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ABSTRACT

In this paperwe define an acousticconfidencemeasurebased
on the estimatesof local posteriorprobabilitiesproducedby a
HMM/ANN largevocabularycontinuousspeechrecognitionsys-
tem. We usethis measureto segmentcontinuousaudiointo re-
gionswhereit is andis not appropriateto expendrecognitionef-
fort. The segmentationis computationallyinexpensive andpro-
vides reductionsin both overall word error rate and decoding
time. Thetechniqueis evaluatedusingmaterialfrom theBroad-
castNewscorpus.

1. INTRODUCTION

Most speechrecognitiontasksto datehave requiredtherecogni-
tion of discreteutterancesover whichboththespeaker andchan-
nel characteristicsremainconstant.It is given that thedatasup-
plied to therecogniseris speechandsospeechdetectionamounts
to little morethantrimmingoff leadingandtrailingsilences.How-
ever, practicalspeechrecognitionsystemscannotexpect to be
suppliedwith suchpre-segmenteddata. Facedwith an unseg-
mentedstreamof audio,from a radiobroadcastfor example,the
first taskthatmustbeperformedis to decidewhich regionscon-
tainspeechandwhichregionsdonot.

Given that we acceptthe limitations of our speechrecogniser, a
pragmaticgoalis notasegmentationinto speechandnon-speech,
but rather into regions that are recognisable speechand those
whicharenot. Thissecondclassnotonlycontainsnon-speechau-
dio, suchasmusic,but alsospeechfor which theacousticcondi-
tionsaresuchthatthedatais notsufficiently well matchedby the
modelsto producea reliablerecognitionresult. A relatedmodel
basedapproachto speechdetectionis describedin [1].

If this segmentationcanbeprovided throughtheuseof a purely
acousticconfidencemeasurewhich is not dependentupon any
particulardecodinghypotheses(seesection2), it may be com-
putationallyinexpensive andcomputedbeforerecognitionis at-
tempted.A segmentationsystemof this kind concentratesrecog-
nitioneffort exclusively uponregionswhereit maybeusefullyap-
plied. Theremainderof thepaperdescribestheformationandap-
plicationof sucha confidencemeasurederivedfrom local poste-
rior probabilityestimatesproducedby theABBOT HiddenMarkov
Model/Artificial NeuralNetwork (HMM/ANN) largevocabulary
continuousspeechrecognition(LVCSR)system[2].
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2. ACOUSTIC CONFIDENCE MEASURE

A confidencemeasuremaybedefinedasa functionwhich quan-
tifies how well amodelmatchesaspokenutterance.Suchamea-
suremay be derived from the output of both the acousticand
languagemodels,or from eithermodelseparately. An acoustic
confidencemeasureis onewhich is derivedexclusively from the
acousticmodel.Theacousticconfidencemeasureemployedhere,���������	��
��

, is theentropy of the 
 posteriorphoneprobabilityes-
timates� outputby a recurrentnetwork averagedoveraninterval�

[5]:
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respectively.

In regionsof thesignalwherethe modelsprovide a goodmatch
to thedata,the distribution of phoneposteriorswill typically be
dominatedby a singlephoneclass. Sucha distribution haslow
entropy. However, duringregionsof non-speech,or poorly mod-
elledspeech,severalalternative phonemodelsmayhave roughly
equalposteriorprobabilities,leadingto a highervalueof

�
. Ide-

ally, thereshouldbe a clear distinction betweenthe regions of
well modelledspeechwherethevalueof

�
is low, andregionsof

poorly modelledspeechandnon-speechwherethevalueis high.
However, thereareseveral factorsthat weaken the power of the
measure.

Firstly, it is possiblefor certainmodelsto bewell matchedto the
dataeven during periodsof non-speech.This is mostobviously
true for thesilencemodel,but thereareotherphonemodelsthat
mightbecloselymatchedto non-speechsounds- e.gbackground
hisscanbe mistaken for a sibilant suchas s. Converselythere
arecertainweak phonesthatareoftenambiguouseven in clean,
otherwisewell-modelledspeech.For theseexperimentswe com-
piled a list of weakphonescontaining:ix, dx, uh, axr andax. By
excludingframeswhich have thehighestposteriorprobabilityof
any of thesephoneclasses,thepower of theconfidencemeasure
canbeincreased.

Secondly, due to the piecewise stationaryassumption,the per-
frame entropy is inherentlyvery noisy. Even in cleanspeech
spikesoccurin theentropy profileatregularintervalscorrespond-
ing topredictablypoorlymodelledphonetransitions.Thesespikes
caneasilyobscuretheunderlyingtrends(seefigure1). However,
by applyinga medianfilter with a sufficiently shortwindow (50–
80ms)many of thesespikescanberemovedreducingthevalueof



�
duringthespeechregionsrelativeto thatduringthenon-speech

regions.
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Figure 1: Per-frameentropy for thephrase“Americain blackand
white”. Althoughthis is cleanstudiospeechentropy spikesoccur
at eachof thephonetransitions.

3. SEGMENTATION

Figure2 plotsvaluesof two versionsof theentropy measureover
a 10 minutesegmentof a radiobroadcast.The valueswerecal-
culatedby removing silenceandtheweakphonesandaveraging
over a 40 frame( 132�4)4 ms)window. It canbeseenthatevenaf-
ter this averagingthereremainrapidfluctuation.Thesewerefil-
teredoutprior to segmentationusinga furthermediansmoothing
stage.This final smoothing,shown in the lower panel,wasper-
formedover anapproximately10 secondwindow. Segmentation
was performedby locating local maximaor minima in the dif-
ferencefunctionanddeclaringtheseassegmentationpointswhen
theirabsolutevaluewasoveranempiricalthreshold.
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Figure 2: Theraw entropy measure(top) andthesmoothedand
segmentedentropy measure(bottom)for a10minuteextractfrom
abroadcastnews program.

Although this procedureis ableto provide segmentationpoints,
theheavy smoothingof theentropy functioncausesthesepoints
to bepositionedto within a few secondsof their correctlocation.
Therefore,the locationsmustbe ‘fine tuned’ beforethey canbe
used. This wasaccomplishedusingthe KL2 distancemetric,as
describedby Siegler et al. [3]: Meansand varianceswere cal-
culatedfor the distribution of the front-endprocessedacoustics

(i.e. prior to any entropy calculations)in two secondwindows
oneithersideof aputativesegmentationpoint. Thesegmentation
point wasthenadjustedso asto maximisethe distancebetween
thedistributions.

4. CLASSIFICATION

Classificationof the segmentswas basedon the sameacoustic
confidencemeasureemployedfor thesegmentation:Theentropy
over the phoneposteriorswas calculatedfor eachframe of the
segmentand5 frame( 165�4 ms)mediansmoothingwasappliedto
reducetheinfluenceof phonetransitions.Frameshypothesisedas
silenceor asany of theweakphoneswereremovedandthemean
entropy valuefor theremainingframeswascalculated.Low val-
ueswere taken to indicatewell modelledspeechworthy of de-
codingandhighervaluesto indicatepoorly modelledspeechand
non-speech.A thresholdwassetto decidewhichsegmentsto ex-
cise.A summaryof thecompletesystemis givenin figure3.
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Figure 3: A summaryof thesegmentationsystem.

5. EXPERIMENTS

A 30 minuteradioshow1 wasselectedfrom the the1996ARPA
BroadcastNews (BN) corpus[4] to evaluatethe system. Can-
didatesegmentswereobtainedfor theentireshow, i.e. including
commercialbreaksnotusedin theHub-4evaluation,anddecoded
usingthe ABBOT HMM/ANN LVCSRsystem.Word error rates

1ABC Nightline: Episode05/23/96.



(WERs)werecalculatedby aligningthedecodedwordsequences
againsta Viterbi alignmentof the referencetranscription2. The
classificationportionof thesystemwasalsoevaluatedusingthe
‘focus condition’ segmentationsuppliedwith the BN corpusfor
comparison.

The acousticmodelusedfor the experimentswascomposedof
two recurrentnetworkswith 604context-dependentphoneclasses
(plussilence).Onenetwork estimatedthephoneposteriorprob-
ability distribution for eachframegiven a sequenceof 12th or-
der perceptuallinear prediction(PLP) features. The other net-
work performedthe samedistribution estimationwith features
presentedin reverseorder(sincerecurrentnetworksaretime-asymmetric).
The two probabilityestimateswereaveragedin the log domain.
ThemodelwastrainedonBN datadrawn solelyfrom theF0con-
dition. A 65kwordbacked-off trigramlanguagemodeltrainedon
132million wordswasusedfor thedecodings.

6. RESULTS AND DISCUSSION

Table1showstherecognitionperformancefor thesuppliedfocus-
conditionsegmentation.Thetablealsoshowsthenumberof words
in eachcondition,andthepercentagethis formsof thetotal num-
berof wordsin theshow (notethat this includesthecommercial
breaks).

Condition Words % Total WER

F0- prepared 638 12.3 17.9
F1- spontaneous 1342 25.9 33.4
F2- low fidelity 813 15.7 84.4
F3- music 162 3.1 30.9
F4- noise 187 3.6 51.4
FX - mixed 358 6.9 81.1

All 3500 67.5 48.5

Table 1: Resultsusingpre-segmentedevaluationdata.

Figure 4 shows the averageWER for eachof the 81 segments
returnedby the automaticsegmentationprocedure.The areaof
shadingaroundeachpoint in the upperpanelis proportionalto
thenumberof wordsin thatsegmentwhereasit is proportionalto
the time taken to decodethe segmentin the lower panel. It can
be seenthat thereis a high degreeof correlationbetweenWER
andtheconfidencevaluefor thesegmentsandalsothatalthough
many of the‘poor’ segmentscontainfew words,they constitutea
largeproportionof thetotal decodingtime.

Thecorrelationsbetweenasegment’sconfidenceestimateandit’ s
WER (anddecodingtime) aredetailedin table2. Two measures
are shown; a simplecorrelation,and a correlationweightedby
thenumberof wordsin thesegment.This weightingreducesthe
contribution of very shortsegments(whichcancontainasfew as
four words)for which theWER valuesarelessreliable. Several
variationsof the confidencemeasureareshown, illustrating the
importanceof eachstagein the processingof the raw per-frame
entropy. Thefirst row, ‘raw’, refersto themeasurederived from
a simpleaveragingof unprocessedframeentropies.The second

2Notethata segmentcontainingfew wordscanreceive anartificially
reducedWERif amarkingalgorithmbasedonly upondynamicprogram-
ming is used.
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Figure 4: WERfor eachsegmentplottedagainstsegmententropy
value.Pointsareweightedby wordspersegment(top) or decod-
ing time(bottom).

row, ‘-transitions’,shows how the correlation,andhencethe re-
liability of the confidencemeasure,is improved by medianfil-
tering to remove the effect of phonetransitions. The ‘-silence’
row shows the largeeffect of excludingthesilent frames,which
may be just aswell modelledin non-speechas in speech.The
‘-weak’ row shows thesmalleffect of excludingthesetof indis-
tinct phonesthatgenerallyhave intermediatevaluesevenin clean
speech.Themostreliablemeasureis achievedby combiningeach
of thesetechniques.

By settingthe confidencethresholdto an appropriatevalueit is
possibleto excludethosesegmentsthat areexpensive to decode
but areneverthelesspoorlyrecognised.In thiswaydecodingtime
maybereducedby upto 70%withoutgreatlyincreasingtheover-
all word error rate. This point is illustratedby figure 5 which
shows theoverallWERasafunctionof thecomputationalcostas
thesegmentconfidencethresholdis relaxedandagreaternumber
of segmentsaredecoded.Theflatteningof thegraphclearlyindi-
catesthediminishingreturnsof decodingeachsuccessively lower
confidencesegment3.

3NotethattheminimumWER of 63%is calculatedrelative to thefull



WERvs. S Costvs. S
simple weighted simple weighted

raw 0.684 0.825 0.665 0.845

-transitions 0.695 0.832 0.670 0.850
-silence 0.799 0.915 0.739 0.915
-weak 0.689 0.831 0.643 0.841

all 0.812 0.923 0.742 0.919

Table 2: Thecorrelationbetweentheentropy measure
�

andseg-
mentWERandcomputationalcost.

By examiningthemannerin which theaverageWER for recov-
ered segments varies as a greaternumberof segmentsare ac-
ceptedfor decoding,we canobtainsomemeasureof thesystems
segmentationandclassificationperformance.The upperline in
figure 6 shows the WERs that are achieved using the acoustic
measureandgraduallyrelaxing the segmentacceptancethresh-
old. Comparethis upperline to the lower line which simulates
theWERsthatcouldbeachievedif theacousticconfidencemea-
surewasa perfectpredictorof segmentWER. Also plottedare
points correspondingto the useof eitherall the pre-segmented
evaluationdataand just the F0 condition subset. The point to
notehereis that the bestclassificationline passesvery closeto
both these‘operatingpoints’. If the systemhadmadean inap-
propriatesegmentationof the data,mixing poorly modelledand
well modelledspeechwithin individualsegments,reachingtheF0
operatingpointwouldnot bepossible.
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Figure 5: OverallWERasafunctionof computationalcostasthe
segmentconfidencethresholdis relaxedandanincreasingnumber
of segmentsaredecoded.

7. CONCLUSIONS

We have presenteda techniquethat usesa singleacousticcon-
fidencemeasureboth to segmentcontinuousaudio and also to
predictwhich segmentscontainspeechthat may be regardedas

5186wordsthat occurin the half hour broadcastnot just the 3500used
for theHub-4evaluation.
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Figure 6: WERof theincludedsegmentsincreasessteadilyasthe
confidencethresholdis decreased.

recognisable.The techniquehastwo importantattributes:First,
it is computationallyinexpensive allowing for an overall reduc-
tion in the computationalcost of the recognitiontask. Second,
as the confidencemeasureis derived directly from the recogni-
tion modelsthe segmentationoffered is entirely pragmatic,i.e.
thedatais dividedinto thatwhich is a goodfit to themodelsand
is thereforelikely to be recognisable,andthat which is not. If
differentmodelsareusedthendifferentsegmentswill be found,
but they will bethesegmentsthataremostlikely to beof practi-
cal value. Theresultspresentedin this paperarederived from a
singlehalf hourradiobroadcast.In orderto fully assessthetech-
nique further evaluationis requiredover a larger, morediverse
setof testdata.Additionally, exploiting thedurationalconstraints
of speechand non-speechsoundsthroughthe useof a simple,
two-stateHMM may make the confidencemeasuremorerobust
to non-speechsoundssuchasmusic.
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