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ABSTRACT

In this paperwe define an acousticconfidencemeasurebased
on the estimatesof local posteriorprobabilitiesproducedby a
HMM/ANN largevocalulary continuousspeectrecognitionsys-
tem. We usethis measurdo segmentcontinuousaudiointo re-

gionswhereit is andis not appropriate¢o expendrecognitionef-

fort. The sggmentationis computationallyinexpensve and pro-
vides reductionsin both overall word error rate and decoding
time. Thetechniques evaluatedusingmaterialfrom the Broad-
castNews corpus.

1. INTRODUCTION

Most speectrecognitiontasksto datehave requiredthe recogni-
tion of discreteutterancesver which boththe spealkr andchan-
nel characteristiceemainconstant.lIt is given thatthe datasup-
pliedto therecogniseis speeclandsospeechdetectioramounts
to little morethantrimmingoff leadingandtrailing silences How-

ever, practical speechrecognitionsystemscannotexpectto be

suppliedwith suchpre-sgmenteddata. Facedwith an unsey-

mentedstreamof audio,from a radio broadcasfor example,the

first taskthatmustbe performedis to decidewhich regionscon-

tain speectandwhich regionsdo not.

Giventhatwe acceptthe limitations of our speechrecognisera
pragmatiagoalis nota segmentatiorinto speeclandnon-speech,
but ratherinto regions that are recognisable speechand those
whicharenot. Thissecondtlassnotonly containsnon-speechu-
dio, suchasmusic,but alsospeector which theacousticcondi-
tionsaresuchthatthe datais not suficiently well matchedoy the
modelsto producea reliablerecognitionresult. A relatedmodel
basedapproacho speechietectionis describedn [1].

If this segmentationcanbe provided throughthe useof a purely
acousticconfidencemeasurewhich is not dependenupon ary

particulardecodinghypothesegseesection2), it may be com-
putationallyinexpensve and computedbeforerecognitionis at-

tempted.A segmentatiorsystemof this kind concentratesecog-
nition effort exclusively uponregionswhereit maybeusefullyap-
plied. Theremaindenof the paperdescribesheformationandap-
plication of sucha confidenceneasuralerived from local poste-
rior probabilityestimateproducedy the ABsoT HiddenMarkov

Model/Artificial NeuralNetwork (HMM/ANN) largevocahulary
continuousspeectrecognition(LVCSR)system2].

This work was supportecby ESPRITLong Term ResearctProject
20077(SPRACH) andby anEPSRCstudentship.

2. ACOUSTIC CONFIDENCE MEASURE

A confidencaneasurenay be definedasa functionwhich quan-
tifies how well amodelmatchesa spolen utterance Sucha mea-
sure may be derived from the output of both the acousticand
languagemodels,or from eithermodelseparately An acoustic
confidencemeasuras onewhich is derived exclusively from the
acoustiomodel. Theacousticconfidenceneasuremplo/edhere,
S(ns, ne), is theentropy of the K posteriomphoneprobabilityes-
timatesq outputby arecurreninetwork averagedover aninterval
D [5]:
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wherex is theacousticdataandtheinternval D = ne — ns + 1,
with thestartandendframesdenotedn, andn. respectiely.

In regionsof the signalwherethe modelsprovide a good match
to the data,the distribution of phoneposteriorswill typically be
dominatedby a single phoneclass. Sucha distribution haslow
entropy. However, duringregionsof non-speechor poorly mod-
elled speechseveralalternatve phonemodelsmay have roughly
equalposteriorprobabilities Jeadingto a highervalueof S. Ide-
ally, thereshouldbe a clear distinction betweenthe regions of
well modelledspeectwherethevalueof S is low, andregionsof
poorly modelledspeechandnon-speechvherethe valueis high.
However, thereare several factorsthat wealen the pawer of the
measure.

Firstly, it is possiblefor certainmodelsto bewell matchedo the
dataeven during periodsof non-speechThis is mostobviously
true for the silencemodel, but thereare otherphonemodelsthat
mightbe closelymatchedo non-speeckounds e.gbackground
hiss can be mistalen for a sibilant suchass. Corverselythere
are certainweak phoneshatareoften ambiguousevenin clean,
otherwisewell-modelledspeech For theseexperimentsve com-
piled alist of weakphonescontaining:ix, dx, uh, axr andax. By
excluding frameswhich have the highestposteriorprobability of
ary of thesephoneclassesthe power of the confidencemeasure
canbeincreased.

Secondly due to the piecavise stationaryassumptionthe per
frame entrogy is inherentlyvery noisy Even in cleanspeech
spikesoccurin theentropy profile atregularintenalscorrespond-
ing to predictablypoorlymodelledphonetransitions Thesespikes
caneasilyobscurehe underlyingtrends(seefigure 1). However,
by applyinga mediantfilter with a suficiently shortwindow (50—
80ms)mary of thesespikescanberemovedreducingthevalueof



S duringthespeechregionsrelative to thatduringthenon-speech
regions.
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Figure 1: Perframeentrofy for thephraseé'Americain blackand
white”. Althoughthisis cleanstudiospeectentrofy spikesoccur
ateachof thephonetransitions.

3. SEGMENTATION

Figure2 plotsvaluesof two versionsof theentroy measurever
a 10 minute sggmentof a radio broadcast.The valueswerecal-
culatedby remaving silenceandthe weakphonesandaveraging
over a40 frame(~ 600ms)window. It canbe seerthateven af-
ter this averagingthereremainrapid fluctuation. Thesewerefil-
teredout prior to sgmentatiorusinga furthermediansmoothing
stage. This final smoothing,shavn in the lower panel,wasper
formedover anapproximatelyl0 secondwindon. Segmentation
was performedby locating local maximaor minimain the dif-
ferencefunctionanddeclaringtheseassegmentatiorpointswhen
their absolutevaluewasover anempiricalthreshold.
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Figure 2: Theraw entroy measurgtop) andthe smoothedand
segmentecentrofy measurgbottom)for a 10 minuteextractfrom
abroadcashens program.

Although this procedurds ableto provide segmentationpoints,
the heary smoothingof the entrofy function causeghesepoints
to bepositionedio within afew second®of their correctlocation.
Therefore the locationsmustbe ‘fine tuned’ beforethey canbe
used. This wasaccomplishedisingthe KL2 distancemetric, as
describedby Siggler et al. [3]: Meansand varianceswere cal-
culatedfor the distribution of the front-endprocesseccoustics

(i.e. prior to ary entrofy calculations)in two secondwindows
on eithersideof a putative sggmentatiorpoint. The sggmentation
point wasthenadjustedso asto maximisethe distancebetween
thedistributions.

4. CLASSIFICATION

Classificationof the segmentswas basedon the sameacoustic
confidencaneasuremplog/edfor the sggmentation The entropy

over the phoneposteriorswas calculatedfor eachframe of the
sggmentand5 frame(x 80ms)mediansmoothingvasappliedto

reduceheinfluenceof phonetransitions Framesypothesiseds
silenceor asary of theweakphonesvereremoredandthemean
entropy valuefor theremainingframeswascalculated Low val-

uesweretaken to indicatewell modelledspeechworthy of de-
codingandhighervaluesto indicatepoorly modelledspeechand
non-speechA thresholdwvassetto decidewhich sggmentsto ex-

cise.A summaryof the completesystemis givenin figure 3.
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Figure3: A summaryof theseggmentatiorsystem.

5. EXPERIMENTS

A 30 minuteradio shav! wasselectedrom the the 1996 ARPA

BroadcastNews (BN) corpus[4] to evaluatethe system. Can-
didatesegmentswereobtainedfor the entireshaw, i.e. including
commerciabreaksnotusedn theHub-4evaluation,anddecoded
usingthe ABBoT HMM/ANN LVCSR system.Word errorrates

1ABC Nightline: Episode05/23/96.



(WERs)werecalculatedby aligningthedecodedvord sequences
againsta Viterbi alignmentof the referencetranscriptioA. The
classificationportion of the systemwasalsoevaluatedusingthe
‘focus condition’ segmentationsuppliedwith the BN corpusfor
comparison.

The acousticmodel usedfor the experimentswas composedf
two recurrennetworkswith 604contet-dependenphoneclasses
(plus silence). Onenetwork estimatedhe phoneposteriorprob-
ability distribution for eachframe given a sequencef 12th or-
der perceptualinear prediction (PLP) features. The other net-
work performedthe samedistribution estimationwith features

presenteth reverseorder(sincerecurrennetworksaretime-asymme  °r

The two probability estimatesvere averagedn the log domain.
Themodelwastrainedon BN datadravn solelyfrom theFO con-
dition. A 65kwordbacled-of trigramlanguaganodeltrainedon
132 million wordswasusedfor the decodings.

6. RESULTSAND DISCUSSION

Tablel shavstherecognitionperformancdor thesuppliedfocus-
conditionseggmentation Thetablealsoshavsthenumberof words
in eachcondition,andthe percentagéhis formsof thetotal num-
ber of wordsin the shav (notethatthis includesthe commercial
breaks).

Condition || Words | % Total || WER
FO - prepared 638 12.3 17.9
F1- spontaneoug| 1342 25.9 334
F2 - low fidelity 813 15.7 84.4
F3- music 162 3.1 30.9
F4- noise 187 3.6 51.4
FX - mixed 358 6.9 81.1
All | 3500 [ 67.5 [ 485

Table 1. Resultsusingpre-sgmentedevaluationdata.

Figure 4 shaws the averageWER for eachof the 81 sggments
returnedby the automaticsegmentationprocedure. The areaof

shadingaroundeachpoint in the upperpanelis proportionalto

thenumberof wordsin thatsegmentwhereast is proportionalto

the time taken to decodethe sggmentin the lower panel. It can
be seenthatthereis a high degreeof correlationbetweenWER

andthe confidencevaluefor the sggmentsandalsothatalthough
mary of the‘poor’ segmentscontainfew words,they constitutea
large proportionof thetotal decodingime.

Thecorrelationdetweerasggments confidencesstimateandit’s
WER (anddecodingtime) aredetailedin table2. Two measures
are shavn; a simple correlation,and a correlationweightedby
the numberof wordsin the segment. This weightingreduceghe
contrikution of very shortsggments(which cancontainasfew as
four words)for which the WER valuesarelessreliable. Several
variationsof the confidencemeasureare shavn, illustrating the
importanceof eachstagein the processingf the raw perframe
entropy. Thefirst row, ‘raw’, refersto the measurelerived from
a simpleaveragingof unprocesseffameentropies.The second

°Notethata segmentcontainingfew wordscanreceie anartificially
reducedNVER if amarkingalgorithmbasednly upondynamicprogram-
mingis used.
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Figure4: WERfor eachsggmentplottedagainssegmententropy
value. Pointsareweightedby wordspersegment(top) or decod-
ing time (bottom).

row, ‘-transitions’, shavs how the correlation,andhencethere-
liability of the confidencemeasurejs improved by medianfil-

tering to remove the effect of phonetransitions. The *-silence’
row shaws the large effect of excludingthe silentframes,which
may be just aswell modelledin non-speeclasin speech.The
‘-weak’ row shaws the small effect of excludingthe setof indis-
tinct phoneghatgenerallyhave intermediatevaluesevenin clean
speechThemostreliablemeasurés achiezedby combiningeach
of thesetechniques.

By settingthe confidencethresholdto an appropriatevalueit is

possibleto excludethosesegmentsthat are expensie to decode
but areneverthelespoorly recognisedin thisway decodingime

maybereducedy upto 70%withoutgreatlyincreasingheover

all word error rate. This point is illustrated by figure 5 which

shavs theoverall WER asafunctionof thecomputationatostas
the sggmentconfidencehresholds relaxedanda greatemumber
of sgmentsaredecodedTheflatteningof the graphclearlyindi-

categhediminishingreturnsof decodingeachsuccessily lower

confidencesggment.

3Notethatthe minimumWER of 63%is calculatedrelative to thefull



WERVS. S Costvs. S
simple | weighted|| simple | weighted
raw [ 0.684 | 0.825 | 0.665| 0.845
-transitions || 0.695 0.832 0.670 0.850
-silence 0.799 0.915 0.739 0.915
-weak 0.689 0.831 0.643 0.841
all [ 0812 0923 [ 0.742] 0919

Table 2: Thecorrelationbetweertheentroy measures andsegy-
mentWER andcomputationatost.

By examiningthe mannerin which the averageWER for recov-
ered segments varies as a greaternumberof segmentsare ac-
ceptedfor decodingwe canobtainsomemeasuref the systems
segmentationand classificationperformance.The upperline in
figure 6 shavs the WERs that are achieved using the acoustic
measureand graduallyrelaxing the sgmentacceptancéhresh-
old. Comparethis upperline to the lower line which simulates
the WERsthatcouldbe achieedif theacousticconfidencemea-
surewas a perfectpredictorof sggmentWER. Also plotted are
points correspondingo the useof eitherall the pre-sgmented
evaluationdataand just the FO condition subset. The point to
note hereis that the bestclassificationline passesery closeto
both these'operatingpoints’. If the systemhad madean inap-
propriateseggmentationof the data,mixing poorly modelledand
well modelledspeectwithin individual segmentsyeachinghe FO
operatingpointwould not be possible.
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Figure5: Overall WER asafunctionof computationatostasthe
segmentconfidencehresholds relaxedandanincreasingnumber
of sgmentsaredecoded.

7. CONCLUSIONS

We have presenteda techniquethat usesa single acousticcon-
fidencemeasureboth to sggmentcontinuousaudio and also to
predictwhich sggmentscontainspeechthat may be regardedas

5186wordsthatoccurin the half hour broadcasnot just the 3500 used
for theHub-4 evaluation.
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Figure6: WER of theincludedsegmentdncreasesteadilyasthe
confidencehresholds decreased.

recognisable The techniquehastwo importantattributes: First,
it is computationallyinexpensve allowing for an overall reduc-
tion in the computationakostof the recognitiontask. Second,
asthe confidencemeasuras derived directly from the recogni-
tion modelsthe sggmentationofferedis entirely pragmatic,i.e.
thedatais dividedinto thatwhichis a goodfit to themodelsand
is thereforelikely to be recognisableand that which is not. If
differentmodelsare usedthendifferentsggmentswill be found,
but they will bethe segmentsthataremostlikely to be of practi-
cal value. Theresultspresentedn this paperarederived from a
singlehalf hourradiobroadcastin orderto fully assesthetech-
nigue further evaluationis requiredover a larger, more diverse
setof testdata.Additionally, exploiting thedurationalconstraints
of speechand non-speectsoundsthroughthe useof a simple,
two-stateHMM may male the confidencemeasuremorerobust
to non-speecloundssuchasmusic.
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