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Abstract

We consider the problem of obtaining a reduced dimension representation of electropalatographic
(EPG) data. An unsupervised learning approach based on latent variable modelling is adopted, in
which an underlying lower dimension representation is inferred directly from the data. Several latent
variable models are investigated, including factor analysis and the generative topographic mapping
(GTM). Experiments were carried out using a subset of the EUR-ACCOR database, and the results
indicate that these automatic methods capture important, adaptive structure in the EPG data.
Nonlinear latent variable modelling clearly outperforms the investigated linear models in terms of log-
likelihood and reconstruction error and suggests a substantially smaller intrinsic dimensionality for
the EPG data than that claimed by previous studies. A two-dimensional representation is produced
with applications to speech therapy, language learning and articulatory dynamics.

Keywords: electropalatography (EPG), articulatory modelling, data reduction methods, dimen-
sionality reduction, latent variable models, finite mixture distributions, mixture models, principal
component analysis (PCA), factor analysis, mixtures of factor analysers, generalised topographic
mapping (GTM), mixtures of multivariate Bernoulli distributions.

1 Introduction

The technique of electropalatography (EPQG) is well established as a relatively noninvasive, conceptually
simple and easy-to-use tool for the investigation of lingual activity in both normal and pathological
speech. Qualitative and quantitative data about patterns of lingual contacts with the hard palate during
continuous speech may be obtained using EPG, and the technique has been used in studies of descriptive
phonetics, coarticulation, and diagnosis and treatment of disordered speech (Hardcastle et al., 1991a;
Hardcastle et al., 1989). Typically, the subject wears an artificial palate moulded to fit the upper palate
with a number of electrodes mounted on the surface to detect lingual contact (62 in the Reading EPG
system (Hardcastle et al., 1991a)). The EPG signal is sampled at 100-200 Hz. Thus, for a given
utterance, the sequence of raw EPG data consists of a stream of binary vectors with both spatial and
temporal structure.

Potentially the tongue has many degrees of freedom owing to its lack of skeleton (Stone, 1991); how-
ever, a number of studies suggest that tongue movements in speech may be appropriately modelled using
a few elementary articulatory parameters (e.g. (Nguyen et al., 1994; Nguyen et al., 1996) and references
therein). Spatial redundancy arises due to the limited number of possible tongue configurations—only a
tiny fraction of the potential 262 ~ 4.6 - 10'® EPG patterns can be produced by the articulatory system.
Temporal redundancy arises due to the correlations between neighbouring frames: the position of the
tongue (and thereby the EPG signal) changes slowly with time, compared to the acoustic signal. If the
appropriate constraints were known, then it would be possible to represent the EPG signal using fewer
dimensions.

In this paper we approach the problem of finding such a dimensionality reduction mapping, not from
a physical point of view, but from a machine learning one. That is, we consider a data set consisting
of a number of EPG patterns and try to learn a mapping into a low-dimensional space from the data,
without any a priori assumption about it (other than a specific, but quite general, form) and using
methods well-known in the statistics and pattern recognition fields. Our approach will be that of latent
variable modelling, in which the data is assumed to have been generated stochastically from a small
number of hidden variables. In common with most work on EPG data reduction we will concentrate on



dimensionality reduction at the spatial level only, thus ignoring the constraints arising from coarticulation
and other dynamics of the articulatory system.

The primary advantage of dimensionality reduction for EPG data is that it makes a sequence of EPG
data more amenable to analysis, since direct manipulation of the raw EPG sequence is cumbersome due
to its high dimensionality (Hardcastle et al., 1991b). A reduced-dimension representation in terms of a
few variables can be inspected, plotted against time or against each other, etc. more easily. Additional
advantages are the consequent reductions in storage space and data transmission rate—albeit of little
relevance, since the EPG data has relatively low requirements for them.

The resultant dimensionality reduction may suggest a value for the intrinsic dimensionality of the
EPG data, i.e., the number of degrees of freedom of the tongue-palate system in what concerns the
generation of EPG patterns. It may also give some insight into the problem of the acoustic-to-articulatory
mapping (Schroeter and Sondhi, 1994), in which values for articulatory parameters such as vocal tract
area functions, lip positions and jaw dynamics are determined from the acoustic signal. Note that
the EPG signal alone is an incomplete articulatory description, omitting such details as nasalisation
and vocalisation. Hence, the mapping from phonemes to EPG patterns is not one-to-one since certain
phonemes (e.g. /&/ and /a/) can produce the same EPG patterns.

The rest of the paper is organised as follows. Section 2 explains the advantages that unsupervised
learning methods (in particular latent variable models) for EPG data have over fixed data reduction
methods. Section 3 introduces the latent variable modelling framework. Section 4 describes the data set
employed for the experiments. These experiments are described in sections 5, 6, 7 and 8. The paper is
completed with a discussion of the results in section 9 and a conclusion in section 10.

2 Data reduction methods

Several techniques to extract features or other kind of condensed information from the EPG data have
been developed (Hardcastle et al., 1991b; Jones and Hardcastle, 1995). These include the totals display,
which monitors dynamic changes in different contact regions of the palate (e.g. in fig. 1, alveolar: rows
1-2; palatal: 3-5; velar: 6-8) as a function of time; the centre of gravity index, designed to locate the
highest concentration of activated electrodes in a given EPG frame; or the frequency of contact with each
electrode over a period of time, expressed as a percentage and usually calculated in a row-by-row basis.

The majority of these techniques are based on linear combinations of the EPG vector components.
We refer to such linear combinations as linear indices and represent them using a D-dimensional basis
vector v. The score of a D-dimensional EPG pattern t with respect to index v is thus the projection of
tonv,ie, vit= Zle vgtq. Observe that multiplying an index by a constant does not add any new
information, so that v, 2v and —2v are all equivalent.

Many of these numerical indices have a fixed form, prescribed in advance. This form often reflects a
phonetician’s a priori beliefs about the relevance of different palate regions; for example, most work on
EPG data reduction uses predetermined articulatory regions on the artificial palate (Byrd et al., 1995;
Hardcastle et al., 1991b) via a linear combination of the individual contacts (see fig. 1). Alternatively,
they may have been designed in some other way. For example, (Nguyen, 1995) applies the discrete cosine
transform (DCT) to the EPG frames considered as images to obtain several linear indices, corresponding
to low spatial frequencies. Even though this makes no a priori assumption about the data, it still has the
disadvantage that this set of indices is fixed across data sets (because the indices are the basis vectors of
the DCT, which for a given image size is fixed).

Ad hoc methods are not robust and will not perform well in situations where the speech deviates from
the standard: impaired speakers, different speech styles or unusual accents. This makes desirable the use
of automatic methods to extract structure from a data set without requiring any prior knowledge about
it, such as factor analysis (which looks for linear correlations), neural networks (which can find more
complex relationships), etc. Such techniques could also be useful in determining relevant articulatory
regions empirically; this would allow for interspeaker differences in the details of electrode placement
with respect to anatomical configurations or speaker-specific articulatory patterns (Byrd et al., 1995),
rather than using fixed electrode locations for all speakers, as is customary. Thus, one of the goals of
this paper is to find EPG cues in an empirical way, without referring to predetermined indices based on
phonetic knowledge (such as those illustrated in fig. 1).

Adaptive dimensionality reduction for EPG data has been investigated using both linear systems
and neural networks (Nguyen et al., 1996; Holst et al., 1995). Linear approaches have been based on a
rotated principal components analysis (referred to as factor analysis in (Nguyen et al., 1996)). Two layer
feed-forward neural network autoassociators used by (Nguyen et al., 1996) and (Holst et al., 1995) infer a
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Figure 1: A selection of typical EPG data reduction indices reported in the literature (basis vectors of
an orthogonal, linear projection): alveolar (ALV), palatal (PAL), velar (VEL), total of contacts (TOT),
centre of gravity (COG), laterality (LAT), asymmetry (ASY), fricative (FRIC), left-right asymmetry
(LRA), alveolar-palatal (APA) and lateral-median (LME).

set of basis vectors that spans a subspace similar! to that defined by the principal components (Bourlard
and Kamp, 1988; Baldi and Hornik, 1989). These adaptive methods lack a natural interpretation as
probability model (although one may be forced upon PCA (Tipping and Bishop, 1997)). In this paper
we are concerned with methods that explicitly define a full probability model.

Graphically, we can represent both EPG patterns and indices as in figures 1 and 3: each small rectangle
corresponds to one component of the D-dimensional vector (starting in the top left corner and ending in
the bottom right one), where D = 62. The colour of the rectangle, black or white, indicates the positive
or negative sign of the component, and the size of the rectangle is proportional to the magnitude of the
component. The shape of the figure (an 8 x 8 grid where the top corners are unused) follows that of the
palate, the alveolar part being in the top and the velar part in the bottom. Note that in the conventional
pictorial representation of EPG patterns, only binary data are allowed: each position is either empty or
contains a full, black rectangle. Thus, we extend this representation to EPG indices by allowing any real
value in each position. However, the reader should bear in mind that in an EPG pattern all components
are either 0 or 1, and in an EPG index they can be any real number (positive or negative). Thus, fig. 1
depicts EPG indices while fig. 3 depicts EPG patterns.

Concerning phonemic categories, it should be clear that, for practical reasons, no general labelling
of the data was performed, as explained in section 4. However, we use the labels of fig. 3 (identified
perceptually by a phonetician) with the specific purpose of assessing our results in sections 5 to 8.

3 Generative modelling using latent variables

In latent variable modelling the assumption is that the observed high-dimensional data is generated from
an underlying low-dimensional process. The high dimensionality arises for several reasons, including
stochastic variation and the measurement process. The objective is to learn the low dimensional gener-
ating process (defined by a small number of latent variables or hidden causes) along with a noise model,
rather than directly learning a dimensionality reducing mapping,.

We consider here the case where the latent variables are mapped by a fixed transformation into a
higher-dimension observed space (measurement procedure) and noise is added there (stochastic variation).
Such models are commonly known as latent variable models and have been used in a number of fields
to explain a multivariate process in terms of a few independent variables (Bartholomew, 1987; Everitt,
1984).

Consider an observed sample (in data space) {t,})_; C RP of N D-dimensional real vectors that has
been generated by an unknown distribution. In latent variable modelling we assume that the distribution
in data space R is actually due to a small number L < D of latent variables acting in combination. We
refer to this L-dimensional space as the latent space. Thus, a point x in latent space Rl is generated
according to a prior distribution p(x) and it is mapped onto data space R” by a smooth mapping f.
Because f(R”) is an L-dimensional manifold in R, in order to extend it to the whole D-dimensional
data space we define a distribution p(t|x) = p(t|f(x)) on RP, called the noise or error model. The prior
in latent space p(x), the smooth mapping f and the noise model p(t|x) are all equipped with parameters
which we collectively call @. In latent variable modelling these parameters are optimised, typically to
maximise the likelihood of the observed data given the parameters, p(t,|®). This optimisation is often
carried out using an EM algorithm (Dempster et al., 1977). Figure 2 illustrates the idea of latent variable
models.

The joint probability density function in the product space RP x RF is p(t,x) and integrating over

L1f the neural network units have linear activation functions, then both spaces are exactly the same.
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Figure 2: Schematic of a latent variable model with a 3-dimensional data space and a 2-dimensional
latent space.

latent space gives the marginal distribution in data space:

p(t) = [ ptx)ax = [ p(ehp(o dx. (1)
The log-likelihood of the parameters given the sample {t,}Y_, is
N N
[(©) =1log [] p(tn|©) = ) logp(ts|®©) 2
n=1 n=1

which is to be maximised under the maximum likelihood criterion for parameter estimation. This will
provide with a set of values for the parameters, @* = arg maxe [(®), corresponding to a (local) maximum
of the log-likelihood. Note that the log-likelihood value I(®*) allows the comparison of any two latent
variable models (or, in general, any two probability models), however different these may be.

Once the parameters © are fixed, Bayes’ theorem gives the posterior distribution in latent space given
a data vector t, i.e., the distribution of the probability that a point x in latent space was responsible for
generating t:

p(tx)p(x) _  p(tlx)p(x)
p(t) [ p(t|x)p(x) dx’

Summarising this distribution in a single latent space point x* results in a reduced-dimension representa-
tive of t. This defines a corresponding mapping F from data space onto latent space, so that every data
point t is assigned a representative in latent space, x* = F(t). Thus, it can be considered as an inverse
mapping of f. This mapping F will be most successful when the posterior distribution p(x|t) is unimodal
and sharply peaked. Typical choices for F(t) are the mean, E {x|t}, or the mode, arg maxx p(x|t).

Theoretical investigation of the conditions for smoothness of the inverse mapping F is under way. We
can expect such smoothness to be related to the multimodality character of the posterior distribution
of eq. (3) and to the discrete or continuous character of the latent space. For factor analysis and PCA
the inverse mapping is smooth, but not for GTM in general. However, continuity of the inverse mapping
is likely in practical situations where the posterior distribution is unimodal and sharply peaked for the
majority of the training set data points.

Applying the mapping f to the reduced-dimension representative we obtain the reconstructed data
vector t* = f(x*). The reconstruction error for that point t is defined in terms of some distance A(t, t*) in

data space and the average reconstruction error for the sample as Ex = + ZnNzl A(t,,,t%). For example,

p(x[t) = 3)

the Euclidean distance provides with the usual mean squared error criterion E» = & Zle |t,, — t;‘l||§

3.1 Latent variable models

A latent variable model is specified by:



e The functional form of the prior in latent space p(x);
e The smooth mapping f : R — RP from latent space to data space;
e The noise model in data space p(t|x).

We have investigated two specific latent variable models: factor analysis and the generative topographic
mapping (GTM). In both cases the parameters of the model are estimated using the EM algorithm. The
E-step involves estimating the posterior distribution of the latent variables (using the current parameter
values). The M-step is a maximisation of the log-likelihood function in which the posterior distribution
estimated in the E-step is used to fill in the latent variables.

Both these choices of latent variable model implicitly assume that the observed data is continuous,
while the EPG patterns are binary. In the experiments, we shall see that this does not present any
problems. In section 7.2, we also fit a purely binary model to the data, a mixture of multivariate
Bernoulli distributions.

3.1.1 Factor analysis

Factor analysis (Bartholomew, 1987; Everitt, 1984) uses a Gaussian distributed prior and noise model,
and a linear mapping from data space to latent space. Specifically:

e The latent space prior p(x) is unit normal:
p(x) ~ N(0,T). (4)
The latent variables x are often referred to as the factors.
e The smooth mapping f is linear:
f(x) = Ax + p. (5)
The columns of the D x L matrix A are referred to as the factor loadings.
e The data space noise model is normal centred in f(x) with diagonal covariance matrix ¥:
p(}x) ~ N (£(x), ®). (6)
The D diagonal elements of ¥ are referred to as the uniquenesses.
The marginal distribution in data space is normal with a constrained covariance matrix:
p(6) ~ N (1, AAT + ). (7)
The posterior in latent space is also normal:
p(xlt) ~ N (At — ), (T+ ATS71A)7) (8)
A=ATAA"+ &) =T +ATT 'A)ATE (9)
The reduced-dimension representative is taken as the posterior mean:
F(t) = E{x|t} = A(t — p). (10)

Therefore, the inverse mapping F is smooth.

Note that orthogonal rotation of the factors (A’ = AR where R is an orthogonal matrix) does not
alter the distribution in data space, p(t). Thus, from all the factor loadings matrices A, we are free to
choose that which is easiest to interpret according to some criterion, e.g. by varimax rotation?.

The parameters of a factor analysis model may be estimated using an EM algorithm (Rubin and
Thayer, 1982):

2Varimax rotation (Kaiser, 1958) finds an orthogonal rotation of the factors such that, for each new factor, the loadings
are either very large or very small (in absolute value). The resulting rotated matrix A’ has many values clamped to (almost)
0, that is, each factor involves only a few of the original variables. This simplifies factor interpretation.



E step: This requires computing the moments:

E{x|t,} = AT (t, —p)
E{xx"|t,} =1- ADAD + AD (¢, — p)(t, — )T AT

for each data point t,, given the current parameter values A and ¥,

M step: This results in the following update equations for the factor loadings A and uniquenesses ¥:

ACHD — (f: t, E {x|tn}T> <§: E {xxT|tn}T>

N
1
o) — + diag (Z t,tL — ATTVE {x]t, } th)

n=1

where the updated moments are used and the “diag” operator sets all the off-diagonal elements of
a matrix to zero.

The location parameter p is estimated by the sample mean, and does not take part in the EM algorithm.

3.1.2 Principal component analysis

Principal component analysis (PCA) is a factor analysis in which the uniquenesses are constrained to
be equal; i.e., ¥ is isotropic, ¥ = ¢2I. PCA is not usually constructed as a probability model, and is
usually inferred by minimising a least squares reconstruction error.

We refer to a principal components or factor analysis having order L when the first L principal
components or factors are extracted. For a fixed data set we may regard PCA as an additive technique,
insofar a PCA of order L produces the same principal components as a PCA of order L — 1 plus a
new, additional principal component. However, PCA followed by (varimax) rotation does not have this
property anymore.

The property of additivity does not necessarily hold for factor analysis: that is, the factors found by
a factor analysis of order L are, in general, all different from those found by a factor analysis of order
L — 1. That means that one can only talk about the joint collection of L factors (or the linear subspace
spanned by them). However, as reported in section 5, for the EPG data set we used, we found that this
property of factor additivity holds with good approximation: after varimax rotation, the factor loadings
obtained in a factor analysis of order L — 1 appear again with little modification in a factor analysis of
order L. This has an important consequence: the factors can be ordered by a relevance criterion, in the
same way that the principal components can be ordered by the proportion of directional variance they
explain. So, a factor analysis of order 1 produces the first factor; a factor analysis of order 2 finds that
same factor plus a second one, etc. In this situation, it is possible to refer individually to each factor as
having an independent status.

3.1.3 GTM

The generative topographic mapping (GTM) (Bishop et al., 1998) is a nonlinear latent variable model
which has been proposed as a principled alternative to self-organising feature maps (Kohonen, 1995).
Specifically:

e The prior in latent space, p(x), is discrete uniform, assigning nonzero probability only to the points
{xx}< ,, usually arranged in a regular grid:

Plx) = 3 0(x — ). (1)
k=1

This discrete prior can be seen as a Monte Carlo sampling of a continuous, uniform prior.

e The mapping f is a generalised linear model:
f(x) = Wo(x), (12)

where W is a D x F' matrix and ¢ an F' x 1 vector of fixed basis functions.



e The noise model p(t|x) is an isotropic normal centred in f(x):
p(t[x) ~ N (£(x),0°T). (13)

The marginal distribution in data space is a constrained mixture of Gaussians:

1 X
= = plth), (14)
k=1
and the posterior in latent space is discrete:
t|x
plalt) = A (15)
> ey P(t]x3)

The reduced-dimension representative can be taken as the posterior mean or the posterior mode, which
can be quite different from each other if the posterior distribution is multimodal. The inverse mapping F
is not continuous in general, although it will be approximately continuous if the posterior distribution (15)
is unimodal and sharply peaked for most points in data space.

The parameters of a GTM model may be estimated using the EM algorithm:

E step: This requires computing the responsibility R, = p(xx|t,) of each latent space point x; having
generated point t,, using eqs. (11)-(15) with the current parameter values W(7) and ¢(7).

M step: This results in the following update equations for the parameters W and o, respectively:
‘}TG(T)‘}(W(T-FI))T — QT(R(T))TT
(T+1) () f —t
iy = L kzmgfe i) —

where @ = (¢y,...,¢0x)T, T = (t1,...,tx)7, Ris an N x K matrix with elements R,; and G is a
K x K diagonal matrix with elements Gy, = Zgzl R, Solving for W requires (pseudo-)inverting
the matrix ®7 G® at each iteration.

3.2 Finite mixtures of latent variable models

Finite mixtures (Everitt and Hand, 1981) of latent variable models can be constructed in the usual way
as

M
=3 p(m)p(tim) (16)
m=1
where:
e p(tlm), m =1,..., M are latent variable models not necessarily based on latent spaces of the same

dimension, i.e.,

p(t}m) = / p(t, x|m) dx = / p(blx, m)p(x|m) dx

where p(x|m) is the prior distribution in the latent space of the mth component, p(t|x, m) its noise
model and f,, : RE» — RP its mapping from latent space into data space.

e p(m) are the mixing proportions.

The joint density is p(t,x, m) = p(t|x, m)p(x|m)p(m) and the finite mixture distribution can be expressed
as the marginalisation of p(t,x,m) over x and m:

M

2 [ texmax = 5~ ot [ pltixmptatm) e = 3~ plmo(tim).
m=1 m=1
Once the model is formulated and the functional forms of each latent variable model are fixed, estimation
of the parameters can be done by maximum likelihood. As usual with mixture models, the mixing
proportions are taken as parameters p(m) = 7, and included in the estimation process; observe that one
. . M
parameter 7, is not free due to the constraint ), 7, = 1.
Maximum likelihood estimation can be conveniently accomplished with an EM algorithm:



E step: This requires computing the responsibility R, = p(m|t,) of each component m having gener-
ated point t,, using Bayes’ theorem:

P(tn|m)P(m) _ me(tn|m)
p(tn) anlzl TmP(tn|m)

an =

where p(t|m) is given by the latent variable model with the parameter values of the current iteration.

M step: This results in several update equations for the parameters. The update equations for the
mixing proportions are independent of the type of latent variable model used:

N
T 1 § : T T
7T£n+1) = N Rg%ﬂ'gn)
n=1

The equations for the rest of the parameters (from the individual latent variable models) depend on
the specific functional form of p(t|x,m) and p(x|m), but often they are averages of the usual statis-
tics weighted by the responsibilities. EM algorithms are available to train mixtures of factor analy-
sers (Ghahramani and Hinton, 1996) and of principal component analysers (Tipping and Bishop, 1997).

A reduced-dimension representative can be obtained as the reduced-dimension representative of the
mixture component with the highest responsibility: x* = F(t) = x},. such that m* = arg max,, p(m|t).
A reconstructed vector in data space can then be obtained as the reconstructed vector of component m*:
t* = £« (Fp+ (t)). Alternatively, one could average the reconstructed vectors as

t* =Y pmt)Ea(Fn(t) = D p(m[t)t),. (17)

In particular, mixtures of factor analysers can be constructed where each factor analyser of L factors
is characterised by two kinds of parameters: the mean vector p,,, and the loadings matrix A,, (containing
L loading vectors), in addition to the mixing proportion 7.

3.3 Mixtures of multivariate Bernoulli distributions

We also modelled the EPG data sets with a mixture of multivariate Bernoulli distributions, where each

component m is modelled as a multivariate Bernoulli distribution with parameters p,, = (Pm1,---,Pmp) 7 :
D D
p(tim) = [ pita(t — p)' " = [ p(talm). (18)
d=1 d=1

Note that this is not a latent variable model because it does not have the form of eq. (1): there is no
underlying latent space. Although one could consider the variable m, which indexes the components, as
a latent variable (this is the principle of latent class analysis (Everitt and Hand, 1981)), we are interested
in possibly multidimensional latent spaces.

While all the previously commented models were designed for continuous variables, disregarding the
binary nature of the EPG data, this is a purely binary model. Also note that, while a multivariate
Bernoulli distribution considers each component of the t vector independently (p(t|m) being a product
distribution), this independence is broken in the mixture model, which thus can account for correlations
between variables.

4 Data set description

We have used a subset of the EUR-ACCOR database (Marchal and Hardcastle, 1993). This database,
designed for the cross-language study of coarticulation, contains different kinds of measurements (elec-
tropalatography, pneumotachography, laryngography and some EMA, as well as the original acoustic
signal) for utterances, isolated words and nonsense items spoken by several subjects in seven different
European languages (French, English, German, Italian, Catalan, Swedish and Irish Gaelic) and varying
speech styles (slow, fast, etc.). The EPG data consists of 62-bit frames sampled at 200 Hz.

We have selected EPG frames corresponding to the English language, in which each of 6 different
subjects recorded 14 different utterances. The data set was divided into 6 parts, one for each speaker,
and the data of each speaker was split into a training and a test set: utterances 1, 3-5 and 9-14 were put



Figure 4: Factors for speaker RK after varimax rotation.

into the training set and utterances 2 and 6-8 into the test set (see appendix B). The criterion followed
was to have a balance between the number of different EPG frames (i.e., excluding repeated patterns)
between the test and training set: roughly 80% for training and 20% for test (depending on each speaker).

All the data used were unlabelled. Labelling each EPG frame with the phoneme it corresponds to is
a time-consuming process, requiring manual annotation of the EPG sequence in relation to the acoustic
signal (and perhaps other signals) by a phonetician; automatic annotation is possible using a speech
recognition program but prone to errors. This is another reason to perform unsupervised learning of the
EPG data, so that articulatory categories can be extracted directly from the data in the form of factors,
prototypes or, more generally, a latent-variable space.

5 Results using factor analysis and principal component analy-
sis

For all the experiments we report, maximum likelihood factor analysis was performed using an EM
algorithm (Rubin and Thayer, 1982) with random starting points. Once the relative increase in log-
likelihood was smaller than 10~7, the iterative procedure was stopped and varimax rotation was applied
to the factors.

Figure 4 shows the factor loadings obtained for a factor analysis of order 9, ordered by relevance for
speaker RK. Considering the loading vectors as linear indices, it is apparent that many of the indices of
figure 1 may be associated to the factor loadings or to linear combinations of these loadings (e.g. ALV,
PAL and VEL with factors 3, 7 and 1, respectively).

This association may be regarded as an empirical justification of these phonetic indices, since they
account for a large proportion of the correlation between variables, as well as possessing a straightforward
interpretation. However, if we compare figure 4 with figure 5 (corresponding to speaker HD) we see that,
although some factors are approximately equal for both speakers (e.g. factor 8 in RK is factor 2 in HD),
there are significant differences, revealing different articulation trends. For example, speaker HD tends to
produce EPG patterns which are much less symmetrical than those of RK. Such variations are difficult
to track with fixed indices; e.g. the asymmetry index will give no extra information for a speaker that

As

Figure 5: Factors for speaker HD after varimax rotation.



Figure 7: Principal components for speaker RK after varimax rotation.

does not produce any asymmetric patterns.

We also applied principal component analysis to the same training sets as factor analysis. The first
9 principal components for speaker RK are shown in figure 6. We note that most of the basis vectors
contain both positive and negative values, thus lacking a simple interpretation. After a varimax rotation
(figure 7) most basis vectors contain a majority of positive values, with several being similar to some of
the factors of fig. 4. This is a consequence of the uniquenesses matrix ¥ being relatively isotropic (a
multiple of the identity matrix), in which case factor analysis is equivalent to PCA. However, in a general
situation the two methods give different results.

The factor analysis and PCA representations may be evaluated in terms of log-likelihood and recon-
struction error. The left side of figures 8 and 9 show the log-likelihood of the factor analysis and PCA
models for the training and test data sets of speaker RK and for different numbers of factors or principal
components, respectively. In both models the log-likelihood value was computed as:

1(®) = —g (Dlog2m +1log |Z(®)| + tr (SZ(@)71)) (19)
where S = + SN (tn — ) (b, — £)7 is the sample covariance matrix of the data set, with § = % SN L ta
being the sample mean. X(®) is the covariance matrix under the model specified with parameters ©,
ie., (A, ¥, u) = AAT + W for factor analysis and (A, 02, ) = AAT + 621 for PCA, according to
the probabilistic PCA model of (Tipping and Bishop, 1997). Note that factor analysis is systematically
better than PCA, as the theory predicts, because PCA is a particular case of factor analysis in which the
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RK. TR and TE refer to training and test set, respectively.
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Figure 9: Log-likelihood (left) and reconstruction error (right) of the PCA model for speaker RK. TR
and TE refer to training and test set, respectively.

uniquenesses are forced to be equal. That is, factor analysis is a more complete model than PCA. Not
shown in the figure is the fact that the maximum achievable log-likelihood is identical for PCA (using
the limit of 62 principal components) and factor analysis (using 51 factors, the identifiability limit?).

The right side of figures 8 and 9 shows the reconstruction error of the factor analysis and PCA models,
respectively. For PCA, the projection on the L principal components was used; for factor analysis, the
projection using (10) was used. The reconstruction error was defined in the usual way:

N
B, = %; 6 — (AA(E = 1) + )l (20)

where for PCA, A = AT contains the first L principal components and for factor analysis, A contains
the factor loadings and A is defined in (9). According to the squared reconstruction error criterion PCA
is systematically better than factor analysis; note that PCA is optimal among linear mappings according
to this criterion on the training set. Further the directional variance (along each component or factor)
decreases monotonically in PCA, while in factor analysis it does not—although it has a tendency to
decrease with the relevance order.

6 Results using GTM

A factor analysis goodness-of-fit test* (valid in the asymptotic limit of large samples) is available for the
null hypothesis that “the data sample can be explained with L factors” (Everitt, 1984), i.e., that the
covariance of the observed variables can be accounted for with L factors. For our training sets (of sizes
well above N = 5000 in all cases) and at a significance level of 5%, this hypothesis was rejected for all
L < 45. A similar test is available for PCA and the null hypothesis was rejected for all values of L at
the same significance level. This suggests that linear methods are not powerful enough and are able to
extract only a fraction of the information contained in the EPG data.

Nonlinear mappings are accommodated by the latent variable framework, but arbitrary mappings and
probability distributions present insurmountable mathematical and computational difficulties, particu-
larly in the analytical evaluation of integral (1) (Carreira-Perpifidn, 1997). Therefore the actual choice is
limited. The generative topographic mapping (GTM) (Bishop et al., 1998) is a latent variable model well
suited to visualisation, since the latent space is effectively limited to two dimensions®. We trained GTM
models with the following parameters: 20 x 20 grid in two-dimensional latent space (K = 400 points),
scaled to the [—1,1] x [-1, 1] square, and v/F x v/F grid in the same square of F Gaussian basis functions
of width equal to the separation between basis functions centres; v/F varied from 3 to 14. Training was

3In order that the factor analysis model be identifiable, the number of degrees of freedom %((D — L)?2 — (D + L)) must
be positive (Bartholomew, 1987; Everitt, 1984), which gives an upper bound for the number of factors to be extracted.

4This statistical test should be considered only as qualitative evidence, since we follow a Bayesian approach, under which
hypothesis tests are not generally valid (Berger, 1985, pages 145-157). Also, this test requires normality of the population,
which does not hold for our EPG data sets.

5 Although theoretically it may use a latent space of any dimension L, in practice one uses L < 2, since the computational
complexity is approximately exponential in L due to the curse of the dimensionality.
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Figure 10: Log-likelihood (left) and reconstruction error (right) of the GTM model for speaker RK. TR
and TE refer to training and test set, respectively.

achieved by an EM algorithm, stopping when the relative increment in log-likelihood was smaller than
10~*; the starting point was not random, but derived from the first principal components of the data set,
as described in (Bishop et al., 1998).

Figure 10 gives the log-likelihood (left) and the reconstruction error (right) for the GTM models
(speaker RK). We can see that:

e While the log-likelihood for the training set increases monotonically with increasing F', that of
the test set reaches a maximum at around F' = 49 and starts decreasing again. This means that
overfitting is occurring for F' > 49: the model is learning too well the training set but cannot
generalise to the test set properly. The phenomenon of overfitting did not appear in the previous
models, probably due to the small number of parameters used by them (although the log-likelihood
curves for the test set do flatten if many factors or principal components are used). Note that the
reconstruction error continues decreasing monotonically past F' = 49.

e The log-likelihood of the GTM model (even with a relatively small number of basis functions, to
avoid overfitting) is better than the highest possibly attainable log-likelihood of both PCA and
factor analysis (i.e., using any number of principal components or factors). The reconstruction
error using as reduced-dimension representative the mode of the posterior distribution® is very
small, comparable to that of a PCA with 10 principal components or more (i.e., a latent space of
dimension L = 10).

We remark that GTM is using a latent space of only dimension 2, while the curves for factor analysis
and PCA correspond to latent spaces of higher dimension.

GTM is then a much better generative model for the EPG data set than PCA or factor analysis, due
to the fact that the mapping between latent and data space used by GTM is an expansion in radial basis
functions, which have been proven to be able to approximate any smooth function to arbitrary accuracy
given enough basis functions (Park and Sandberg, 1993). However, the number of parameters of a GTM
model is typically much higher than that of the other models we have analysed.

As we mentioned in section 3, the reduced-dimension representative for a data point t is obtained
as a particularly informative point in latent space according to the posterior distribution for t. For
factor analysis and PCA this posterior distribution is normal (more or less broad, depending on the
covariance matrix) and there is no doubt as to what reduced-dimension representative to select, because
the normal is unimodal: the mean (equal to the mode). This is not necessarily the case for GTM, though:
in principle, the posterior distribution for a given data point can be multimodal, which makes difficult
selecting a single reduced-dimension representative. However, once our GTM model was trained, we
found that the posterior distribution was unimodal and sharply peaked for over 90% of the data points.
Thus, almost every EPG pattern can be associated to a unique point in two-dimensional latent space.
Clearly, the coordinates of the reduced-dimension representative could be considered as (nonlinear) EPG
data reduction indices.

The two-dimensional GTM model is slow to train using large data sets—around 60 times slower than
real time on this problem using a Sun Ultra-170 workstation. However, for a trained model, evaluating

6Using as reduced-dimension representative the mean of the posterior distribution gave a slightly larger error in all cases.
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Figure 11: Means p,, and factor loadings A,, for a mixture of M = 4 factor analysers, each of L =1
factor (for speaker RK). Below each pair (,,, Ay,) is the mixing proportion 7, of component m.
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Figure 12: Log-likelihood (left) and reconstruction error (right) of the mixture of factor analysers model
for speaker RK. TR and TE refer to training and test set, respectively.

the posterior distribution in latent space (and hence the reduced-dimension representative) is fast.

7 Results using mixture models

7.1 Mixtures of factor analysers

We modelled the same training sets with a mixture of factor analysers. Again, a maximum likelihood
estimate for the parameters of the model was found via an EM algorithm (Ghahramani and Hinton,
1996), with random starting point and stopping when the relative increment in log-likelihood was smaller
than 10~*. The parameters are now the mixing proportions 7, of the mixture (that correspond to the
prior probabilities of the different mixture components) and the means p,, and factor loadings A,, of
each factor analyser.

Figure 11 shows the results for a mixture with 4 components, each of them a factor analysis of
first order. The means coincide with some of the typical EPG patterns of fig. 3 (and with some of
the prototypes found by the mixture of multivariate Bernoulli distributions of the next section). The
corresponding loading vectors coincide with or are approximately a linear combination of several of the
factor loadings of fig. 4. This implies that the mixture does not find new factors, but that it places
different factors in different locations of data space, adapting to the local behaviour of the correlations.
For example, component number 2 is located in the area of vowels like /a/ and is associated to a factor
stressing velar patterns with some left-right asymmetry.

In all our experiments, a first-order factor analysis was used for each component (which made vari-
max rotation unnecessary), varying only the number of components in the mixture. The reason for
not using higher order factor analysers is that the estimation algorithm systematically tends to a sin-
gularity of the likelihood surface, where some of the uniquenesses tend to zero and the ¥ matrix is not
positive definite. This is a well-known problem in the literature of factor analysis and finite mixture
distributions (Bartholomew, 1987; Everitt and Hand, 1981), called Heywood case.

As before, the left side of figure 12 shows the log-likelihood of the mixture of factor analysers model for
all data sets of speaker RK, and the right side the reconstruction error (M is the number of components
in the mixture). The log-likelihood of the mixture is always superior to that of simple factor analysis (the
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Figure 13: Prototypes for a mixture of multivariate Bernoulli distributions (for speaker RK).

Q
ab
— 10
=
I
St
~ 2r
13 = 8f
A &
-~ -
E i @
k =]
—~ 9 61
=z -
= 5
3 :
o 0 o 00 [} +
= o g ® oo oTE @ 4
% -1k o o TR S
f Q
= [
o0
o -2r
=
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of components M Number of components M

Figure 14: Log-likelihood (left) and reconstruction error (right) of the mixture of multivariate Bernoulli
distributions model for speaker RK. TR and TE refer to training and test set, respectively.

latter being a more restricted maximum likelihood model), and the reconstruction error is always smaller
as well, although there is not much difference. The mixtures considered do not result in a significantly
improved performance over factor analysis.

7.2 Mixtures of multivariate Bernoulli distributions

We trained a mixture of multivariate Bernoulli distributions with an EM algorithm (Everitt and Hand,
1981; Wolfe, 1970), using random starting values for the parameters and stopping when the relative
increment in log-likelihood was smaller than 10~*. In this case, the only parameters to be estimated
(apart from the mixture proportions) are the Bernoulli probabilities p,, = (Pm1,---,Pmp)? of each
component, which can be considered as the prototype vectors for that component, since the mean of a
Bernoulli distribution coincides with its p value. Observe that, since each Bernoulli probability (of the
corresponding electrode being activated) is in the range [0, 1], the prototypes obtained are interpretable
as EPGs without the necessity of any transformation, such as varimax rotation.

Again, we observed that for this data set the mixtures also have approximately the property of
additivity mentioned in section 3.1.2, and so we can order the prototypes obtained. A mixture with
M =9 components produced the prototypes shown in fig. 13, in decreasing order of relevance from left
to right. Those prototypes are easily recognisable as some of the typical EPG patterns of fig. 3, e.g. p2
with /[/, ps with /1/ or p¢ with /g/. Thus, the mixture may be doing a good job at estimating the
density of the distribution of the EPG data in D = 62 dimensions, but—as noted in section 3.2—it does
not achieve dimensionality reduction. The most it can do is to assign each data vector to its most likely
component (in the sense of highest posterior probability) and reconstruct it as the prototype (p,, vector)
of that component. This is essentially vector quantisation.

Figure 14 (left) shows the log-likelihood for speaker RK (where M is the number of components
used). The addition of new components after the first 4 or 5 does not increase much the log-likelihood.
Figure 14 (right) shows the reconstruction error, which is quite large compared to most of the other
methods, confirming that this model is not good for vector reconstruction.

Also, note that the phenomenon of overfitting appears here again: the log-likelihood for the test set
reaches a plateau at about M = 4.

EM estimation of a mixture of multivariate Bernoulli distributions will always give a positive likelihood
from almost every starting point (Carreira-Perpifidn and Renals, 1998). In particular, boundary values
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(where some p;,,4 can be 0 or 1) will not give rise to a likelihood equal to 0 (and a log-likelihood equal to
—o0) for points in the training set. However, this is not necessarily the case for other data sets. This is
an undesirable feature arising from the Bernoulli distribution itself: a Bernoulli distribution of parameter
p =0 (1) can never generate a 1 (0). The other models studied (based in the normal distribution) assign
to any point in the domain a strictly positive probability, however small this may be. Thus, for each
speaker, a few points from the test set (usually less than 2%) were removed in a number of occasions in
order to obtain a finite log-likelihood in figure 14.

8 Two-dimensional visualisation of EPGs

We consider now the issue of graphically representing a set of EPG frames, possibly a sequence obtained
during an utterance. When there are more than two indices, the usual way to do this is by plotting the
variation of all the indices with the time in an X-Y plot (called trajectory or contact profile) where time
goes in abscissas and the index or indices of interest in ordinates (Byrd et al., 1995; Hardcastle et al.,
1991b). However, when there are only two indices a more natural representation is possible: both index
values are used as the X-Y coordinates in a plane, with points consecutive in time being linked by an
arrow. If the two indices are powerful enough to adequately discriminate between different articulatory
classes, the two-dimensional representation will be a map of articulatory regions.

There are statistical methods specifically suited to find the best projection of a multidimensional data
set in the sense that it maximises a certain criterion. For example, discrimination between classes (Fisher’s
linear discriminant), departure from normality (projection pursuit) or a stress measure (multidimensional
scaling); see (Huber, 1985; Mardia et al., 1979). These methods do not propose a model for the high-
dimensional data. In contrast, our latent variable models are trained not find an optimal low-dimensional
projection but to model best the data according to the maximum likelihood criterion. Nevertheless, the
two-dimensional representation found by them (in particular by GTM) turns out to be good”, as one
might intuitively expect.

Figure 15 shows such a representation using pairs of factors for speaker RK. In the left picture,
factors 1 and 2 were used, while in the right one 3 and 4 were used. The labels correspond to the typical
EPG patterns of figure 3, while the trajectory corresponds to the highlighted fragment of the following
utterance: “I prefer Kant to Hobbes for a good bedtime book,” with phonemic transcription /a1 prr'fs
’kaent to "hobz for o 'gud ’bedtamm ’buk/. In each picture, the trajectory was obtained by projecting onto
two-dimensional latent space each of the EPG frames of the utterance fragment and linking consecutive
ones by a straight line. For visualisation purposes, we are free to choose the best pair from the factors
extracted. In fact, factors 3-4 give a poor view of the data while factors 1-2 give a better one.

Figure 16 shows, for the case of two-dimensional GTM with F = 49 basis functions, the two-
dimensional latent space with the same typical EPG patterns and utterance fragment as in fig. 15. Now,
points in two-dimensional latent space which correspond to consecutive EPG frames in the utterance have
been labelled with a correlative number to show more clearly the path followed by the reduced-dimension
representative. The GTM map presents a much clearer layout of the articulatory classes than the best
pair of factors did.

These two-dimensional maps obtained by latent variable models can be useful to analyse articulatory
dynamics. Since the inverse mapping F defined in section 3 is continuous for factor analysis and ap-
proximately continuous for GTM, and since the EPG signal is assumed to be a continuous function of
the time (due to the mechanical constraints of the tongue-palate system), discontinuities in the latent
space trajectory must be due to abrupt jumps in the sampled EPG sequence in data space. This is the
case for the transition from /s/ to /nt/ in the utterance mentioned (fig. 17). The reason is that the
EPG sampling frequency (equal to 100 Hz), while generally appropriate, is too low in situations where
the tongue moves very fast and this results in missing EPG frames. The latent variable two-dimensional
maps are able to detect this situation. Note, however, that the concept of continuity is not well defined
because:

e The EPG frames are binary. Still, for a high enough sample frequency, one can expect most
neighbouring frames to be very close (in both the Euclidean and Hamming distance sense).

e The latent space in GTM is discrete. However, owing to the fact that for most data points the
posterior distribution was unimodal and sharply peaked, examination of the EPG sequence of the

7"We realise that our comparisons here are of qualitative value only. However, making them quantitative would take us
too far away, as it would require defining an index of goodness of two-dimensional representation and comparing our latent
variable models with some of the other methods. A further obstacle is that our data are unlabelled.
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Figure 15: Two-dimensional plot of the trajectory of the utterance fragment “I prefer Kant to Hobbes
for a good bedtime book” using factor analysis for speaker RK (left: latent space of factors 1 and 2;
right: latent space of factors 3 and 4). The start and end points are marked as * and o, respectively. The
phonemes are located on the figure by projecting the prototypes of figure 3 using equation (10).
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Figure 16: Two-dimensional plot of the trajectory of the utterance fragment “I prefer Kant to Hobbes
for a good bedtime book” using GTM with F' = 49 basis functions and a 20 x 20 latent space grid (left:
speaker RK; right: speaker HD). The start and end points are marked as * and o, respectively. Points
are numbered correlatively. The phonemes are located on the figure by projecting the indices of figure 3
using the posterior mean of the GTM model.
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Figure 17: Discontinuities in the latent space due to discontinuities in the EPG sequence of the utterance
fragment “I prefer Kant to Hobbes for a good bedtime book.” For speaker RK, the transition from /a/
to /nt/ occurs from frame 335 to frame 336. The right part of the figure shows the three consecutive
EPG frames. The plots on the left part show the corresponding trajectory in the two-dimensional map
of factor analysis (factors 1 vs. 2, left; factors 3 vs. 4, centre) and GTM (right).
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Figure 18: Comparison between methods in terms of log-likelihood for speaker RK (left: training set;
right: test set): factor analysis (FA), principal component analysis (PCA), generative topographic map-
ping (GTM), mixtures of factor analysers (MFA) and mixtures of multivariate Bernoulli distributions
(MB). Note that the x axis refers to the order of the factor analysis or principal component analysis, the
number of mixture components in the case of mixture models and the square root of the number of basis
functions in the case of GTM.

utterance showed that nearby points in data space were most times projected on neighbouring
points in latent space.

Two-dimensional maps are also useful in speech therapy, speech assessment or language learning
applications. For example, in speech therapy, most systems (such as the IBM SpeechViewer (Pratt
et al., 1993)), provide real-time visual and auditory feedback on a range of speech parameters. Auditory
feedback is available as normal or reduced-speed playback. Visual feedback includes cartoon graphics,
intended for the speaker, and technical displays, useful for the therapist to monitor the details of the
speaker’s performance or to show aspects of speech patterning. The latter include displays over time of
the fundamental frequency or the amplitude, 3D spectrograms, etc. If articulatory regions are drawn
on the two-dimensional latent space, the speaker will receive instantaneous feedback in an intuitive way
about the correctness of the articulatory gesture that he is trying to produce, a difficult task to achieve
with the raw data. See (Hardcastle et al., 1991a) for a specific account of the uses of electropalatography
(using both raw and reduced data) in speech therapy.

9 Discussion

9.1 Method comparison

Figures 18 and 19 show the log-likelihood and reconstruction error, respectively, for the training and test
sets of speaker RK and all the models studied. The curves for other speakers were also very similar®.
Removing repeated EPG patterns from the data set (keeping at most one instance of every EPG pattern)
did not affect considerably either the curves or the prototypes or factors found (the mixing proportions
do get affected, being related to the prior distribution of the components).

Our primary criterion is the log-likelihood in the test set, since it measures the generalisation power
of the generative model. Reconstruction error is of secondary importance from a modelling perspective,
since it treats equally the true data and the noise—although a good model in terms of likelihood will
usually have a low reconstruction error as well.

For the cases studied, overfitting in the log-likelihood can appear if the number of parameters of the
model is large enough (e.g. GTM in the right side of fig. 18), but the reconstruction error presents a
steady decrease in both the training and test sets for any number of parameters (fig. 19).

Linear models (factor analysis and PCA) The training set curves confirm the theory: factor
analysis outperforms PCA in log-likelihood (PCA being a particular case of factor analysis) while PCA

8The ranking of the methods was virtually the same for all our six speakers. A Friedman test showed significant n-wise
differences (at a significance level of 1%) between the effect of the methods. Although this test does not require normality of
the population (being a nonparametric test), again this evidence should be only qualitative under the Bayesian viewpoint.
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Figure 19: Comparison between methods in terms of reconstruction error for speaker RK (left: training
set; right: test set): factor analysis (FA), principal component analysis (PCA), generative topographic
mapping (GTM), mixtures of first order factor analysers (MFA) and mixtures of multivariate Bernoulli
distributions (MB). Note that the z axis refers to the order of the factor analysis or principal components

analysis, the number of mixture components in the case of mixture models and the square root of the
number of basis functions in the case of GTM.

outperforms factor analysis in reconstruction error (since PCA is the linear transformation with minimal
squared reconstruction error). Interestingly, PCA outperforms factor analysis in log-likelihood in the test
set for speakers RK and HD. We can conclude that for our data set the PCA model is almost as good as
the factor analysis one. Both methods are computationally straightforward.

Mixtures of latent variable models have the advantage of providing with different latent variable
models in different data space regions, thus adapting to local structure of the data. This often is a good
modelling assumption, in that data are usually due to a number of different, concurrent processes. The
mixtures of factor analysers, using a latent space of only one dimension, have a performance similar to
that of factor analysis with several factors. This makes them promising for higher dimensions of the
latent space. However, their practical application is limited as long as an algorithm which efficiently
avoids singularities in the log-likelihood surface is not available. One could perhaps overcome this by
constraining the domain of some parameters, although the question arises of how much to constrain them.
More generally, one could use regularisation techniques (Girosi et al., 1996) in the form of a prior on the
parameters. Not all mixtures are affected by this problem, either because of the nature of the likelihood
surface (e.g. mixtures of multivariate Bernoulli distributions (Carreira-Perpifidan and Renals, 1998)) or

because a direct algorithm to find maxima of it is available (e.g. mixtures of PCAs (Tipping and Bishop,
1997)).

Mixtures of multivariate Bernoulli distributions fare worse than all the other methods in all
categories despite being the only model purely for binary data. Computationally they are also more
costly than linear models. Their use for EPG data modelling is thus discouraged.

The generative topographic mapping (GTM), a nonlinear latent variable model, appears to be
the best model in all categories. Taking the point of F' = 49 radial basis functions (which gives the
maximum likelihood in the test set), it clearly outperforms all the other models in log-likelihood and also
reconstruction error (PCA needs a latent space of more than L = 10 dimensions to achieve a comparable
reconstruction error). GTM achieves this with a latent space of only L = 2 dimensions, while the other
methods were tested up to L = 15 (except the mixtures of factor analysers). The major drawback of
GTM is its computational complexity, exponential in the dimension of the latent space, which limits it
to L = 2 dimensions in practice. Nevertheless, two-dimensional visualisation can be of interest in many
speech applications, as we noted in section 8.

9.2 Model validity

Validity of a priori indices The results from factor analysis show that:
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e The similarity between the factors found and some of the linear data reduction indices proposed in
the literature (Hardcastle et al., 1991b; Jones and Hardcastle, 1995), which have been designed using
a priori assumptions, gives empirical support to the validity of the latter: such indices effectively
capture a good deal of linear correlation in the data.

e However, the fact that the factors differ according to the EPG database employed indicates that
fixed indices will not perform well on all databases (corresponding to different speakers, different
speech styles, etc.). In order to capture as much structure as possible from a given database it is
necessary to let the data speak for itself.

Model identifiability A class of models is identifiable if there exist no two different sets of values for
the model parameters (apart from permutations and rotations) that produce exactly the same probability
distribution. Interpreting models from an unidentifiable class may thus be difficult (Bartholomew, 1987;
Everitt, 1984; Everitt and Hand, 1981). The following results are known:

e PCA is always identifiable except in the case of equality of eigenvalues of the sample covariance
matrix.

e Factor analysis followed by (varimax) rotation is also identifiable.

e While mixtures of multivariate Bernoulli distributions are unidentifiable for all dimensions (Gyllen-
berg et al., 1994), estimation of the mixture parameters from different, random starting points can
still produce meaningful results (Carreira-Perpindn and Renals, 1998).

e To our knowledge, no identifiability results are known for either mixtures of factor analysers or
GTM.

Model additivity In section 3.1.2 we introduced the concept of model additivity for PCA and factor
analysis, and we found that a similar phenomenon was observed for mixtures of multivariate Bernoulli
distributions. There we claimed that often—whether the model is identifiable (e.g. factor analysis) or
not (e.g. mixtures of multivariate Bernoulli distributions)—the factors or prototypes found in a model of
order L are very approximately those of a model of order L — 1 plus a new one. Here we add some more
facts, based in our experience with the data sets analysed in this paper:

e Sometimes one does not obtain a new, stable factor or prototype but an intermediate one which
will unfold into two new, stable ones in higher-order models.

e Past a certain order the models begin to produce repeated versions of some of the prototypes
(typically the more relevant ones). This indicates that that order is probably too high and that a
smaller one should be tried.

e While standard PCA is additive (the principal components being the eigenvectors of the sample
covariance matrix ordered by the magnitude of the associated eigenvalue), PCA followed by varimax
rotation is not. The components change considerably between adjacent orders.

In our data sets the phenomenon of additivity holds, but we do not have a theoretical basis for a general
situation.

9.3 Intrinsic dimensionality of the EPG data

All the models described need to know in advance either the dimension of the latent space L or the number
of components in the mixture M. This is a common disadvantage of most dimensionality reduction
methods and is directly related to the determination of the intrinsic dimensionality of the EPG data.
That is, the number of degrees of freedom of the articulatory system that generates the EPG patterns:
the tongue and the hard palate. This is a matter currently being investigated (e.g. see (Stone, 1991;
Nguyen et al., 1994; Nguyen et al., 1996) and references therein); a dimension of 5 to 10 is usually
suggested. Alternatively, one can try to infer this intrinsic dimension directly from the data set by
standard statistical techniques of model selection.

In the models analysed in this paper, one can often get a rough idea of what the appropriate number
of latent variables or components is by examining the factors or prototypes found. For example, if in a
mixture of multivariate Bernoulli distributions several prototypes look very similar (e.g. see fig. 13), it
is obvious that one should try a mixture with fewer components even if the log-likelihood decreases a
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bit. Also, plotting the log-likelihood in the training and test sets versus the number of latent variables or
components can help to avoid overfitting by selecting L or M such that the log-likelihood with the test
set is maximal.

The fact that the dimension of the latent space or the number of components found in any of these
ways may be optimal with respect to the model does not guarantee that it actually matches the intrinsic
dimensionality of the EPG data, because the model may be bad for this data. Nevertheless, the two-
dimensional representation produced by GTM and its performance in log-likelihood and reconstruction
error (compared to that of the other methods, which use more latent variables) suggest that the intrinsic
dimensionality of the EPG data may be substantially smaller than that claimed by other studies.

Determining the intrinsic dimensionality of the EPG data would be a significant step towards the
solution of the acoustic-to-articulatory mapping and the construction of a realistic mechanical model
of the vocal tract. However, a purely phenomenological, or black-box, approach—where all hope for
finding a simple model is abandoned—may be more fruitful from a practical point of view. That is,
a low-dimensional model of high complexity (with a high number of parameters) may offer no help to
understand the physical behaviour of the articulatory system yet be able to mimic it to a desired level of
accuracy.

10 Conclusion

We have shown that latent variable models, owing to their ability to produce a reduced-dimension rep-
resentation of a data set, can be useful to present the relatively high-dimensional information contained
in the EPG sequence in a way which is easier to understand and handle, e.g.:

e The loading vectors and principal component vectors of factor analysis and PCA, respectively, can
be used as conventional EPG data reduction indices, with the advantage of adapting better to the
database under consideration.

e A two-dimensional latent space representation can be used for the analysis of EPG sequences in
several applications, such as speech therapy, language learning and articulatory dynamics.

This is a significant advantage over general probability models and mixtures of them, which are suitable
for classification or clustering but not for dimensionality reduction.

The superior performance of a two-dimensional GTM model over the other methods indicates that
the EPG data may be appropriately accounted for with a very small number of degrees of freedom as
long as a nonlinear, complex model is used.
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A Notation

We denote scalars in italics (m) and vector and matrix quantities in boldface (x, A). I is the identity

matrix. &(x) is the Dirac delta function. N (u,X) is the multivariate normal distribution of mean g

. . 2 L . .
and covariance matrix ¥. |[|x||; = > ;_, #7 is the squared Euclidean, or sum of squares, or L norm.

E {x} = [ xp(x) dx is the mean of a (continuous) distribution.

B Sentences from the EUR-ACCOR database employed in the
experiments, with phonemic transcription

Detailed annotations of some of the utterances can be found in (Nicolaidis and Hardcastle, 1994).
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The hostess should always wear clean gloves.
When the song’s the thing, the cast can’t sing.
All the keys have been handed out, Bill.

I prefer Kant to Hobbes for a good bedtime book.
/a1 prr'f3 ’keent to 'hobz for o ’gud 'bedtaim buk/

Fred can go, Susan can’t go, and Linda is uncertain.

=W oo

We tore down the outbuildings.
Bella ran past the school, then came towards us.

The cold front is expected to pass this way on Sunday.

© ® N o

The catalogue lists just his own brand of tyre.

10. Put your hat on the hatrack and your coat in the cupboard.
11. She climbed up to see behind the clock.

12. Tt’s a good thing he’s not just fooling around.

13. Stats by such a student will surely be trashed after tests.

14. The lads showed us a strategy for trimming his moustache surreptitiously.
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