows WER re-
sults using various model building techniques. Models are trained on a total
of 96 hours of meeting speech. The baseline model yields 40% overall. By far



Table 9. %WER on the rt04eval set using a combined tigram language model. CTS
denotes CTS-adapted, EC echo cancellation.The table shows gender specific results
(F/M) and results per meeting room . In the first section the reference segmentation
of the data is used.

Name CTS VILN EC TOT F M ISL ICSI LDC NIST
BASE X 40.0 39.4 40.4 44.5 25.6 53.4 34.4
VTLN1 X X 36.9 36.4 37.2 42.0 22.4 50.3 30.5
VTLN2 X 37.6 36.0 38.4 42.7 23.3 51.3 30.1
VTLN1 - SHLDA X X 36.0 35.1 36.5 41.0 21.8 50.5 27.4
EC1 X x 40.3 39.540.7 44.7 25.9 54.8 33.1
VTLN-EC1 X X x 37.0 36.1 37.541.2 22.9 50.8 30.9
SEG1 X 50.8 51.1 50.6 50.4 38.2 73.3 37.4

Table 10. %WER on rtO4seval and rt05samidev-n when training on various meeting
resource combinations.

rt05seval rt05samidev-n
TOT ISL ICSI LDC NIST TOT UEDIN IDIAP
. ICS,NIST 50.4 56.2 24.1 61.1 36.9 59.1 60.2 58.4
ICSI,NIST,ISL 50.6 56.2 22.9 61.8 37.2 59.1 60.0 57.6

ICSLNIST,ISL,AMI 50.3 54.5 27.4 61.3 36.2 57.3 59.0 54.5

the best performance is achieved on the ICSI portion of the data and perfor-
mance is roughly gender balanced. Similar to CTS the use of VITLN yields a
substantial improvement. Comparing the systems VILN1 and VTLN2, the gain
from CTS-adaptation remains even in conjunction with VILN. The next part
of the table shows the use of echo-cancelled (EC) data (as used for segmenta-
tion). Virtually no effect on recognition performance can be observed. The last
section shows results with automatic segmentation (all other results are based
on reference segmentation). The first system, SEG1, only makes use of the basic
configuration, i.e. using an MLP only trained on PLP features.

MDM processing Almost all meeting corpora used a different approach to
record speech with remote microphones. In the ICSI corpus microphones are not
in fixed array configuration, the ISL corpus only uses one distant microphone,
AMI uses a circular microphone array. Table 10 shows performance results with
models trained on specific corpora. Overall the size and type of data used appears
to have little impact on performance. Only the use of AMI training data appears
to aid recognition on the AMI test set. The enhancement based approach de-
scribed in section 5.2 has the disadvantage that it cannot cope with overlapped
speech. Since straight-forward removal of overlapping segments however would
be far to restrictive. Instead word timings from forced alignment were used to
identify overlaps. Speech segments were split, either at point of at least 100ms
silence (ms10), of silence occurrence(ms0), or at arbitrary word boundaries (wb).
These approaches reduce the original training set size of 96 hours to 56, 63 or
66 hours respectively. Table 11 shows associated WER results. Only a minor
preference of an increase in training set size is evident. However training set size
has an impact on the effect of channel based normalisation schemes. 11 shows



Table 11. %WER on rt04seval and rtO5samidev-n with different amounts of traiing
data. ms0, ms10,and wb describe data preparation (see text).

rt05seval rt05samidev-n
TOT CMU ICSI LDC NIST TOT UEDIN IDIAP
ms0 51.0 55.4 26.4 63.4 34.9 57.4 58.9 55.0
ms10 51.0 54.3 259 63.6 37.0 56.4 58.0 54.0
wb 50.7 56.5 24.3 61.9 36.4 56.3 58.2 53.4

VTLN - wb 47.2 51.4 20.6 60.2 31.3 - - -
wb icsiseg  55.2 59.5 32.2 66.7 40.5 - - -

the performance after VTLN in both training and test, yielding improvements
comparable to IHM. Finally table 11 shows results for use of automatic segments
as generated by the ICSI segmenter[22] which results in 5% absolute reduction
in WER, mostly driven by an increase in the deletion rate. note that the greatest
degradation was on the ICSI corpus.

6 Conclusions

In this paper the components of the AMI meeting transcription system were
described. So far the system is equipped with baseline compomen ts that allow
the processing of the highly variable data. We have shown: the feasibility to use
the Edinburgh UNISYN dictionary for speech recognition, the effective use of
language model data for meetings collected from the internet; the effective use of
SHLDA and VTLN on CTS and meetings, both in IHM and MDM recorddings;
the language properties of meeting rooms; and effective data preparation for
this domain. We have further presented initial transcription results on the AMI
meeting corpus.
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