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This chapter was written in 1994. Further advances have been made such as: context-
dependent phone modelling; forward-backward training and adaptation using linear input
transformations.

This chapter describes a use of recurrent neural networks (i.e., feedback is incorpo-
rated in the computation) as an acoustic model for continuous speech recognition.
The form of the recurrent neural network is described along with an appropriate pa-
rameter estimation procedure. For each frame of acoustic data, the recurrent network
generates an estimate of the posterior probability of of the possible phones given the
observed acoustic signal. The posteriors are then converted into scaled likelihoods
and used as the observation probabilities within a conventional decoding paradigm
(e.g., Viterbi decoding). The advantages of using recurrent networks are that they
require a small number of parameters and provide a fast decoding capability (relative
to conventional, large-vocabulary, HMM systems) .

Most { if not all { automatic speech recognition systems explicitly or implicitly
compute a (equivalently, etc.) indicating how well an
input acoustic signal matches a speech model of the hypothesised utterance. A
fundamental problem in speech recognition is how this score may be computed,
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Throughout this chapter, the terms Pr and indicate the probability mass and the
probability density function, respectively.

p

given that speech is a non-stationary stochastic process. In the interest of
reducing the computational complexity, the standard approach used in the
most prevalent systems (e.g., dynamic time warping (DTW) [1] and hidden
Markov models (HMMs) [2]) factors the hypothesis score into a local acoustic
score and a local transition score. In the HMM framework, the observation
term models the local (in time) acoustic signal as a stationary process, while
the transition probabilities are used to account for the time-varying nature of
speech.

This chapter presents an extension to the standard HMM framework which
addresses the issue of the observation probability computation. Speci�cally, an
arti�cial recurrent neural network (RNN) is used to compute the observation
probabilities within the HMM framework. This provides two enhancements
to standard HMMs: (1) the observation model is no longer local, and (2) the
RNN architecture provides a nonparametric model of the acoustic signal. The
result is a speech recognition system able to model long-term acoustic context
without strong assumptions on the distribution of the observations. One such
system has been successfully applied to a 20,000 word, speaker-independent,
continuous speech recognition task and is described in this chapter.

The HMM framework has been well documented in the speech recognition
literature (e.g., [2]). The framework is revisited here in the interest of making
this chapter relatively self-contained and to introduce some notation. The
standard statistical recognition criterion is given by

= argmaxPr( ) = argmax ( ) Pr( ) (7.1)

where is the recognised word string, is a valid word sequence, and
is the observed acoustic signal (typically a sequence of feature vectors ) .
For typical HMM systems, there exists a mapping between a state sequence

= on a discrete, �rst-order Markov chain and the word se-
quence . This allows expressing the recognition criterion (7.1) as �nding the
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2 THE HYBRID RNN/HMM APPROACH

2.1 The HMM Framework
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maximum a posteriori (MAP) state sequence of length , i.e.,

= argmax Pr( ) ( ) (7.2)

Note that the HMM framework has reduced the primary modelling requirement
to stationary, local (in time) components; namely the observation terms ( )
and transition terms Pr( ). There are a number of well known methods
for modelling the observation terms. Continuous density HMMs typically use
Gaussian mixture distributions of the form

( ) = ( ; � ) (7.3)

Recently, there has been work in the area of hybrid connectionist/HMM sys-
tems. In this approach, nonparametric distributions represented with neural
networks have been used as models for the observation terms [3, 4].

Context is very important in speech recognition at multiple levels. On a short
time scale such as the average length of a phone, limitations on the rate of
change of the vocal tract cause a blurring of acoustic features which is known
as co-articulation. Achieving the highest possible levels of speech recognition
performance means making e�cient use of all the contextual information.

Current HMM technology primarily approaches the problem from a top-down
perspective by modelling phonetic context. The short-term contextual inuence
of co-articulation is handled by creating a model for all su�ciently distinct
phonetic contexts. This entails a trade o� between creating enough models
for adequate coverage and maintaining enough training examples per context
so that the parameters for each model may be well estimated. Clustering and
smoothing techniques can enable a reasonable compromise to be made at the
expense of model accuracy and storage requirements (e.g., [5, 6]).

Acoustic context in HMMs is typically handled by increasing the dimensionality
of the observation vector to include some parameterisation of the neighbour-
ing acoustic vectors. The simplest way to accomplish this is to replace the
single frame of parameterised speech by a vector containing several adjacent
frames along with the original central frame. Alternatively, each frame can be
augmented with estimates of the temporal derivatives of the parameters [7].
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However, this dimensionality expansion quickly results in di�culty in obtain-
ing good models of the data. Multi-layer perceptrons (MLPs) have been sug-
gested as an approach to model high-order correlations of such high-dimensional
acoustic vectors. When trained as classi�ers, MLPs approximate the posterior
probability of class occupancy [8, 9, 10, 11, 12]. For a full discussion of this
result to speech recognition, see [13, 4].

Including feedback into the MLP structure gives a method of e�ciently incor-
porating context in much the same way as an in�nite impulse response �lter can
be more e�cient than a �nite impulse response �lter in terms of storage and
computational requirements. Duplication of resources is avoided by processing
one frame of speech at a time in the context of an internal state as opposed to
applying nearly the same operation to each frame in a larger window. Feed-
back also gives a longer context window, so it is possible that uncertain evidence
can be accumulated over many time frames in order to build up an accurate
representation of the long term contextual variables.

There are a number of possible methods for incorporating feedback into a speech
recognition system. One approach is to consider the forward equations of a
standard HMM as recurrent network-like computation. The HMM can then
be trained using the maximum likelihood criterion [14] or other discriminative
training criteria [15, 16, 17]. Another approach is to use a recurrent network
only for estimation of the emission probabilities in an HMM framework. This
is similar to the hybrid connectionist-HMM approach described in [3] and is
the approach used in the system described in this chapter.

The form of the recurrent network used here was �rst described in [18]. The
paper took the basic equations for a linear dynamical system and replaced the
linear matrix operators with non-linear feedforward networks. After merging
computations, the resulting structure is illustrated in �gure 1. The current
input, ( ), is presented to the network along with the current state, ( ). These
two vectors are passed through a standard feed-forward network to give the
output vector, ( ) and the next state vector, ( + 1). De�ning the combined
input vector as ( ) and the weight matrices to the outputs and the next state
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2.3 Recurrent Networks for Phone
Probability Estimation
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The recurrent network used for phone probability estimation.

as and , respectively:

( ) =
1
( )
( )

(7.4)

( ) =
exp( ( ))

exp( ( ))
(7.5)

( + 1) =
1

1 + exp( ( ))
(7.6)

The inclusion of \1" in ( ) provides the mechanism to apply a bias to the
non-linearities. As is easily seen in (7.4){(7.6), the complete system is no more
than a large matrix multiplication followed by a non-linear function.

A very important point to note about this structure is that if the parameters are
estimated using certain training criteria (see section 4), the network outputs are
consistent estimators of class posterior probabilities. Speci�cally, the outputs
( ) are interpreted as

( ) = Pr( = (0)) (7.7)

The softmax non-linear function of (7.5) is an appropriate non-linearity for es-
timating posterior probabilities as it ensures that the values are non-negative
and sum to one. Work on generalised linear models [19] also provides theoret-
ical justi�cation for interpreting ( ) as probabilities. Similarly, the sigmoidal
non-linearity of (7.6) is the softmax non-linearity for the two class case and
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Projection of recurrent network state space trajectory onto two
states.

is appropriate if all state units are taken as probability estimators of hidden
independent events.

In the hybrid approach, ( ) is used as the observation probability within the
HMM framework. It is easily seen from (7.7) that the observation probability
is extended over a much greater context then is indicated by local models as
shown in (7.3). The recurrent network uses the internal state vector to build
a representation of past acoustic context. In this fashion, the states of the
recurrent network also model dynamic information. Various techniques used in
non-linear dynamics may be used to describe and analyse the dynamical be-
haviour of the recurrent net. For example, di�erent realisations of the network
show a variety of behaviours (e.g., limit cycles, stable equilibriums, chaos) for
zero input operation of the network (i.e., ( ) = ). For example, limit cycle
dynamics for a recurrent network are shown in �gure 2. The �gure shows the
projection onto two states of the network state vector over seven periods.

y t
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"show me ... "

Overview of the hybrid RNN/HMM system.

The basic hybrid RNN/HMM system is shown in �gure 3. Common to most

recognition systems, speech is represented at the waveform, acoustic feature,
phone probability and word string levels. A preprocessor extracts acoustic vec-
tors from the waveform which are then passed to a recurrent network which
estimates which phones are likely to be present. This sequence of phone ob-
servations is then parsed by a conventional hidden Markov model to give the
most probable word string that was spoken. The rest of this section will discuss
these components in more detail.

Mapping the waveform to an acoustic vector is necessary in speech recognition
systems to reduce the dimensionality of the speech and so make the modelling
task tractable. The choice of acoustic vector representation is guided by the
form of the acoustic model which will be required to �t this data. For exam-
ple, the common use of diagonal covariance Gaussian models in HMM systems
requires an acoustic vector that has independent elements. However, the con-
nectionist system presented here does not require that the inputs be orthogonal,
and hence a wider choice is available. The system has two standard acoustic
vector representations, both of which give approximately the same performance:

, a twenty channel power normalised mel-scaled �lterbank representationMEL+

165Recurrent Networks

3 SYSTEM DESCRIPTION

3.1 The Acoustic Vector Level

Figure 3



augmented with power, pitch and degree of voicing, and , twelfth order
perceptual linear prediction cepstral coe�cients plus energy.

Another feature used for describing the acoustic processing is the ordering of
the feature vectors. In systems which use non-recurrent observation modelling,
this property is ignored. With a recurrent network, the vector ordering { or
equivalently, the direction of time { makes a di�erence in the probability es-
timation process. In the experiments described later in this chapter, results
are reported for systems using both forward and backward (in-time) trained
recurrent networks.

Figure 4 shows the input and output representation of the recurrent network
for a sentence from the TIMIT database. The top part of the diagram shows
the acoustic features. The top twenty channels represent the power at
mel-scale frequencies up to 8 kHz. The bottom three channels represent the
power, pitch and degree of voicing. Some features, like the high frequency
fricative energy in /s/ and /sh/ and the formant transitions are clearly visible.
The lower part of the diagram shows the output from the recurrent network.
Each phone has one horizontal line with the width representing the posterior
probability of the phone given the model and acoustic evidence. The vowels
are placed at the bottom of the diagram and the fricatives at the top. As the
TIMIT database is hand aligned, the dotted vertical lines show the boundaries
of the known symbols. The identity of these hand aligned transcriptions is given
on the top and bottom line of the diagram. Further information concerning this
representation can be obtained from [20].

The complete sentence is \She had your dark suit in greasy wash water all year".
Some of the phone labels may be read from the diagram directly; for example,
the thick line in the bottom left is the initial silence and is then followed by a
/sh/ phone half way up the diagram. Indeed, by making \reasonable" guesses
and ignoring some of the noise, the �rst few phones can be read o� directly as
/sh iy hv ae dcl d/ which is correct for the �rst two words. Thus, the problem
of connected word recognition can be rephrased as that of �nding the maximum
likelihood path through such a diagram while taking into account lexical and
grammatical constraints.

PLP

MEL+
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3.2 The Phone Probability Level
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Input and output of the recurrent network for a TIMIT sentence
\she had your dark suit in greasy wash water all year".
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This computation is consistent with the MLPhybrid approach to computing scaled like-
lihoods [13].

The decoding criterion speci�ed in (7.1) and (7.2) requires the computation of
the likelihood of the data given a phone (state) sequence. Using the notation

= , the likelihood is given by

( ) = ( ) (7.8)

In the interest of computational tractability and ease of training, standard
HMMs make the assumptions of observation independence and that the Markov
process is �rst order, i.e., ( ) = ( ). The recurrent hybrid
approach, however, makes the less severe assumption that ( ) =
( ) which maintains the acoustic context in the local observation
model. Manipulation of this results in an expression for the observation likeli-
hood given by

( ) = ( )
Pr( )

Pr( )
(7.9)

The computation of (7.9) is straightforward. The recurrent network is used to
estimate Pr( ). Because ( ) is independent of the phone sequence,
it has no e�ect on the decoding process and is ignored. The one remaining issue
in computing the scaled local likelihood is computation of Pr( ). The
simplest solution is to assume Pr( ) = Pr( ) where Pr( ) is determined
from the relative frequency of the phone in the training data . Although
this works well in practice, it is obviously a wrong assumption and this area
deserves further investigation.

Equation (7.2) speci�ed the standard HMM recognition criterion, i.e., �nding
the MAP state sequence. The scaled likelihoods described in the previous
section are used in exactly the same way as the observation likelihoods for a
standard HMM system. Rewriting (7.9) in terms of the network outputs and
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3.3 Posterior Probabilities to Scaled
Likelihoods

3.4 Decoding Scaled Likelihoods
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making the assumptions stated above gives

= argmax Pr( )
( )

Pr( )
(7.10)

The non-observation constraints (e.g., phone duration, lexicon, language model,
etc.) are incorporated via the Markov transition probabilities. By combining
these constraints with the scaled likelihoods, we may use a decoding algorithm
(such as time-synchronous Viterbi decoding or stack decoding) to compute the
utterance model that is most likely to have generated the observed speech
signal.

Training of the hybrid RNN/HMM system entails estimating the parameters
of both the underlying Markov chain and the weights of the recurrent network.
Unlike HMMs which use exponential-family distributions to model the acous-
tic signal, there is not (yet) a uni�ed approach (e.g., EM algorithm [21]) to
simultaneously estimate both sets of parameters. A variant of Viterbi training
is used for estimating the system parameters and is described below.

The parameters of the system are adapted using Viterbi training to maximise
the log likelihood of the most probable state sequence through the training
data. First, a Viterbi pass is made to compute an alignment of states to
frames. The parameters of the system are then adjusted to increase the likeli-
hood of the frame sequence. This maximisation comes in two parts; (1) max-
imisation of the emission probabilities and (2) maximisation of the transition
probabilities. Emission probabilities are maximised using gradient descent and
transition probabilities through the re-estimation of duration models and the
prior probabilities on multiple pronunciations. Thus, the training cycle takes
the following steps:

1. Assign a phone label to each frame of the training data. This initial label
assignment is traditionally done by using hand-labelled speech (e.g., the
TIMIT database).

2. Based on the phone/frame alignment, construct the phone duration models
and compute the phone priors needed for converting the RNN output to
scaled likelihoods.

Q q q
y t

q
:j
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3. Train the recurrent network based on the phone/frame alignment. This
process is described in more detail in section 4.1.

4. Using the parameters from 2. and the recurrent network from 3., apply
Viterbi alignment techniques to update the training data phone labels and
go to 2.

We generally �nd that four iterations of this Viterbi training are su�cient.

Training the recurrent network is the most computationally di�cult process in
the development of the hybrid system. Once each frame of the training data
has been assigned a phone label, the RNN training is e�ectively decoupled
from the system training. An objective function which insures that the net-
work input-output mapping satis�es the desired probabilistic interpretation is
speci�ed. Training of the recurrent network is performed using gradient meth-
ods. Implementation of the gradient parameter search leads to two integral
aspects of the RNN training described below; (1) computation of the gradient
and (2) application of the gradient to update the parameters.

As discussed in earlier sections, the recurrent network is used to estimate the
posterior probability of a phone given the input acoustic data. For this to be
valid, it is necessary to use an appropriate objective function for estimating
the network weights. An appropriate criterion for the softmax output of (7.5)
is the cross-entropy objective function. For the case of Viterbi training, this
objective function is equivalent to the log posterior probability of the aligned
phone sequence and is given by

= log ( ) (7.11)

It has been shown in [9] that maximisation of (7.11) with respect to the weights
is achieved when ( ) = Pr( = ).

E y t :

y t q i uj
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The reader is directed to [23] for the details on the error back-propagation computations.

Given the objective function, the training problem is to estimate the weights
to maximise (7.11). Of the known algorithms for training recurrent nets, back-
propagation through time (BPTT) was chosen as being the most e�cient in
space and computation [22, 23]. The basic idea behind BPTT is illustrated in
�gure 5. The �gure shows how the recurrent network can be expanded (in time)
to represent an MLP where the number of hidden layers in the MLP is equal
to the number of frames in the sequence. Training of the expanded recurrent
network can be carried out in the same fashion as for an MLP (i.e., using
standard error back-propagation [22]) with the constraint that the weights at
each layer are tied. In this approach, the gradient of the objective function
with respect to the weights (i.e., and ) is computed using the
chain-rule for di�erentiation.

An overview of the gradient computation process for a sequence of frames
can be described as follows :

1. Initialise the initial state (0).

2. For = 0 1, compute ( ) and ( + 1) by forward propagating
( ) and ( ) as speci�ed in (7.4){(7.6).

3. Set the error on the �nal state vector to zero as the objective function does
not depend on this last state vector. Set the error on the output nodes to
be the target value given by the Viterbi alignment less the actual output,
( 1), as in normal back-propagation training.

4. For = 1 0, back-propagate the error vector back through net-
work. The error corresponding to the outputs is speci�ed by the Viterbi
alignment, while the error corresponding to the state are computed in the
same way as backpropagation of the error to hidden units in a MLP.

5. Compute the gradient of the objective function with respect to the weights
by accumulating over all frames.

Note that the state units have no speci�c target vector. They are trained in the
same way as hidden units in a feedforward network and so there is no obvious
\meaning" that can be assigned to their values. It should be pointed out that
the proposed method is subject to boundary e�ects in that the frames at the
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The expanded recurrent network.

The term is relative to neural networks, not standard HMM acoustic modelling
techniques.

large

end of a bu�er do not receive an error signal from beyond the bu�er. Although
methods exist to eliminate these e�ects (e.g., [23]), in practice it is found that
the length of the expansion (typically 256 frames) is such that the e�ects are
inconsequential.

There are a number of ways in which the gradient signal can be employed to
optimise the network. The approach described here has been found to be the
most e�ective in estimating the large number of parameters of the recurrent

network. On each update, a local gradient, , is computed from
the training frames in the th subset of the training data. A positive step

size, � , is maintained for every weight and each weight is adjusted by this
amount in the direction of the smoothed local gradient, i.e.,

=
+ � if 0

� otherwise
(7.12)

The local gradient is smoothed using a \momentum" term by

~
=

~
+ (1 ) (7.13)

The smoothing parameter, , is automatically increased from an initial value
of = 1 2 to = 1 1 by

= ( ) (7.14)
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where is the number of weight updates per pass through the training data.
The step size is geometrically increased by a factor if the sign of the local gra-
dient is in agreement with the averaged gradient, otherwise it is geometrically
decreased by a factor 1 , i.e.,

� =
� if 0

� otherwise
(7.15)

In this way, random gradients produce little overall change.

This approach is similar to the method proposed by Jacobs [24] except that
a stochastic gradient signal is used and both the increase and decrease in the
scaling factor is geometric (as opposed to an arithmetic increase and geometric
decrease). Considerable e�ort was expended in developing this training pro-
cedure and the result was found to give better performance than the other
methods that can be found in the literature. Other surveys of \speed-up"
techniques reached a similar conclusion [25, 26].

The recurrent network structure applied within the HMM framework provides
a powerful model of the acoustic signal. Besides the obvious advantages of
increased temporal context modelling capability and minimal assumptions on
the observation distributions, there are a number of less apparent advantages
to this approach. Four such advantages are described in this section.

Connectionist model combination refers to the process of merging the outputs
of two or more networks. The original motivation for model merging with the
hybrid system came from analysis of the recurrent network. Unlike a standard
HMM, the recurrent network structure is time asymmetric. Training a network
to recognise forward in time will result in di�erent dynamics than training to
recognise backwards in time. As di�erent information is available to both pro-
cesses, it seems reasonable that better modelling can be achieved by combining
both information sources.

N
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Signi�cant improvements have been observed by simply averaging the network
outputs [27], i.e., setting

( ) =
1

( ) (7.16)

where ( ) is the estimate of the th model. Although this merging has been
successful, the approach is somewhat ad-hoc. A more principled approach to
model merging is based on using the Kullback-Leibler information as a distance-
like measure on multinomial distributions. Consider the following criterion

( ) = ( ) (7.17)

where
( ) log (7.18)

is the Kullback-Leibler information. Minimisation of with respect to the
distribution can be interpreted as choosing the distribution which minimises
the average (across models) Kullback-Leibler information. Solving the min-
imisation in (7.17) results in the log- domain merge of the network outputs,
i.e.,

log ( ) =
1

log ( ) (7.19)

where is a normalisation constant such that is a probability distribution.
This technique has been applied to merging four networks for large vocabulary
speech recognition [28]. The four networks represented forward and backward
MEL+ and PLP acoustic preprocessing described in section 3.1. Recognition
results are reported in table 1 for three di�erent test sets.

Whilst the exact gains are task speci�c, it is generally found that linear merging
of four networks provide about 17% fewer errors. The log domain merging
performs better with approximately 24% fewer errors when four networks are
combined.

The recurrent network is used to estimate the local observation probabilities
within the HMM framework. Although the dynamics of the network encode
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Merging results for the ARPA 1993 spoke 5 development test, 1993
spoke 6 development test, and the 1993 hub 2 evaluation test. All tests utilised
a 5,000 word vocabulary and a bigram language model and were trained using
the SI-84 training set.

This is not necessarily the case for phone recognition where the network training criterion
and the actual task are more closely linked.

Word Error Rate %
Merge Type spoke 5 spoke 6 H2

17.3 15.0 16.2
17.1 15.1 16.5
17.8 15.5 16.1
16.9 14.4 15.2
17.3 15.0 16.0
15.2 11.4 13.4
13.4 11.0 12.6

some segmental information, explicit modelling of phone duration improves the
hybrid system's performance on word recognition tasks .

Phone duration within the hybrid system is modelled with a hidden Markov
process. In this approach, a Markov chain is used to represent phone dura-
tion. The duration model is integrated into the hybrid system by expanding
the phone model from a single state to multiple states with tied observation
distributions, i.e.,

( = ) = ( = ) (7.20)

for and states of the same phone model.

Choice of Markov chain topology is dependent on the decoding approach. De-
coding using a maximum likelihood word sequence criterion is well suited to
complex duration models as found in [29]. Viterbi decoding, however, results
in a Markov chain on duration where the parameters are not hidden (given the
duration). Because of this, a simple duration model as shown in �gure 6 is
employed. The free parameters in this model are (1) the minimum duration of
the model, , (2) the value of the �rst 1 state transitions, , (3) the self-
transition of the last state , and (4) the exit transition value, . The duration
score generated by this model is given as

=
0 if

if
(7.21)
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Phone-deletion penalty duration model.

and is not necessarily a proper distribution.

The parameters are determined in the following manor. First, the minimum
duration is set equal to half the average duration of the phone. The average
duration of the phone is computed from Viterbi alignment of the training data.
The parameters and are arbitrarily set to 0 5. The parameter represents
a phone-deletion penalty and is empirically set to maximise performance on a
cross-validation set.

One of the great bene�ts of this approach is the e�cient use of parameters. In a
comparable HMM system, acoustic context is modelled via context-dependent
phone models. For a large vocabulary, speaker independent task (e.g., the Wall
Street Journal), this typically results in thousands of phone models. In addi-
tion, these phone models are comprised of some number of states which model
the dynamics of the signal within the phone. In contrast, the RNN models
context with the hidden state units and only context-independent outputs are
required. Because the RNN is a dynamic model, it is only necessary to model
the individual phones, not sub-phone units. This results in an HMM system
with a single state per context-independent phone.

A typical RNN will have 20 to 50 inputs, 256 state units, and 50 to 80 out-
puts for approximately 100,000 parameters specifying the complete observation
model. This is one to two orders of magnitude fewer parameters than an HMM
with similar performance. The e�ciency of the model is also a consequence
of the training paradigm. The error-corrective training allocates parameters
based in reducing errors, rather than on modelling distributions. The e�cient

p

N

a x : b
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representation of the acoustic model results in a number of desirable properties,
e.g., fast decoding.

The task of decoding is to �nd the maximum likelihood word sequence given
the models and acoustic evidence. The time synchronous Viterbi algorithm
provides an e�cient means of performing this task for small vocabularies (e.g.,
less than 1000 words) and short span language models (e.g., bigrams). However,
with larger vocabularies and longer span language models a simple exhaustive
search is not possible and the issue of e�cient decoding becomes critical to the
performance of the system.

A search procedure based on stack decoding [30, 31] has been adopted. This
search procedure may be regarded as a reordered time-synchronous Viterbi
decoding and has the advantage that the language model is decoupled from
the search procedure. Unlike time-synchronous Viterbi decoding, the Markov
assumption is not integral to the search algorithm. Thus, this decoder architec-
ture o�ers a exible platform for single-pass decoding using arbitrary language
models. The operation of the algorithm is described in some detail in [32, 33].
Discussed below are some new approaches to pruning that have been developed
to take advantage of hybrid system properties.

Two basic pruning criteria are used to reduce the computation required in de-
coding. based pruning is similar to the various types of pruning
used in most decoders and is based on the acoustic model likelihoods.

based pruning is speci�c to systems which employ a local posterior phone
probability estimator.

Likelihood based methods are used to compute the envelope and also to set a
maximum stack size. These rely on the computation of an estimate of the least
upper bound of the log likelihood at time t, . This is an updated estimate
and is equal to the log likelihood of the most probable partial hypothesis at
time . The size of the envelope is set heuristically and is dependent on the
accuracy of the estimate of . The second pruning parameter is used

t

Likelihood

Poste-

rior

lub(t)

lub(t)
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Decoding performance on the Wall Street Journal task using a 20,000
word vocabulary and a trigram language model. Accuracy and CPU time (in
multiples of realtime on an HP735) are given with respect to varying the like-
lihood envelope and the posterior-based phone deactivation pruning threshold.
The maximum stack size was set to be 31.

to control the maximum number of hypotheses in a stack. This parameter
may be regarded as adaptively tightening the envelope, while ensuring that
hypotheses are still extended at each time (subject to the overall envelope).

A second pruning method has been developed to take advantage of the connec-
tionist probability estimator used in the hybrid system. The phone posteriors
may be regarded as a local estimate of the presence of a phone at a particu-
lar time frame. If the posterior probability estimate of a phone given a frame
of acoustic data is below a threshold, then all words containing that phone
at that time frame may be pruned. This may be e�ciently achieved using
a tree organisation of the pronunciation dictionary. This process is referred
to as . The posterior probability threshold used to
make the pruning decision may be empirically determined in advance using a
development set and is constant for all phones.

This posterior-based approach is similar to the likelihood-based channel-bank
approach of Gopalakrishnan et al. [34], which used phone-dependent thresholds.
However, that system incurred a 5{10% relative search error to obtain a factor
of two speedup on large vocabulary task. This new approach is extremely e�ec-
tive. On a 20K trigram Wall Street Journal task, phone deactivation pruning
can result in close to an order of magnitude faster decoding, with less than 2%
relative search error (see table 2).

20K Trigram, Trained on SI-84
Pruning Parameters si dt s5 Nov '92
Envelope Threshold Time %Error Time %Error

10 0.000075 16.1 12.1 15.7 12.6
10 0.0005 4.3 12.2 3.9 12.9
10 0.003 1.4 14.3 1.3 14.9
8 0.0 46.8 12.5 50.4 12.6
8 0.000075 5.4 12.2 4.9 12.8
8 0.0005 1.7 12.6 1.5 13.6
8 0.003 0.6 15.0 0.6 15.8

M

phone deactivation pruning
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This section provides a concise description of the di�erences between the hy-
brid RNN/HMM and standard HMM approaches. It should be pointed out that
many of the capabilities attributed to the recurrent network can also be rep-
resented by standard HMMs. However, the incorporation of these capabilities
into standard HMMs is not necessarily straightforward.

The parameters of the recurrent network are estimated with a discriminative
training criterion. This leads to a mechanism for estimation of the posterior
probability for the phones given the data. Standard HMM training utilises a
maximum likelihood criterion for estimation of the phone model parameters.
The recurrent network requires substantially fewer parameters because discrim-
inative training focuses the model resources on decision boundaries instead of
modeling the complete class likelihoods.

One of the main bene�ts of the recurrent network is that it relaxes the con-
ditional independence assumption for the local observation probabilities. This
results in a model which can represent the acoustic context without explic-
itly modeling phonetic context. This has positive rami�cations in terms of the
number of required parameters and the complexity of the search procedure.

The second main assumption of standard HMMs is that the observation distri-
butions are from the exponential family (e.g., multinomial, Gaussian, etc.) or
mixtures of exponential family distributions. The recurrent network, however,
makes much fewer assumptions about the form of the acoustic vector distribu-
tion. In fact, it is quite straightforward to use real-valued and/or categorical
data for the acoustic input. In theory, a Gaussian mixture distribution and a
recurrent network can both be considered nonparametric estimators by allow-
ing the size (e.g., number of mixtures or state units, respectively) to increase
with additional training data. However, because standard HMMs employ max-
imum likelihood estimation there is the practical problem of su�cient data to
estimate all the parameters. Because the recurrent network shares the state
units for all phones, this data requirement is less severe.
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There are a number of practical advantages to the use of a recurrent network in-
stead of an exponential family distribution. The �rst, mentioned in section 6.1,
is that the number of required parameters is much fewer than standard sys-
tems. In addition, section 5.4 shows that the posterior probabilities generated
by the network can be used e�ciently in the decoding { both for computing
likelihoods and pruning state paths (similar to fast-match approaches which
are add-ons to standard systems). Of course, a major practical attraction of
the approach is that it is very straightforward to map the recurrent network to
standard DSP architectures.

A hybrid RNN/HMM system has been applied to an open vocabulary task;
namely the 1993 ARPA evaluation of continuous speech recognition systems.
The hybrid system employed context-independent phone models for a 20,000
word vocabulary with a backed-o� trigram language model. Forward and back-
ward in time and recurrent networks were merged to generate the
observation probabilities. The performance of this simple system (17% word
error rate using less than a half million parameters for acoustic modelling) was
similar to that of much larger, state-of-the-art HMM systems. This system has
recently been extended to a 65,533 word vocabulary and the simplicity of the
hybrid approach resulted in decoding with minimal search errors in only 2.5
minutes per sentence.

Recurrent networks are able to model speech as well as standard techniques
such as hidden Markov models based on Gaussian mixture densities. Recur-
rent networks di�er from the HMM approach in making fewer assumptions on
the distributions of the acoustic vectors, having a means of incorporating long
term context, using discriminative training, and providing a compact set of
phoneme probabilities which may be e�ciently searched for large vocabulary
recognition. There are also practical di�erences such as the fact that the train-
ing of the systems is slower than the HMM counterpart, but this is made up for
by faster execution at recognition time. The RNN system also has relatively

MEL+ PLP
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few parameters, and these are used in a simple multiply and accumulate loop so
hardware implementation is more plausible. In summary, recurrent networks
are an attractive, alternative statistical model for use in the core of a large
vocabulary recognition system.

Two of the authors, T.R. and S.R., held U. K. Engineering and Physical Sci-
ences Research Council Fellowships. This work was supported in part by ES-
PRIT project 6487, WERNICKE. For the reported experiments, the pronunci-
ation dictionaries were provided by Dragon Systems and the language models
were provided by MIT Lincoln laboratories.
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