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Abstract
This paper presents an articulatory-acoustic mapping where de-
tailed spectral envelopes are estimated. During the estimation, the
harmonics of a range of F0 values are derived from the spectra of
multiple voiced speech signals vocalized with similar articulator
settings. The envelope formed by these harmonics is represented
by a cepstrum, which is computed by fitting the peaks of all the har-
monics based on the weighted least square method in the frequency
domain. The experimental result shows that the spectral envelopes
are estimated with the highest accuracy when the cepstral order is
48-64 for a female speaker, which suggests that representing the
real response of the vocal tract requires high-quefrency elements
that conventional speech synthesis methods are forced to discard in
order to eliminate the pitch component of speech.

1. Introduction
Speech representation derived from spectral peaks at harmonic fre-
quencies of voiced speech has attracted attention widely in speech
technology. Gu et al. [1] have recently proposed novel feature
extraction for speech recognition based on the Perceptual Har-
monic Cepstral Coefficients (PHCC), and confirmed by experiments
that PHCC outperforms standard cepstral representation. A main
idea of PHCC is that, in the process of extracting the coefficients,
voiced speech is sampled at harmonic locations in the frequency do-
main. In the field of speech coding, such harmonic-based spectral-
envelope estimation has been used since the early 90’s for percep-
tually efficient encoding [2, 3].

It must be noted that, whereas the harmonic peaks have an
important role in human auditory perception, only those peaks re-
flect the vocal tract transfer function (VTTF) since voiced speech,
due to its (quasi-)periodicity, only has energy at frequencies corre-
sponding to integral multiples of the fundamental frequency (F0).
For this reason, similar techniques [4, 5] which trace the harmonic
peaks have been applied to text-to-speech synthesis in order to ob-
tain spectral envelopes corresponding to the VTTFs. A recently
developed high-quality vocoder, STRAIGHT [6], also exploits har-
monic peaks, into which a bilinear surface is interpolated in the
three-dimensional space composed of time, frequency and spectral
power.

It has been pointed out, however, that the harmonic structure
interferes with identifying spectral envelopes that precisely reflect
VTTFs [7]. Hence even the spectral envelopes from the above
harmonic-based estimation are still inaccurate for representing ac-
tual VTTFs, because sections except harmonic peaks in the esti-
mated envelope are interpolated and do not reflect the real VTTF.
This fact becomes a problem in speech synthesis where speech
needs to be generated at various F0s different from the original.
In order to synthesise high-quality speech it is required to estimate
spectral characteristics not only at harmonic peaks but also between
the peaks.

The objective of this study is to realise articulatory modification
on the acoustic characteristics of speech whilst maintaining aspects
of the signal relating to speaker identity, and with the high signal
quality required for speech synthesis. For achieving this, we deal
with the following two related points in this paper: 1) a mapping of
articulation to the VTTF using the actual measurement of articula-
tors; 2) accurate VTTF estimation based on the articulatory data for
high-quality speech synthesis.

In order to resolve the above problem of spectral envelope esti-
mation, we have proposed a method based on the diverse harmonic
structures of multiple short-time speech signals produced under al-
most the same articulatory condition [8]. In the process of estimat-
ing the envelopes, the method also produces a mapping of articu-
lation to spectral envelopes, and consequently we can realise high-
quality articulatory-acoustic conversion applying the envelopes pre-
cisely estimated.

In this paper, we introduce two types of mapping functions:
piecewise constant mapping and piecewise linear mapping. After
examining these functions theoretically, we closely investigate the
performance of both mappings through experiments.

2. Articulatory-acoustic mapping
2.1. Articulatory data
The data used in this study is a MOCHA (Multi-CHannel Articula-
tory) corpus [9]. The corpus is composed of 460 TIMIT sentences
uttered by a female speaker (fsew0), and includes parallel acoustic-
articulatory information which was recorded using a Carstens Elec-
tromagnetic Articulograph system at Queen Margaret University
College, Edinburgh. The articulatory information (articulatory vec-
tor) comprises the positions of the upper and lower lips, lower in-
cisor, tongue tip, tongue blade, tongue dorsum and velum. The
sampling rates of the acoustic waveform and articulatory data are
16 kHz and 0.5 kHz respectively.

2.2. Speech representation
We adopt the cepstrum as an expression of the spectral envelope for
the purpose of approximating harmonic peaks of multiple speech
spectra. The cepstrum is adequate to represent both zeros and poles
with a small number of coefficients, and in addition, is a frequency-
domain representation and thus has good interpolation (smoothing)
properties. Because of these merits the cepstrum is widely applied
in the field of speech technology (e.g. [10]).

2.3. Clustering in the articulatory space
We partition the articulatory space and obtain a mapping function
for each cluster so that articulatory-acoustic conversion becomes
possible. Specifically, after normalising each dimension of the artic-
ulatory vectors, we apply LBG clustering [11] to all the normalised
vectors and divide them into K clusters (articulatory clusters), C i

(i = 1, 2, 3, ..., K), and then estimate articulatory-acoustic mapping
functions for each cluster.



3. Piecewise Constant Mapping
3.1. Outline
The clustering in the articulatory space makes each cluster include
speech frames with comparatively similar articulatory settings. If
we assume those settings identical in a cluster, the acoustical char-
acteristics of the vocal tract can therefore be assumed constant
within the cluster. Under this assumption, the problem is reduced
to estimating one unique spectral envelope for every cluster, and
accordingly we can collect the different harmonic structures of the
multiple frames to form a spectral envelope.

3.2. Estimating the envelopes of amplitude spectra
Let us determine a cepstrum which best fits the amplitude of all
the harmonics of speech frames belonging to cluster i, using the
least squares method. This can be considered an extension of the
cepstrum estimation in [4, 5] to the analysis of multiple frames.

Let a
(l)
k denote an observed log-amplitude of the l-th harmonic

(l = 1, 2, 3, ..., Nk) at frequency f
(l)
k within the speech frame k, and

T the sampling period. Then, the sum of squared approximation
errors for the amplitude of all the harmonics of all the frames is
expressed as
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where Ω
(l)
k = 2πf

(l)
k T. We have introduced two weighting factors,

w(f) for attaching importance to the lower frequency band, and
1/Nk for evaluating each frame equally regardless of the number
of harmonics. Equation (1) can be solved for the cepstrum ca by
reducing it to a problem of weighted least squares. The offset dk is
then calculated as
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Practically, we obtain the cepstrum according to the follow-
ing procedure: 1) Substitute 0 for c

(i)
a (initial value); 2) Obtain

dk (k ∈ Ci) using (2); 3) Calculate E
(i)
a using (1) and terminate

the procedure if E
(i)
a converges; 4) Find c

(i)
a by solving the nor-

mal equation; 5) Substitute 0 for c
(i)
a [0] (power normalization); 6)

Return to step 2.

3.3. Estimating the envelopes of phase spectra
The spectral envelopes of phase can be obtained in a similar manner,
but we need to take care about the unwrapping problem of phase.

Let θ
(l)
k denote an observed wrapped phase of the l-th harmonic

in the speech frame k. Then, the sum of squared approximation

errors for the phases of all the harmonics of frames belonging to
cluster i is expressed as
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The vector ϑk is an Nk-dimensional vector, ϑk =
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The operator ARG[X] represents wrapping of phase X , and the
symbol * the complex conjugate operation. The time delay τk ad-
justs the global tilt of the phase spectrum so as to minimise the error
Ep. The function ϕi(f) represents the moving average of the phase
{θ

(l)
k − 2πf

(l)
k τk} (for all the harmonics of all the frames in cluster

i) along the frequency axis in the complex spectral domain under a
weighting factor 1/Nk, and is expressed as
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The function G(f) indicates a moving average window. For an
initial value for ϕi(f

(l)
k ), we adopt the following minimum phase

spectrum calculated from the cepstrum c
(i)
a which has already been

obtained for the amplitude envelope:
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Equation (3) can be solved for the cepstrum c
(i)
p by reducing it to

a problem of weighted least squares. The delay τk can be calcu-
lated on the basis of the cross-correlation which is computed by
the inverse Fourier transform of the cross-spectrum {exp[jθ

(l)
k ] ·

ϕ∗

i (f
(l)
k )} (l = 1, 2, 3, ..., Nk).

According to the following procedure, we obtain the cepstrum
representing the envelope of the phase spectrum: 1) Initialise ϕi(f)
using (6); 2) Find τk (k ∈ Ci) based on the cross-spectrum; 3) Cal-
culate E

(i)
p using (3) and terminate the procedure if E

(i)
p converges;

4) Find c
(i)
p by solving the normal equation; 5) Return to step 2.

4. Piecewise Linear Mapping
4.1. Outline
The piecewise constant assumption is clearly only a rough approx-
imation. Because, in practice, articulation is not identical within
a cluster and accordingly neither is the vocal tract response, such
an approximation is likely to cause a noticeable error. For more



accurate estimation, a mapping function can be introduced per clus-
ter which transforms articulatory vectors into acoustic features. We
must, however, be aware that models with high complexity may es-
timate harmonic structure itself instead of the spectral envelope nec-
essary. Here we choose a linear mapping, the complexity of which
is considered low enough.

4.2. Piecewise linear approximation
The cepstra c
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transformation of L-dimensional articulatory vector xk as follows:
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The problem is now reduced to finding these matrices and vectors.
Substituting (7) into (1) and (3) and rewriting the formulae, we ob-
tain the following equations:
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Having the same form as (1) and (3), (8) and (9) can be solved for
u

(i)
k and v

(i)
k likewise during the same procedures as in section 3.

5. Experiments
5.1. Data and procedure
Voiced sections were first extracted from the corpus and used to
build a set of pairs of harmonic spectra and articulator positions.
We estimated the harmonic spectra from speech waveform using the
weighted least squares method [12], in which the width and spacing
of the time window (Hanning) were 20 ms and 8 ms respectively.
Accordingly we downsampled the articulatory information to the
same spacing of 8 ms. Thereby 87208 voiced frames with paral-
lel acoustic-articulatory information were obtained in total. We set
10% of the sentences (46 sentences including 8332 frames) aside
for testing, and used the remaining 90% (414 sentences including
78876 frames) for training.

In order to evaluate estimation accuracy only at harmonic fre-
quencies, we introduced two types of distortions, harmonic power
distortion Da and harmonic phase distortion Dp, defined as
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where M denotes the number of frames evaluated. These distor-
tions for the training set were computed in the training process us-
ing equation (1) and (3) for the piecewise constant mapping, and
using equation (8) and (9) for the piecewise linear mapping. We
calculated the distortions for the test data as follows: first, the near-
est neighbour method chooses one of the articulatory clusters based
on the Euclidean distance between each of the cluster centroid vec-
tors and each of the articulatory vectors to be tested, and then the
distortions are calculated using the cepstral coefficients of the cho-
sen cluster for the piecewise constant mapping, and using the linear
mapping coefficients of the chosen cluster for the piecewise linear
mapping.

For the weighting function w(f) and moving-average window
G(f) in section 3, we introduced a Gaussian distribution with 0 Hz
mean and 4 kHz standard deviation, and a Gaussian window with
100 Hz standard deviation, respectively.

5.2. Results and discussion
Shown in figure 1 is the estimation error of the piecewise constant
mapping. As in this figure, the error for the test data set has the min-
imum values in the case of cepstral order 48 (3.0 ms in quefrency)
and 512 clusters for amplitude, and in the case of order 64 (4.0 ms)
and 256 clusters for phase, where the error values are 5.56 dB and
0.807 rad. Figure 2 shows the result of the piecewise linear map-
ping. The error has the minimum values in the case of order 64 (4.0
ms) and 32 clusters for amplitude and in the case of order 64 (4.0
ms) and 16 clusters for phase, where the error values are 5.18 dB
and 0.778 rad.

For both of the introduced mappings, spectral envelopes are ob-
tained with the highest accuracy when the cepstral order is 48-64
(3.0-4.0 ms in quefrency), where the estimation errors were min-
imised. These results indicate that representing spectral envelopes
reflecting real VTTFs requires cepstral coefficients of high que-
frency range, which are usually discarded in conventional speech
synthesis to eliminate the pitch component of speech.

Also, as is evident from figure 1 and 2, the piecewise linear
mapping is more accurate and requires a smaller number of clusters
than the piecewise constant mapping. The piecewise linear mapping
is therefore more suitable than the piecewise constant mapping to
represent relationship between the articulator positions and the cep-
strum, and we may consider that the relationship is locally almost
linear.

Moreover, for both proposed mapping functions the error of
the phase spectrum indicates the variance of phase in each fre-
quency band. This is useful information especially for multiband-
type speech synthesis to control the phase of each of the frequency
bands for the purpose of reducing the buzziness.

6. Conclusions
We introduced an articulatory-acoustic mapping which enables the
estimation of detailed spectral envelopes by dealing only with har-
monic peaks of multiple voiced-speech spectra.

We have confirmed that applying a source-filter separation [13],
where the characteristics of the voice source are taken into account
using F0 and speech power, further improves the estimation accu-
racy and reduces the distortions of the piecewise linear mapping to
4.93 dB for power and 0.775 rad for phase. Moreover, the proposed
harmonic-based estimation can also be applied to an articulatory-
acoustic mapping based on a Gaussian mixture model, which we
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Figure 1: Harmonic distortion vs. order of cepstrum, in the case of
the piecewise constant mapping
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Figure 2: Harmonic distortion vs. order of cepstrum, in the case of
the piecewise linear mapping

have already employed for the purpose of reducing acoustical dis-
continuity of output speech at the boundaries of clusters. Further-
more, we expect that applying this harmonic-peak smoothing to
multiple blocks of speech in the three-dimensional space including
time axis, in the same manner as of STRAIGHT [6], will enable our
articulation-to-speech synthesis to produce temporally smoother,
more natural-sounding speech.

Acknowledgements
In carrying out this research, the first author, Y. Shiga, is supported
financially in part by the ORS Awards Scheme.

References
[1] L. Gu and K. Rose, “Perceptual harmonic cepstral coefficients

as the front-end for speech recognition,” in Proc. ICSLP2000,
vol. 1, Oct. 2000, pp. 309–312.

[2] R. J. McAulay and T. F. Quatieri, “The application of subband
coding to improve quality and robustness of the sinusoidal
transform coder,” in Proc. ICASSP93, vol. 2, Apr. 1993, pp.
439–442.

[3] A. El-Jaroudi and J. Makhoul, “Discrete all-pole modeling,”
IEEE Trans. on signal processing, vol. 39, no. 2, pp. 411–423,
Feb. 1991.

[4] T. Nakajima and T. Suzuki, “Speech power spectrum enve-
lope (PSE) analysis based on the F0 interval sampling,” IEICE
Technical Report, vol. SP86, no. 94, pp. 55–62, Jan. 1987, (in
Japanese).

[5] T. Galas and X. Rodet, “An improved cepstral method for de-
convolution of source-filter systems with discrete spectra: Ap-
plication to musical sounds,” in Proc. Int. Computer Music
Conf., 1990, pp. 82–84.

[6] H. Kawahara, “Speech representation and transformation us-
ing adaptive interpolation of weighted spectrum: vocoder re-
visited,” in Proc. ICASSP97, vol. 2, Apr. 1997, pp. 1303–
1306.

[7] R. D. Kent and C. Read, The Acoustic Analysis of Speech.
Singular Publishing Group, 1992.

[8] Y. Shiga and S. King, “Estimating the spectral envelope of
voiced speech using multi-frame analysis,” in Proc. Euro-
speech2003, vol. 3, Geneva, Switzerland, Sept. 2003, pp.
1737–1740.

[9] A. A. Wrench, “A new resource for production modelling
in speech technology,” in Proc. Workshop on Innovations in
Speech Processing, Stratford-upon-Avon, 2001.

[10] Y. Shiga, Y. Hara, and T. Nitta, “A novel segment-concate-
nation algorithm for a cepstrum-based synthesizer,” in Proc.
ICSLP94, vol. 4, 1994, pp. 1783–1786.

[11] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector
quantizer design,” IEEE Trans. Commun., vol. COM-28, pp.
84–95, 1980.

[12] Y. Stylianou, “Applying the harmonic plus noise model in con-
catenative speech synthesis,” IEEE Trans. Speech and Audio
Processing, vol. 9, no. 1, pp. 21–29, Jan. 2001.

[13] Y. Shiga and S. King, “Source-filter separation for
articulation-to-speech synthesis,” in Proc. ICSLP2004, Jeju,
Korea, Oct. 2004.


