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Chapter 1

Introduction

This project concerns language and glossogenetic language change. That is the di-
achronic change that a particular language goes through over a number of successive
generations. Many examples of such changes can be seen historically. For example, one
of the syntactic changes that has occurred in French (Clark & Roberts 1993) is that

null subjects have been lost. Compare:

(1.1)  *Ainsi s’amusaient bien cette nuit. (Modern French)
thus (they) had fun that night.
(1.2) Si firent pro grant joie la nuit. (Old French)

thus (they) made greal joy the night.

In modern French the subject must be explicitly given, making the above Modern
French example ungrammatical.

The aim here is to take a computational modelling viewpoint, and look at some of
the issues involved in accounting for language change. The theories concerning language
change break into two distinct approaches.

One approach to the subject is carried out within a principles and parameters
framework (Chomsky 1981), where an underlying set of innate Universal Grammar
principles and parameters exist. The principles are fixed and must always be adhered
to, while the parameters are variable and are set by a child learning their first language.
The parameters may be binary valued (having values on or off signifying if a particular
attribute in the grammar is allowed/not-allowed, exists/does—not—exist) or they may
be n-ary valued (having more than two values). The parameters may be independent of
each other, or may be arranged hierarchically—where a parameter is only used if other
parameters have already been set. How setting, unsetting and resetting is carried out

depends on the particular theory in question. Some theories may allow a parameter’s
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value to be altered many times during the acquisition process, others may only allow
it to be altered once. Chomsky’s argument for the existence of such a framework
concerns the complex structure underlying the surface of the linguistic data that a
learner is subjected to, and the necessity of a learning mechanism to cope with this.

The properties of any given natural language are regarded as a direct result of a
particular configuration of these parameters. Language acquisition concerns the setting
of these parameters from an initial configuration (again what this configuration actually
is, be it random or all parameters unset, depends on the particular theory in question) to
a configuration that best represents the perceived language that the learner in question
is subjected to. Diachronic change is then attributed to the misconvergence that occurs
in the process of setting these parameters at acquisition.

Another approach dwells on the communicative function of language, where it is
processing constraints imposing pressures on language which account for the the par-
ticular properties that a language has (e.g. Hawkins (1994)). Processing constraints
are factors like ‘effort to convey a message’. This is optimised in such a way so that
least effort is put in by the speaker, but enough effort is put in so that the listener fully
comprehends the intended message. This manifests itself in that language construc-
tions that are less complex and hence more fit for their environment are more likely to
occur than equivalent more complex ones.

Within this framework, language is thought to be acquired by more generalised
learning procedures (i.e. the learning processes that the brain uses to learn other
things like walking, and playing) with no mechanism specifically adapted for learning
language. It is the way in which language is used within the imposed constraints that
determines the form that it takes. The imposed constraints shape the language and
effectively determine the underlying grammar that a child acquires. Diachronic change
can be attributed to the way in which a population adapts its language to the optimum
fitness; a learner at each generation will tend to acquire the fittest language that it can
that accounts for what it is hearing. If the resulting acquired language differs slightly
from what the population actually speaks, there can be a knock-on effect in successive
generations.

This project examines and evaluates some of the current proposals for modelling
language and language change using the above approaches, and tries to incorporate
some of the ideas about parsing complexity and fitness into a formal parameter—based
framework where it is usually unaccounted for. The aim is to show that by combining
these theories and incorporating both an innate set of parameters with a linguistically
orientated learning mechanism, and a mechanism which evaluates parsing complexity

into the same model, it is not only a plausible model, able to produce some interesting
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results, but it is also a realistic model, able to overcome some of the problems posed
by an approach that takes only one factor into consideration. Furthermore it will be
seen that the interaction of the elements from each component of the model is such
that an adequate account of language acquisition and language change requires both
viewpoints to be taken into consideration, as the interactions associated by a particular
component will be missing where there is nothing to interact with.

Chapter 2 looks in more detail at some of the current work which is relevant. Chap-
ter 3 replicates work based around an existing parameter—based model, and Chapter 4
develops the idea of incorporating parsing complexity issues into this framework, by

proposing and demonstrating some possible alterations to the parameter—based model.



Chapter 2
Background

It is appropriate to look in some detail at the work that currently exists in the field of
modelling language change. The work of Niyogi & Berwick (Niyogi & Berwick 1995,
Niyogi & Berwick 1996a, Niyogi & Berwick 1996b) provides the initial framework for
the work done here, along with the work on triggers by Gibson & Wexler (1994) which
Niyogi & Berwick’s work in turn is based upon. The parsing complexity issues are
looked at through the work of Kirby (1996) and the work of Hawkins (1994) on which
some of Kirby’s work is based. Clark & Roberts’s (1993) work is of interest because
it also tries to incorporate ideas about acceptability within a given parameterisation

along with issues of fitness and complexity.

2.1 Triggers

In many respects the work of Niyogi & Berwick is an extension and formalisation of work
done by Gibson & Wexler (1994). Gibson & Wexler investigate parameter setting with
the basic assumption that {riggering data is required by a learner of a first language,
namely data from a target language, which can only be analysed if the parameter that
that data is a trigger for is correctly set.

Gibson & Wexler (1994) formalise the notion of two types of trigger:

1. A global trigger for value v of parameter P;, P;(v) is a sentence S from
the target grammar L such that S is grammatical if and only if the
value for P; is v, no matter what the values for parameters other than

P; are.

2. Given values for all parameters but one, parameter FP;, a local trigger

for value v of parameter P;, P;(v) is a sentence S from the target
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grammar L such that S is grammatical if and only if the value for F;

is v.

One of the difficulties associated with the above definitions is the consequence of
subset conditions (Berwick 1985) which can occur. Suppose that two languages L
and Ly differ by only one parameter value, and all of the sentences that are part of
L1 are also part of Ly, Ly however has sentences which are not part of Li. In these
circumstances L is a subset of Ly as everything in L, is contained within Ls. The
point is, that with the above trigger definitions, there cannot exist a trigger to set the
parameter that distinguishes these two languages to the value which defines L; as such
an S would also be grammatical in Ly. Negative evidence would be required to reject
the hypothesis Ly, and this is generally regarded as not available to the learner.

Gibson & Wexler imply that it is generally accepted in the (psycho)linguistic lit-
erature that a learning algorithm which relies on the existence of triggers is assumed.

They give the Trigger Learning Algorithm! (TLA) as being a natural choice:

The Trigger learning algorithm. Given a set of initial values for n binary val-
ued parameters, the learner attempts to syntactically analyse an incoming
sentence 5. If S can be successfully analysed, then the learner’s hypothesis
regarding the target grammar is left unchanged. If, however the learner
cannot analyse S, then the learner uniformly selects a parameter P (with
probability 1/n for each parameter), changes the value associated with P,
and tries to re-process S using the new parameter value. If analysis is
now possible, then the parameter value change is adopted. Otherwise the

original parameter value is retained. (Gibson & Wexler 1994)

The constraint that makes the TLA conservative, in that it only considers grammars
that differ from from the current hypothesis by one parameter, is called the Single
Value Constraint (Clark 1990). And the constraint that requires the new hypothesis
to give an analysis of the current sentence is referred to as the Greediness Constraint
(Clark 1990). The algorithm is greedy in the sense that it is only prepared to change its
current hypothesis if it can gain something from it (namely an analysis for the current
sentence). Gibson & Wexler prove that this algorithm with the above constraints
guarantees that a learner can converge to a target grammar in the limit (i.e. given
enough data) with input that consists of positive examples from this grammar when

every grammatical hypothesis has a local trigger associated with it.

lsee also Sections 2.2 & 3.2.
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Gibson & Wexler note that the way in which the algorithm selects a parameter
to change by random choice, is possibly a simplification of what a real learner would
do. The learner may be able to use partial analysis to determine which parameters
are viable candidates to alter, or may have sufficient linguistic knowledge to weight the
distribution with which parameters are selected to be altered. However, the resulting
outcome of such changes would still allow the convergence to occur.

The obvious question to ask is “how realistic is it to suppose the existence of local
triggers for every grammatical hypothesis, as required for convergence?”

The simple answer seems to be: “not very realistic”. Gibson & Wexler show that
a simple three-parameter system (also used by Niyogi & Berwick, and which will be
used for further development), can have grammatical hypotheses other than the target
grammar with no local triggers at all. That is, if a learner acquires such a hypothesis
at any stage of learning then they will not be able to eventually acquire the correct
target grammar as their current hypothesis, because there exist no triggers in the
sentences they hear which will allow the correct resetting of wrong parameters. States
representing these no-return hypotheses are referred to as local maxima. This problem
can be overcome by various means: by setting the initial hypothesis appropriately, or
by imposing an ordering on the parameters themselves, removing one of the above
mentioned constraints. It is however unclear exactly how appropriate this is with
our current knowledge, and the problem could be with the TLA framework itself not

reflecting Universal Grammar properties suitably well.

2.2 Dynamical

Niyogi & Berwick (1995) propose a model that shows language change to be a dynamical
system. Their model of language change is built around a parameter—based theory of
language acquisition.

The basic scenario they assume is as follows: A language learner sets out to acquire
the target grammar of his peers. He is exposed to primary linguistic data, the utter-
ances of his peers. What this PLD consists of will be dependent upon the grammar(s)
of his peers. It is assumed initially that all these peers produce utterances according
to a particular target grammar, and the distribution of utterances heard by the learner
reflects this. After processing a finite number of utterances the learner will accurately
acquire the target grammar of his peer group. If a whole generation of learners is con-
sidered and not just one in isolation, then ideally all of these learners would accurately
acquire the grammar of the peer group. These learners would then become mature

and then themselves produce utterances that would form part of the PLD for the next
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generation of learners.

In this ideal situation the distribution of the PLD does not change from one gen-
eration to the next, as all of the population produce utterances from the same target
grammar which all the learners acquire. However, if a small proportion of the learners
misconverge and acquire a slightly different grammar from the original target, then
the distribution of the PLD for the next generation of learners is altered slightly to
reflect this. Niyogi & Berwick show how this affects successive generations of learners,
and produces diachronic change in the language of the population as a whole. Looking
at this kind of scenario on a discusive level is nothing new. However, what Niyogi &
Berwick have done is to show the mathematical consequences of such an approach.

Logistic S-shaped curves are a talking point in the field of evolution and change,
in both the contexts of Biology and Linguistics. Some models of language evolution,
specifically (Kroch 1989), have shown these curves in their results, reflecting the data
found historically. Niyogi & Berwick also show this behaviour. However, Niyogi &
Berwick claim that they do not impose this behaviour on their system like other models
do. That is, they claim that other models incorporate the logistic nature directly into
the model, usually in the form of a probability distribution, and then show that it can
be used to model language change. This is specifically true in the case of the Kroch
(1989) who proposes a logistic model based on the analysis historical data. Niyogi &
Berwick however show that a mathematical acquisition based model of language change
can exhibit logistic behaviour due to the underlying nature of the dynamical system.
It is also shown that the system need not necessarily show such behaviour, and they
show that the resulting change need not even be monotonic.

Niyogi & Berwick assume that language change is a logical consequence of specific

assumptions about:
1. the grammar hypothesis space
2. the language acquisition device
3. the primary linguistic data

The formal acquisition framework that they propose is as follows:

G is taken to be a set of possible target grammars and g; € G is the target grammar
in question.

P is taken to be the probability distribution defining the PLD, that is P determines
the likelihood with which any particular grammatical construction will be next heard
by the learner. If the population is homogeneous and all speak the target language

governed by the target grammar g; then all constructions not found in L(g;), the
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language defined by g;, will have probability zero. If the population is non-homogeneous
then P will reflect this, and be the composite distribution of the individual distributions
that represent the individual languages, weighted accordingly to the proportion of the
population that speaks them.

A is taken to be a learning algorithm that maps D, a sequence of n utterances,
drawn from the population with distribution P, onto a hypothesis grammar h; € G
with probability p;

The resulting dynamical system is then defined as follows:

A state space S defines the set of all possible linguistic compositions (i.e. the dif-
ferent possible combinations of proportions of the population speaking each language)
of the population. s € 5 is defined by a distribution P,,, on G which describes the
proportion of the population that speaks each of the languages ¢g; € G

An update rule f is then derived from the learning algorithm A and the PLD
distributions P, to take the system from one state s; € § to the next state s;41.

If the state of the population at generation ¢ is P,,,, that is the linguistic compo-
sition of the ¢-th generation of speakers is defined by the distribution P, ¢, then the

probability that the next utterance that a learner will hear is the utterances w is:
P(w) = Z Pi(w)-Ppoyo,t(i)
7

That is, the sum over all languages of the probability of the utterance being pro-
duced by a speaker of a particular language multiplied by the proportion of the popu-
lation speaking that language.

The update rule is defined by calculating the probability

pn(hi) = Prob[A(d,) = h]

(The probability that a learner develops an arbitrary hypothesis h; after n examples.
The actual details of the calculation being dependent on the particular learning algo-
rithm in question.) Assuming that a learner matures after n examples and becomes
part of the next generation of speakers, then a proportion p,(h;) of the population in
next generation will have grammar h;.

The update rule

T Prop —4 Ppopi+1 is then
Ppop,i+1(hi) = pn(hi) Vh; € G

All of the above is true for any choice of G, A and P; for which the outlined
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constraints hold. That is the above argument does not assume any particular linguistic
theory, learning algorithm or distribution of sentences to produce a dynamical system.

Niyogi & Berwick then demonstrate this theory using a parameterised grammatical
theory, a uniform distribution of unembedded sentences generated by g;, and the TLA
(Trigger Learning Algorithm).

The TLA starts with the hypothesis grammar’s parameters set randomly, and on
receiving an example utterance, it attempts to parse it with its current hypothesis. If
this fails it is allowed to flip one parameter setting at random, but only if the new
hypothesis after the flip results in a new grammar which can parse the utterance. This
procedure then repeats until maturity (after n utterances have been processed).

Algorithms of this type can be modelled exactly by a Markov chain, where each
possible grammar is represented by a state in the model. The model changes state
by following transitions, which have probabilities associated with them. There are
transition probabilities for transitions from one state to another and from a state to
itself. The transition from a state to itsell corresponds to a utterance being parsed
by the current hypothesis. Take two possible grammars g; and ¢,, represented in the
model by states s; and s; respectively. If the parameter settings of g, and gy differ
by more than binary value then the transition probability for the transition from s
to sy and for the transition from s, to s; will be zero, corresponding to only being
allowed to flip one parameter setting. If all the utterances that g; produces can also be
produced by g3, then the transition from s, to s; will be zero because if g9 is the current
hypothesis, there are no utterances that can be parsed by ¢g; that cannot be parsed by
the current grammar. Other transition probability values depend on the distribution
of the utterances produced by the population. In fact, the specifics of the model are
completely reliant on the parameterisation of the grammar space that is employed and
the resulting distribution of the utterances that are produced, this being dependent
upon the current population mix.

The Markov chain technology enables the probability of being in a particular state
at a particular time to be calculated. Whether or not the model is convergent to a
particular state, representing convergence to a target grammar, can also be calculated.
This provides the probabilities needed to calculate the update rule stated above. More
details of the TLA including the use of matrices of transition probabilities are given in
Section 3.2.

The logistic behaviour talked about earlier can be seen in changes over time in the
proportion of the mature population with a particular grammar or with a grammar that
includes certain constructions, i.e. speaking one of a specified number of grammars.

The logistic behaviour is most notable when a particular language trait takes over from
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another in the majority of the population.

Niyogi & Berwick present various examples of the model with differing numbers of
parameters, slight alterations to the TLA and different maturing times. The fact that
the technique does not depend on any particular set of parameters, means that it is
difficult to evaluate its linguistic accuracy, and possibly wrong to. However, what it
does allow is the ability to show how a particular set of parameters behaves, or how
different aspects of different sets of parameters behave under the same circumstances.

This provides a very strong framework for further development.

2.3 Complexity

A closer look will now be taken at some of the current issues from the viewpoint of
parsing complexity.

To gain some background information, we first take a look at Hawkins’ (1994) idea
of Farly Immediate Constituent Recognition. The human parser’s preference to gain
as much constituency information in the shortest possible time is expressed as 'Early
Immediate Constituent’ (EIC) recognition by Hawkins (1994). That is mother nodes
are built above syntactic categories as soon as the node’s presence is guaranteed by the
input (Kirby 1996) (i.e. the mother node is constructed at the earliest opportunity,
and the parser does not wait until all of the constituents below it have been fully
constructed). Syntactic categories which allow the mother node to be built are referred
to as Mother node constructing categories (MNCCs).

Mother node construction occurs as soon as a MNCC is encountered. Other con-
stituents are then attached to the mother node as soon as possible (including those
dominated by the mother node, that were encountered before the mother node could
be constructed). See Hawkins (1994) for a more detailed account of MNCCs.

Hawkins’ EIC metric allows a measure of parsing difficulty to be calculated.

The Constituent Recognition Domain (CRD) for a mother node M consists of the
sequence of nodes (terminal and non-terminal) that must be parsed in order to recognise
M and all of its ICs, starting with the first terminal of the first IC on the left, to the
first terminal of the last IC on the right.

For example, the CRD for the mother node VP in Example 2.1. is highlighted
(Hawkins 1994)

(2.1) I gave the valuable book that was extremely difficult to find to Mary

the terminal ‘gave’ constructs the mother node for the VP, ‘the’ constructs the NP

IC, and only when ‘to’ is parsed seven words later can the PP IC be constructed.
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The idea of the EIC metric is to provide a measure to quantify the preference for
shorter CRDs, and to give CRDs with earlier constituency information, in the left to
right parse, preference over ones with later constituency information when their length
is equal.

The EIC metric uses the [C-to—non-IC ratios. The IC—to—non-IC ratio for a CRD is
just the number of the ICs in that domain, divided by the number of non-ICs (words).
For a whole sentence, then, the aggregate of the ratios for all the CRDs contained
within that sentence is the measure for that sentence.

From this metric Hawkins defines the principle of Early Immediate Constituents:

“The human parser prefers linear orders that maximise the IC—to—non-IC ratios of
the CRDs.”

This principle is reflected in the the frequency of left or right branching languages
spoken in the world compared to those with inconsistent branching properties. It is
worth noting that the existence of such real data does not necessarily show that the
assumption of the EIC principle is correct, as any languages in a sample of languages
looked at are not necessarily independent of each other, as they have common roots.
For the current discussion and work we do however make the assumption that the EIC
principle, or something akin to it, holds.

Of specific interest to this project is the phenomenon that there is a skewing in the
world’s languages of subject and object order, (we will use this observation later as a
simple example complexity metric). There is a definite bias towards subject appearing
before objects, irrespective of verb position. Hawkins (1994) gives the following statis-
tics (Tomlin 1986). From a sample of 402 languages, 168 (42%) have SVO order, 180
(45%) have SOV order, 12 (3%) have VOS, 5 (1.2%) have OVS and the remaining 37
(9%) have VSO. That is that over 95% of the sample show word order where S precedes
O. Hurford (1990, pp. 328-339) accounts for this by the EIC’s predictions based on
the average lengths of the S, V and O, and shows that constructions where S precedes
O do indeed result in better EIC scores.

Kirby (1996) then asks the question of how such a principle inherent to the human
parser can affect the distribution of languages found in the world. His answer is that
languages can adapt, and that this adaptation is effected by linguistic selection.

Kirby’s (1996) argument takes on board the notion that PLD is filtered in such
a way to produce triggers. That is that not all linguistic data that is heard by a
child learner is actually used by the child as a trigger in their acquisition of language
(Lightfoot 1991), and that parsing preference itself plays a role in the cycle of language

acquisition an use.
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Kroch (1989), as mentioned earlier, discusses historical data showing with two com-
peting linguistic forms, how one can replace the other, proposing a simple logistic model

to account for his findings:

= frequency of f;.
st P q y of f1

- k = initial frequency.
(22) Pfi (t) ] + ek+st s = slope parameter.

t = time.

This shows that replacement through competition can indeed bring about syntactic
change.

Kirby (1996) then ties in this notion of competing variants with a performance
theory, such as Hawkins’ by proposing a model and demonstrating it by computer
simulation. Kirby is attempting to use processing pressures to explain cross—linguistic
distributions and the existence of language Universals. The model consists of the

following elements:

e Simple types or features found in the language, (e.g. SVO).
o Arena of Use(Hurford 1990): A pool from which utterances are drawn.

o Speakers: These speak with a grammar? and produce utterances which contribute

to the pool.

o Acquirers: Speakers who have not yet acquired a grammar, and take input from

the poal.
Two dynamic processes take place within the framework of the model.

1. Production: Speakers contribute from their grammar to the Arena of Use

2. Parsing/Acquisition

e The linguistic data forming the input of each learner is taken from the Arena

of Use
o Triggers are produced through a filtering process. The probability that

an utterance forms a trigger is related to its frequency and its pre-defined
parsing complexity.

o The triggers are added to an individual acquirer’s grammar

?In this context a grammar is just a collection of utterances which are regarded to be produced by
an unspecified underlying set of rules
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The simulation is run with the same number of speakers and acquirers. Once
the acquirers have acquired, the speakers are discarded and the acquirers become the
speakers for the next generation.

An example is given with competing prepositions and postpositions, and basic VO
order. The EIC metric favours prepositions in such a scenario because with postposi-
tions the CRD for the VP stretches across the NP.

VP[VPP[IVP P]] (O VP[VPP[P IVP]]
—_——— ——

Triggers are selected by the following equations:

1-npre
p(p'rep) = 1.nprep+(i7;npostp7
(2.3)
0.79 1 pos
P(postp) = Grgoo i

where p(f) is the probability that form f will become a trigger, and ny is the
frequency of fin the Arena of Use. The values 1 and 0.79 are the associated complexity
values.

Kirby gives an example run of this simulation showing logistic behaviour. It can
however also be shown mathematically to behave logistically, by formulating ps(¢) the
proportion of form f found at time t. We can derive for the more general case, where
0 < ¢f < 1 is the complexity associated with form f and 0 < ny < 1 is the initial
proportion of form f, that ps(¢) is of the form given in Equation 2.2. (See Appendix A.
for proof.)

The framework is then extended to incorporate two competing factors, adposition
order and VO order. Here the fitness of a particular form of one type (e.g. adposition)
is made dependent on the frequency of the complementary form of the other type (e.g.
VO order), and vice versa. Complementary in this context means that the fitness of
these two forms together is maximal, (i.e. they are an optimal pairing with respect to
fitness). Kirby shows how the average fitness of the population increases over time as
the fitness landscape is climbed. The complexity introduced by the interdependence
between types of form unfortunately means that mathematical analysis of this model

is beyond the scope of this text.
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2.4 Genetic

Clark & Roberts (1993) discuss parametric change from a genetic algorithm point of

view. They propose that parametric change occurs when:

The target of acquisition contains parameter values that cannot be uniquely
determined on the basis of the linguistic environment. (Clark & Roberts

1993)

So when a learner hears data that is compatible with differing, conflicting parameter
settings, its hypothesis will be evaluated using other criteria such as subset conditions
with respect to the grammar space and elegance of actual derivations using different
grammars. The linguistic environment then under-determines the learner’s appropriate
choice of grammar (this is the orthodox Chomskyan viewpoint), and the various factors
of fitness are combined in deciding which hypothesis is appropriate.

The subset condition (Berwick 1985), provides that a learner must be able to know
the minimal language compatible with a given input sequence of linguistic data, such
that the problem of becoming stuck with an incorrect parameter settings where one
language is a proper subset of another, (i.e. the acquired grammar will over generate)
can be overcome. Clark (1990) observes a further complication in the shifting-property
where the language subsets can occur due to parameter groupings, (i.e. where subset
like conditions occur, though not as the result of one particular parameter, but as
the result of the interaction between parameters). These problems are predominantly
due to the fact that only positive linguistic data is received by the learner, and an
incorrectly set parameter that does not contradict constructions of the target grammar
is unable to be unset unless negative data is presented to contradict its setting.

A genetic algorithm (Clark 1990) is defined as having the following properties:
o A string representation of each hypothesis.
e Operators to combine existing hypotheses to produce new hypotheses

— a cross over mechanism to combine two hypotheses to produce a new hy-

pothesis.

— a mutation operator that introduces a minimal random element into the

combination.
o A fitness measure to judge hypothesis performance in an environment.

The fitness measure that Clark & Roberts suggest consists of three elements. The

first is based around the ability to parse a given input. The parser is considered to
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be made up of modules (case, binding and X-bar theory are given as examples) and
a count is made of the number of modules that are violated. A module is considered
violated if its principles® are not adhered to by the input, i.e. when the input can only
be parsed by going against the principles of that module. A count of violated modules
contributes to the first component in the fitness measure.

The second element specifies that a subset hypothesis should be preferred over a
superset hypothesis, where both are adequate to parse the input.

The third component considers the ‘elegance’ of the hypothesis, and that more
compact representations will be preferred over less compact ones, all else being equal.

The mathematics for this goes something like:

Let n be the number of parsing devices and »; be the number of violations of the

1-th parsing device caused by the input.

E;L:I vy — U

(n—1) 2?21 vy

represents the statistical fitness of a particular parsing device when compared to all
others.

Let s,, represent the number of superset setting in hypothesis A,, 4 and let 0 < b < 1
be a appropriate weighting factor. And let e; be a measure of the general elegance of
the parser P;, this is a count of the nodes in the parse tree produced, and 0 < ¢ < 1 be
another appropriate weighting factor, then adding three similar terms together gives

the fitness metric:

( v b s eyl ej) — (v; + bs; + ce;)
(n=1) (S vy + by s + e S &)

Any particular sentence that a learner hears will require some, but not all of the
parameters available to be set to specific values, for a well formed representation to be
assigned by the parser. If a sentence o requires parameter p; to be set a particular way,

then o is said to express p;. This is used as a definition for the notion of a ‘trigger’:
A sentence o is considers a trigger for parameter p; if o expresses p;.

Clark & Roberts go on to show how parameter changes that have occurred in French,
can be accounted for by such a model. One such change the discuss is the loss of null

subjects mentioned in Chapter 1.

?Clark & Roberts use the term principles when referring to the rules that would be defined by a set
of Chomskyan parameters and not in reference the the invariant Chomskyan principles

*It is not made how the learner comes by this kind of information, presumably it is regarded as
innate
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2.5 Overview

S-shape curves are an issue in the computer modelling of language change because the
logistic behaviour that they represent has been shown to exist historically in the changes
that languages undergo (Kroch 1989). As little is understood about the processes
behind language change, producing behaviour that reflects historical data shows that
a model may accurately reflect some property of language change, although it would
be wrong to jump to the conclusion that a model is completely accurate just because
it reflects this behaviour.

The main problem is that it is difficult to say whether a model incorporates such
behaviour or just displays it. This is because, if it does display it, it then surely must
incorporate it at some level—even if it is not apparently obvious from the formulation
of the model, the behaviour is still there. A possible distinction that could be made is
that Kroch’s (1989) and Kirby’s (1996)° have an explicit logistically-derived function,
which contributes to the step calculating the next generation of the population. Niyogi
& Berwick’s model has no such step, and that is the claim that they are making. It is
arguable that in the formulation used by Kirby, the model is not defined logistically, and
it is only a mathematical consequence that the logistic function arises. This contrasts
Kroch’s model which is an explicit logistic model based on his study of historical data.
A more complete mathematical treatment of Niyogi & Berwick’s model may show that
logistic behaviour is inherent to this model too—this is unfortunately well beyond the
scope of this text. The outcome is that it is difficult to know if Niyogi & Berwick’s
claim is a valid one.

Within the rigorous mathematical framework of Niyogi and Berwick a fully speci-
fied grammatical hypothesis is mutated randomly only when linguistic data fails to be
accounted for by this hypothesis. Clark and Roberts’ framework however allows an
under-specified hypothesis to be more fully specified by external factors influencing the
fitness of constructions. Which of these approaches is more realistic is unclear.

The Niyogi and Berwick framework is difficult to fault because of its generality.
They state clearly some of the deficiencies that filling in the gaps in the framework
with particular theories introduces. The influence of factors not directly related to the
parameterisation of the grammar are not considered by Niyogi & Berwick; in fact they
are trying to showing that language change can come about because of the inherent
internal properties of the model, but a theory where other factors affect the way in

which language changes could be introduced into a particular learning algorithm (like

Sas discussed in Section 2.3
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the TLA).

One point of complication arises within the Niyogi and Berwick framework when
the population is (or becomes) non-homogeneous. Here the population does not all
have the same internal grammar, and there is no longer a single target grammar for a
learner to acquire. Niyogi and Berwick do not make it clear how a learner’s hypothesis
will behave once this situation arises, specifically they do not clearly detail how the con-
vergence behaviour of a learners hypothesis behaves with utterances from a collection
of grammars.

Clark & Roberts’ proposed fitness measure looks very promising but few details are
put forward on how the formula that they put forward are used. It seems somewhat un-
reasonable that all of the information that the formulation requires is readily available
to the learner, or could be efficiently used even it if were. The methodology suggests
that the learner has a complete database of information about possible consequences of
various parameter that it has, and that it tries to parse a given input with a selection
of possible grammars. It is not made clear how large the set of hypotheses is that any
particular hypothesis is compared to. It would be unrealistic to have a database of
all possible hypotheses, but if only a few are present, they do not make it clear how
reliable the method would be.

Clark & Roberts also give no details about how the subset component is calculated,
but do comment that it would not account for the shifting—property across grammars
where parameter settings combine to form subsets. This seems to imply that the model
would fail in respect of avoiding subsets anyway. The elegance component is almost
glossed over altogether, with a mention of counting the nodes in the derived parse trees
produced by a particular parsing device. If and how the particular structure of a given
tree is evaluated is not made clear.

The remainder of this dissertation considers the Niyogi & Berwick model in more
detail. The next chapter concerns replicating the model as it stands and showing how
it performs, and the following chapter looks at developing the model to incorporate a

mechanism that considers parsing complexity.



Chapter 3

Replication

3.1 Parameters

The three parameter grammar discussed by Gibson & Wexler (1994) and used by Niyogi
& Berwick and also adopted later, is based on a two parameter grammar which defines
base word order (i.e the underlying word order in an utterance) and an additional
parameter which causes verb movement when set to give a surface structure which
differs from the original base structure.

The first two parameters define the base word order. We take the the following

X-bar (see e.g. Haegeman (1991) for a review) schemata:

(X1) X' — X,Complement,
(X2) XP — X', Specifier.

Where rule (X1) states that X (head) and Complement are sisters, but says nothing
about ordering. Similarly, rule (X2) states that X’ and Specifier are sisters. Two
binary-valued parameters are then employed to set the ordering. The first parameter
spec-first when set to 1 defines a specifier-first language and when set to 0 a specifier-
final language. Similarly the second parameter comp-first defines a complement-first
language when set to 1 and a complement-final language when set to 0.

Figure 3.1. shows extracts of the affected nodes in the parse tree for each parameter
setting, and Figure 3.2. shows the base word order SV O obtained by the parameter
settings spec-first, comp-final.

A third parameter is now introduced. This parameter when set forces:

a finite verb to move from its base position to the second position in root
declarative clauses. (Gibson & Wexler 1994)

18
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spec  comp wverb mov. | resulting grammar
0 0 0 VOS -V2
0 0 1 VOS +V2
0 1 0 OVS -V2
0 1 1 OVS +V2
1 0 0 VSO -V2
1 0 1 V50 4V2
1 1 0 SOV -V2
1 1 1 SOV V2

Table 3.1. Parameter settings and their resulting grammars

This means that although the underlying base word order is unchanged the surface
structure may be re-ordered. Theories about why verb movement occur are varied,
(see Gibson & Wexler (1994) for more details), but the mechanism assumed here is
that the verb moves to the C' position. Figure 3.3. shows the movement involved. The
movement of the verb requires that the CP/Spec position be filled, for theory internal
reasons. Figure 3.3. shows this being filled by O, but it could equally be filled by S.

The grammar space defined by these parameters consists of 8 grammars made from
4 base word orders, each with or without verb movement. These grammars can be
referred to by their base word ordering, followed by either +V2 or —V2 to signify the
presence of verb movement. Table 3.1. lists the parameter settings along with its given
name and Appendix B. shows the actual surface constructions which are associated
with each grammar.

It is worth commenting that the assumption that only unembedded sentences form
the triggers that are used by a learner in acquiring language is taken here. This issue
is not discussed as it is an assumed part of the framework being employed. For a full

detailed discussion and evidence to support this assumption see Lightfoot (1991).

X’ X’ XP XP
X Comp Comp X X' Spec Spec X'
I I I I I I
vV 0 o Vv S S
comp-first =0 comp-first = 1 spec-first = 0 spec-first = 1

Figure 3.1. Parts of the parse trees affected by the two base word order parameter
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XP
!
Sp‘ec X comp-first =0
S /\ spec-first = 1
X Comp
I I
VvV 0

Figure 3.2. Example tree structure for the parameter setting producing the base word

order SVO

CP
/\
Spec Cc’
/\
C 1P
/\
Spec r
I T
S I VP
— T
Spec V'
P
(a) base V Comp
structure ‘ [
vV O
CP
/\
Spec C’ CPp
/\ /\
C IP Spec c’
V Spec r 0O C IP
S I VP V Spec I
T | T
Spec V' S I VP
P T
(b) V moved V Comp (c) O moved Spec V'
to C | to fill Spec N
0 V Comp

Figure 3.3. Tree structures showing the stages of verb movement: (a) shows the
underlying base tree structure, (b) shows V moved to the C position, (c¢) shows O
having moved to fill the CP/Spec position.



CHAPTER 3. REPLICATION 21

3.2 Methodology

To further evaluate the model proposed by Niyogi & Berwick and to provide the ground-
work for further development, a computational replication of the model was produced.
This was done mathematically and probabilistically by working with the transition
matrices of the Markov process modelling acquisition, and the probabilistic distribu-
tions of the population each of which are outlined in Section 2.2. This method models
the theoretical outcome of each step in the model in terms of proportions, instead of
individually and randomly simulating a large number of learners hearing individual
utterances. This both saves computational time, as it is effectively only modelling one
average learner, as it is modelling the gross behaviour of the system, and hence not
a large number of individual learners. Also this method removes the need to run a
particular model many times to produce statistically significant results as the method

produces the statistical outcome directly. This basic procedure follows:

1. Decide on parameters being used and define resulting languages. The three pa-

rameter grammar discussed in Section 3.1. was used here.

2. Set up the distribution for the initial population of speakers: Here each language
(or parameter configuration) is assigned a value [0-1] which represents the pro-
portion of the population which speaks that language. The main sets of initial
conditions that were experimented with included: Homogeneous populations of
each language, a mixed population speaking an equal proportion of each language

and a mixed population speaking each of the -V2 languages.

3. Set up the primary linguistic data: Knowing the linguistic composition of the
population, (from the previous step) each utterance that is producible within the
defined grammars is allocated a value [0—1] to represent the probability that it

could be the next utterance produced by that population.

4. Calculate the transition matrix: The transition matrix represents the Markov
process modelling acquisition. The effect that hearing an utterance has on a
learner is stored in the matrix as the probability of shifting from one hypothesis

to another.

5. Calculate product matrix: The transition matrix is then raised to the power m

(multiplied by itself m times!), where m is the number of utterances after which

! Matrix multiplication is defined as follows: If A,B and C are n x n matrices, and a;; is the element
in the 7th row and jth column of A, then if C = AB, ¢;; = Z:zl aikbr;
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a learner matures. This matrix then provides the information to show what
proportion of a population of learners will acquire each language in the language

space.

6. Generate the new population of speakers: The product matrix is then used to

generate a new population of speakers for the next generation.

7. Return to Step 3

Transition matrix entries of non-neighbouring states are zero, otherwise entries are

calculated by the following:

Plamk = X SR,

sj¢Ls,s; €Ly n
(3.2)
Pls—s] = 1- > Pls—k.

k a neighbouring
state of s

Ls and Ly are the languages defined by the grammars s and k respectively. The
transition from s to k is made up of a components relating to each utterance’s frequency
in the PLD (P(s;)).

The three parameter grammar was used because these parameters provide inter-
action in that a surface utterance can be the result of the underlying word order or
the result of verb movement. These parameters have also been fairly well discussed
(Gibson & Wexler 1994, Niyogi & Berwick 1995, Niyogi & Berwick 19965, Niyogi &
Berwick 1996a). It is noted that they are too simplistic or completely inappropriate
when compared to the real parameter system present in the human brain (if indeed
such parameters do exist at all), but as the aim here is to look at the effect of pars-
ing complexity issues within this type of parameterised framework, in comparison to
systems which neglect it, their simplicity serves well. Unrealistic behaviour is also to
be expected. The complete realism of such a simulation is not the primary issue here.
As insufficient is known about the learning processes being modelled, it would be very
difficult to be certain what completely realistic behaviour comprises anyway. What is
being focused on here are the effects that including or excluding parsing complexity
and fitness issues have on the outcome of the model.

The eight hypotheses in the three parameter scenario can be regarded as the corners

of a cube. The greediness constraint in the TLA restricts the single step movement,
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from one hypothesis to the next, (that which may occur due to the processing of one
utterance), to the transitions which follow along the edges of the cube. Figure 3.4.
illustrates this. Assuming? that hypothesis 000 representing Lo (VOS ~V2), is on the
front most face of the cube, then each face of the cube represents a particular parameter
setting, (e.g. the front face represents the hypotheses which are comp-final and the top
face represents the +V2 languages). This illustration clearly shows which transitions

are possible due to the greediness constraint and which are not.

+V2

Spec-final --———— 3 Spec-first

Figure 3.4. Hypotheses represented as the corners of a cube

An example single step transition matrix is shown in Figure 3.2. (Niyogi & Berwick
1996b) is that for a learner exposed to a homogeneous population speaking SVO V2.
The top row of this matrix holds the transition probabilities associated with a transition
from hypothesis Ly (VOS -V2, corner 000 on the cube) after hearing one utterance.
The cube shows that the only possible transitions are to Ly (001) by setting +V2, L,
(010) by setting comp-first, L4 (100) by setting spec-first, or this hypothesis can be
kept and no transition taken. The top row of Figure 3.2. shows non-zero probabilities
only for transition to Ly (VOS 4+V2), and Ly (SVO —V2), and of course remaining
in Lg. This means that there are no triggers produced by the SVO -V2 speaking
population to set the comp-first parameter. This is hardly surprising as SVO -V2 is a

Zoptical effects when viewing such diagrams and all...
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comp-final grammar without verb movement. The other rows of the matrix represent
the transitions from the other hypotheses. The row representing transitions from L,
shows that there are no transitions away from L4; this is because all the utterances
that a learner is exposed to can be accounted for by this grammar, and hence once a
learner has this hypothesis it is never rejected.

Figure 3.3 shows the resulting matrix when the single-step transition matrix in
Figure 3.2 is multiplied by itsell sufficient times for the values to converge; this is
equivalent to a learner being exposed to suflicient utterances that hearing any more
would make no difference to his hypothesis. Again the first row represents the transition
probabilities from Lg. The row shows that if a learner starts with hypothesis Lo,
after hearing many utterances he/she will have hypothesis Ly with probability 1/3 and
L4 with probability 2/3. Equivalently, if a large number of learners started off with
hypothesis Ly then 1/3 would end up with Ly and 2/3 with L4. As the learners in the
model start with a random hypothesis, there will be an equal proportion of learners
with each initial hypothesis. So if we sum the values in a particular column and divide
by the number of rows, we can see what proportion of the population would acquire a
particular hypothesis. In the example there are only values in two columns (L; and Ly).
This means that all learners exposed to enough L4 utterances will either take Ly or Ly
to be their final hypothesis. The probability of taking Lq is (1/3+143/54+1)/8 = 11/30
and the probability of taking L, is (2/342/54+1+1+141)/8 = 19/30, so approximately

2/3 of the learners will acquire the target grammar L.

Transition to

Ly Ly Ly L3 L4y Ls Le L7
1 1 1
LO 2 6 3
L4 1
31 1 1
Lz LR is
Transition from L3 12 12
Ly 1
1 5
Ls 6 6
5 2 1
L6 18 1 113 188
L7 i2 3 9

Table 3.2. Transition matrix for a learner, assuming a population of speakers of
SOV —V2. This matrix shows the probabilities relating to the processing of one utter-
ance.
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3.3 Outcome

The simulation was then run with a selection of initial conditions. Initially those
discussed by Niyogi & Berwick were used to check that the simulation was in fact
producing the expected results and then a wider range of initial conditions was looked
at.

The effect of maturation time affects language change quite considerably. A very
low maturation time (i.e. after only two or thee utterances) results in approximately
equal proportions of all languages being spoken in the next generation, with only a
slight bias from the distribution of speakers in the current population. This results
from an almost random choice of final hypothesis from an individual learner, this is
what you would intuitively expect as a learner’s initial hypothesis is chosen at random
and very little data is being presented to support or oppose this, so it, or something
close to it ends up as the final hypothesis, and there is no time allowed for convergence
to a particular grammar to occur.

Niyogi & Berwick only briefly comment on how the model behaves over successive
generations, and show that under certain conditions the S-shape logistic curves arise.

A more detailed study of the behaviour of the model using these three particular
parameters shows that the clear cut logistic behaviour which Niyogi & Berwick show
is in fact a rarity and exponential behaviour is more often the outcome observed as
shown below.

Figures 3.5-3.7. show how maturation time has an effect from various initial con-
ditions. Figure 3.5. shows the situation where initially the whole population speaks
VOS -V2. The result is that eventually VOS +V2 takes over (Niyogi & Berwick 1995).

Transition to

Lo Ly Ly Lz Ly Ls Le L7
Lo 3 3
L 1
Ly 2 2
Transition from L3 1
Ly 1
Ls 1
Lg 1
L~ 1

Table 3.3. Transition matrix for a learner, assuming a population of speakers of
SOV —V2. This matrix shows the probabilities relating to the processing of enough
utterances for convergence to occur.
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Figure 3.5. Simulation plots showing the effect of altering
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The rate at which it does so is dependent on the maturation time, a longer maturation
time means at each generation a larger percentage acquire VOS -V2 successfully, that
with a shorter maturation time, but a small proportion will still acquire VOS +V2,
and this will eventually take over as the prominent language. The later plots clearly
show the logistic S-shape curve as —V2 becomes taken over by +V2. In contrast Fig-
ure 3.6. shows the behaviour when the initial population speaks only VOS +V2. Here
the more random acquisition effect can be seen, when learners do not get the chance
to hear enough utterances to converge to any particular grammar, and the population
all successfully acquire the +V2 language when the maturation time is appropriately
high. It is interesting to note that there is a hierarchical effect—there is a definite order
to proportions of the population speaking each language. Compare the graph showing
maturity after eight utterances in Figure 3.6. with the graph showing maturity after

thirty-two utterances in Figure 3.7. The ordering which is arising in the latter case is
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Figure 3.6. Simulation plots showing the effect of altering maturation time from
8 to 64 utterances over 30 generations. Initially population is speaking a VOS +V2
language. Plots show how +V2 language stays prominent
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the same as that which is initially present in the former. This suggests that a frequency
ordering is imposed on the grammars due to the way different grammars can account
for particular utterances.

One clear observation is that these particular parameters favour +V2 languages.
The +V2 languages in this parameterisation have more constructions than —V2 lan-
guages and the organisation of the utterances is such that it is easier to set the verb
movement parameter than it is to unset it, that is on average there are more triggers to
set the verb-movement parameter than to unset it. This phenomenon could be a direct
result of the parameters being used and the fact these parameters do not reflect the real
world, or that other factors not accounted for by the model, such as the distribution
of utterances which are produced within any one language, meaning that this model
alone is too simple to reflect the real world.

Figure 3.7. where the initial population is composed of a equal mix of each —V2
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Figure 3.7. Simulation plots showing the effect of altering maturation time from 8
to 32 utterances over 30 generations. Initially population is speaking all 8 languages.
Plots show how +V2 languages become prominent
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language shows the difficulty for a —V2 language to survive at all, even when given a rea-
sonable maturation time. This can also be shown with simulations with homogeneous
initial populations for each —V2 language. This evidence is by no means exhaustive
but the general behaviour of +V2 prominence does seem to be the rule rather than an

exception.

3.4 Assumptions

There are many factors which could be affecting the results of this simulation, some
related to the modelling framework, some to the implementation, and some due to the

initial conditions and distributions chosen for the simulations:

1. Utterance production within a language is uniform. The model assumes that
the utterances produced by a speaker of a particular language, are uniformly
distributed across the utterances which are part of that language. That is if a
and b are both constructions of language L, that a speaker of L is equally likely
to produce the construct @ as he is the construct b. It is unlikely that all the

constructions in a language are used to the same extent.

2. No overlap in generations. In the scenario presented here and in that presented
by Niyogi & Berwick, a generation of speakers is replaced by the new generation
of learners with their newly acquired languages. This is a very simplistic view
of real life where there is no such generation distinction, and new learners are
born across a continuum and not in specific batches representing a particular

generation.

3. An interesting methodological point is that of the accuracy of the calculations.
Many of the rational fractions which contribute to the calculations cannot be rep-
resented as finite binary fractions by the computer running the simulation, and
the values stored are in fact only accurate to about 16 decimal places. The impli-
cations of this can be demonstrated by asking the computer to print the value 1/3
to more than a few decimal places. The result as a double-precision floating point
value is 0.333333333333333314829616256247390992939472198486328125 which is
clearly accurate to only 16 decimal places. Worse still the computer equates
(1/3)!! to zero, which is the sort of calculation which could occur with a learner
processing 11 utterances. However, as (1/3)' = 0.00000564502926. .. which is

close to 0, this is not as bad as it first seems.
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Unfortunately both the calculating of the error bounds in the simulation, which
would show the limit to which the results are correct, or implementing the simu-
lation with arbitrary precision arithmetic—to eliminate the problem altogether,
are beyond the scope of this work. The outcome of this situation is that the
transition matrix probabilities could be inaccurate in that rounding towards 0 or

1 could occur.

In some sense this type of quantisation error could be regarded as realistic, where
a population would consist of a finite number of people, and the proportion of
learners acquiring a particular language would be rounded to the nearest whole
person. It should be noted however that the possible current inaccuracies in
the model should not be considered the right way to go about modelling this

quantisation effect.

4. Initial parameter settings for learner’s are random. It is assumed that a learner’s
parameters have no default values. If they did it may be possible that some cases

where convergence to a target grammar fails could be overcome.

5. Spatial Organisation. No account is taken in this model of spatial organisation.
That is each learner is exposed to the whole population. A more realistic situ-
ation would where the population is arranged spatially in two dimensions, and
each learner only hears utterances that are produced nearby. Or more mathemat-
ically a 2-dimensional Gaussian distribution can be used to weight the utterances
produced, so that the closer a speaker is to a learner, the more his/her utter-
ances contribute to that learner’s acquisition. Kirby (1996) and Oliphant (1996)

illustrate the profound differences that spatial organisation can make on a model.

3.5 Summary

In duplicating the work done by Niyogi & Berwick some of the details of the TLA and
an overall perspective on the model are seen. The randomness present in acquisition
with a very low maturation level is clearly visible, and it can be seen that maturation
levels over 50 only delay the eventual outcome of the system and do not change it.
The advantage that the system gives to +V2 languages also stands out. A possible
explanation for this is that parsing utterances with a +V2 grammar is more complex
than parsing the same utterance with a —V2 grammar. The model however does not
take this into consideration, and as the +V2 languages account for a wider range
of utterances, they are more likely to survive than the —V2 languages. This clearly

illustrates one disadvantage of a model which only accounts for one linguistic approach.
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The next step is to show how issues such as parsing complexity can affect the behaviour
of such a system and to see if they can be of help in overcoming some of the problems
with the previous model. In the spirit of the original model an approach is taken
that will not insist on a specific set of parameters, but provide the framework for any

appropriate set of parameters to be used.

4.1 A first Attempt

With the model as it stands the current hypothesis is only rejected when it cannot
account for the current utterance. What is required to take issues such as parsing
complexity into account is a mechanism that allows the current hypothesis to be rejected
if an acceptable parse of the current utterance is deemed unfit (i.e. too complex). The
ability to account for the current utterance should not be considered enough to keep a
hypothesis, the hypothesis should be able to account for it efficiently.

To do this some additional framework is required: Let F}j be a fitness function on

the strings of language k, such that:
Fkl Lk — [0, 1]

That is, each utterance of a language is assigned a complexity score, 0 meaning not
at all complex up to 1 meaning most complex!, with intermediate values representing
intermediate complexities. It should be noted that a construction that appears in more

than one language, (i.e. can be generated by different parameter settings) may have a

!This formulation is in terms of complexity, and complexity will be minimised, which is equivalent
to climbing a fitness landscape

31
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different complexity with respect to each language. That is, an utterance’s complexity
may be dependent upon its underlying grammatical construction. For example, both
grammars Ly (VOS +V2) and Ly (SVO —V2) can account for the utterance S V 01 02,
but each grammar may have a different complexity score associated with it. For in-
stance: F1(SV 01 02) =0.2, Fy(SV 01 02) = 0.6.

These complexity scores can then be used to measure the probability with which a
hypothesis should be rejected if the current utterance being processed can be accounted
for, (i.e. utterances with a complexity score greater that zero with respect to the
current hypothesis may result in the current hypothesis being rejected). The higher
the complexity score is the more chance there is of it causing the current hypothesis to
be changed. A complexity value of 1 will force the current hypothesis to be rejected on
receiving this utterance. Formally, the transition probabilities associated with a state
s are altered in the following way:

Previously, for a n parameter system, the transition matrix was calculated from
Equation 3.2. Adding a such rejection factor relating to parsing complexity gives the

equations:

Pt = | X RG)Pe)+ Y P

SJELS Sngs,SjeLk
(4.1)
Pls—s = 1- > Pls—k.

k a neighbouring
state of s

Here the transition from state s to k is additionally taken when the current utterance
can be accounted for L, with probability F(s;). The behaviour resulting from adding
this mechanism can now be demonstrated with the three parameter system used earlier
and a very simplified complexity factor. This heuristic metric states utterances with
SO ordering are less complex than OS ordered utterances. A much more detailed study
of SO and OS orderings and complexity, and why SO is preferable is carried out by
Hawkins (1994), as the outcome of using the EIC metric discussed in Section 2.3.

The following results are for when:

0 if w is SO ordered
1 if w is OS ordered

Fr(w) = {

The outcome is that +V2 languages indirectly lose their advantage over the —V2
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ones, and an overall steady population state is reached more quickly than without the
complexity factor. As we will see it is not because the +V2 languages are more complex

that they lose their advantage, it is because acquisition is becoming more random in
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Figure 4.1. Graphs showing the effect of a complexity factor weighting SO ordering
in utterances. Graphs on the left are with no complexity factor. Graphs on the right
are with complexity factor. Maturation time is 50 utterances for all plots.
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Figures 4.1 & 4.2. show the outcome of introducing this complexity factor, com-
pared to the same initial conditions in the basic model.

The result of adding the chosen complexity factor is that after five generations the
population mix reaches an equilibrium and no more than twenty percent of the popula-
tion ever acquires a particular language; although some languages are spoken by three
times the proportion of the population as others. The complexity factor in this form is
re-introducing the some of the random nature that occurs when the maturation level is
very low by causing the rejection of hypotheses on the processing of specific utterances.
The factor is effectively providing a handicap system which means that any strong ad-
vantage that a language inherently has over others is eliminated. Any advantage that
the metric gives to SO ordering is dwarfed by the randomness introduced. This com-

plexity factor seems inappropriate in that often there is rapid change in the language
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Figure 4.2. More graphs showing the effect of a complexity factor weighting SO
ordering in utterances. Graphs on the left are with no complexity factor. Graphs on
the right are with complexity factor. Maturation time is 50 utterances for all plots.
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distribution from the initial conditions to the second generation of speakers. The lan-
guages that learners in a generation acquire is much more dependent on the structure
of the model than on the distribution of utterances that they encounter. This would
prove particularly unrealistic in a spatially distributed model, where learners only hear
other speakers that are in their spatial locality, as spatial clustering of languages would
be eliminated. The shapes of the curves produced here differ greatly to those in the
basic model. Almost all logistic and exponential behaviour has been removed, and
replaced by angular jumps to the equilibrium state.

The outcome can altered by varying the complexity weightings.

Fr(w) =

0 if w is SO ordered
v if w is OS ordered

Figure 4.3. shows the effect of varying the weighting of the complexity factor with
different values of v.

Here v is varied from 0 to 0.8. Figure 4.3. clearly shows the way increasing the
weighting on the complexity factor smoothly reduces the inherent advantage that any
language has over others. A weighting of 0.2 is sufficient to bring all the proportions
to less than 0.3 and increasing the weighting further shifts the order of prominence of
the languages, leaving SVO —V2 as the most prominent.

Interesting results occur when 0 < v < 0.1. Here the initial behaviour is like that
without the complexity factor present, but the longterm behaviour is more subtle and
a steady state is reached much later. For example when » = 0.05 an equilibrium may
not be reached until after 150 generations. This long term smoothing also reduces the
rapid change found between the first and second generations.

The above approach to parsing complexity pays no attention to the new hypothesis
(that which the current hypothesis is being rejected for), and its ability to account for
the current utterance. This goes against the Greediness Constraint mentioned above,
in that by rejecting the current hypothesis, there is no guarantee of ending up with a
better hypothesis (with respect to the current utterance), in fact the new hypothesis
may not be able to account for the current utterance at all. It would also be more
in the spirit of the TLA framework to have the current hypothesis either kept or
rejected outright given any particular utterance, and not be rejected probabilistically
(the probabilistic nature in the model should be seen as a surface characteristic, where
the underlying internal workings are discrete decision making processes). There is also
no real sense of competition in the above approach. The whole point of the complexity

issue is that two forms compete with each other and the one which is deemed fittest
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for its environment proliferates.
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Figure 4.3. Graphs showing the effect of a complexity factor weighting SO ordering
in utterances. Complexity weightings from 0 to 0.8 are shown. Maturation time is 50
utterances for all plots.
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4.2 Competition

Some of the problems and difficulties discussed above can be remedied by the following

formulation:
1
Pls =k = — Yo Plsp+ Y. Psi)|,
ERAEy o Vel
(4.2)

Pls—s] = 1- Y Pls—k.
k a neighbouring
state of s

Here, the transition from s to k occurs if the current utterance, s;, is accountable by
the current hypothesis, (s; € L) and the randomly chosen new hypothesis, (s; € L),
if the parse with L, is more complex that the parse with Ly, (Fs(s;) > Fk(s;)). That
is, a current hypothesis that can account for the current utterance will only be rejected
in favour of a new hypothesis which not only accounts for the current hypothesis, but
accounts for it is a less complex way. Simply this means that the algorithm will only
reject a hypothesis that works for a better, more fit one.

Allowing the current hypothesis to be rejected on processing an acceptable utterance
probabilistically has been also been dropped under this formalism in accordance with
the above criticisms.

It should be apparent that for this formalism to reject an acceptable current hy-
potheses, utterances must have different complexity values with respect to different
grammars. If the complexity of an utterance is independent of the grammar that
produced it, and hence is the same across all grammars, then an acceptable current
hypothesis will never be rejected on the grounds that no other acceptable hypothesis
is any better than the current one. This means that the complexity measure of surface
SO order used in the previous formulation will have no effect under this formalisation
and the resulting model will behave exactly as the basic model does. This point is
important because is shows that it is not just getting the framework to account for
complexity right, but the metric used to define complexity must work well within this
framework.

The verb movement to second position in the surface structure of utterance is an
obvious candidate to use to measure complexity where complexity values for the same
utterance must differ with respect to different grammars. To demonstrate the above

formalism the following example metric can be used:
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1 if kis a +V 2 language Yw € F,
0 if kis a —V2 language Vw e Fy,

Fr(w) = {

This basically ranks all utterances which are parsed with verb movement as being
more complex than those which are parsed without. That is, any utterance parsed by
a +V?2 grammar is complex, and any utterance parsed by a —V2 grammar is simple
(e.g. the construction SV O is complex when parsed by a +V2 grammar and simple
when parsed by a —V'2 grammar, and the utterance V.50 is always considered simple
as it only occurs in —V'2 languages).

Figures 4.4 & 4.5. show a selection of results using this metric. The results are

interesting for a number of reasons.

1. The same steady state is reached after about 30 generations, in that each of the
languages SVO —V2,VOS —V2and VOS +V 2 end up spoken by approximately
30% of the population and all other languages are spoken by less than 7% of the
population, none of them being eliminated completely. The fact that languages
can survive in very small proportions and not be completely wiped out is of
interest because there exist in the world language types which survive in very
small proportions. This contrasts the results from the basic model where the

behaviour often all or nothing.

2. Intuitively you might well expect that by marking all +V 2 utterances as complex,
effectively making them less fit, that a strong advantage is being given to —V2
languages and they would dominate over +V2 languages. This is not what the
results show. Out of the three languages that dominate one of them is a +V2

language.

3. Logistic change is now much more widespread, (possibly reflecting the competi-
tion between rival forms that is present), and if this is how real language change
progresses over time, then it is possible that parsing complexity, or some similar

filtering mechanism, should be an issue in any such model of language change.

4. There is only a slight internal change to the model. The result of adding V2
complexity is that some of the internal transitions in the model originally from a
+V2 state to itself, on presentation of a particular utterance, are altered to being
from the +V2 state to the —V2 state. In total there are 15 such altered transitions.
Initially 250 of the 576 transitions (1 from each state for each utterance) result

in the model changing state. So the change from the basic formulation of the
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Figure 4.4. Graphs showing the effect of a complexity factor weighting V2 movement
in parsing of utterances. Graphs on the left are with no complexity factor. Graphs on
the right are with complexity factor. Maturation time is 50 utterances for all plots.
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Figure 4.5. Graphs showing the effect of a complexity factor weighting V2 movement
in parsing of utterances. Graphs on the left are with no complexity factor. Graphs on
the right are with complexity factor. Maturation time is 50 utterances for all plots.
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model is caused by increasing the number of set transitions (i.e. not from a state
to itself) by 15 (6%), which is equivalent to altering 2.6% of the total number of

transitions.

With respect to the steady state reached, it is difficult to compare this result to
historic change, as issues such as growing population sizes and spatial distributions are
not considered by the model. The difference between the basic model and the model
proposed here though is that different steady states are reached by the basic model
depending on the initial conditions, were as in the extended model the same steady
state is always reached.

In an attempt to explain the above phenomena we take a closer look at the structure

of the particular model we are using as defined by the parameters that have been chosen.

Transition to

Lo L1 L2 L3 L4 L5 L6 L7 total
Lg 12 10 12 34
L, 6 8 10 24
Ly 10 16 12 38
Transition from L;j 8 10 10 | 28
Ly 12 12 10 34
Ly 10 6 8 24
Lg 12 10 17 39
Ly 10 8 11 29
total | 28 30 32 34 28 30 33 35

Table 4.1. Number of utterances which will cause transitions in the basic model (V2
languages in bold font).

Table 4.1. shows the number of utterances which cause a transition from one hy-
pothesis to another. The row totals show that for each language pair, (a ~V2 and its
corresponding +V2 language), there are always 10 more utterances to cause a transi-
tion away from the —V2 language than there are to cause a transition away from the
corresponding +V2 language. The column totals show a similar result in the there are
always 2 more utterances to cause a transition to a +V2 language then there are to
cause a transition to the corresponding —V2 language. The gross behaviour seen here
is that on average (assuming that each utterance is equally likely, which is not strictly
true), more transitions occur from —V2 languages to +V2 language that the other way
around. This shows that the grammar space used in the model does indeed favour +V2

language.
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Table 4.2. shows similar data but includes the extra transitions associated with
parsing complexity where +V2 language are marked as more complex than —V2 ones.
Here the differences in the row sums are such that the difference of 10 is reduced
somewhat, but there is still a difference. The situation with the column sums is different
in that now the number of utterances to a —V2 language is greater or equal to that of
its corresponding +V2 language.

The ratios between transitions into a state and transitions out of a state are shown
in Table 4.3. Values greater than 1 reflect there being more possible transitions to a
state that away from it. The consequence of this is that if presented with completely
random utterances, statistically on average the model should end up in states with
rations greater than 1 more often that it does in states with ratios less than 1. These
figures show that from the grammar structure alone, in the basic model the +V2
languages do have a definite advantage over the —V2 ones, as the +V2 language are
the only ones with values greater than 1. The figures for the complexity model show
that language Lo, one of the —V2 languages which arises strongly has a ratio of 1.00
and the L4 which is the other strong —V2 language has a corrected ratio of 0.972 which
are much higher than in the basic model, but still less than 1 and less than all of the
+V2 languages. These show that the structure of the grammars alone does not fully
account for the outcome of the complexity model.

Looking at the compatability of the utterances in the three resulting languages
with respect to each other, (i.e. seeing which other grammars also account for an
utterance) as shown in Table 4.4., shows that 12/18 (66%) of the utterances in L; the

Transition to

LO L1 L2 L3 L4 L5 L6 L7 total
Lg 12 10 12 34
Lq 12 8 10 30
Ly 10 16 12 38
Transition from L;j 8 12 10 | 30
Ly 12 12 10 34
Ly 10 10 8 28
Lg 12 10 17 39
Ly 10 8 12 30
total | 34 30 34 34 32 30 34 35

Table 4.2. Number of utterances which cause transitions in the model with parsing
complexity (V2 complexity version), +V2 language in bold font.
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Uncorrected Corrected
Basic  Complexity | Basic  Complexity
Language | model model model model
0 0.823 1.000 (0.916) (1.000)
1 1.250 1.000 (1.083) (1.000)
2 0.842 0.894 (0.916) (0.944)
3 1.214 1.133 (1.083) (1.055)
4 0.823 0.941 (0.916) (0.972)
5 1.250 1.071 (1.083) (1.072)
6 0.846 0.871 (0.916) (0.930)
7 1.206 1.166 (1.083) (1.069)

Table 4.3. To-from transition ratios for basic and complexity models. Uncorrected
ratios are calculated from the values given in Tables 4.1 & 4.2. Corrected ratios also
include transitions from a state to itself.

+V2 grammar are accounted for by either Ly or Ly. Conversely 12/24 (50%) of the
utterances that would be produced by a population speaking Ly and L4 are compatible
with Ly. Although there is a high level of compatibility between these three languages,
the question of complexity not ruling out the +V2 language in favour of the —V2 still

Utterance Lo Ly L4 || Utterance Lo L1 Ly
ADV AUX VO S ° ° O AUX VS °
ADV AUX VO102S | e . OVS °
ADV AUX V S . . 01 AUX V025 °
ADV S AUX V e |O1VO2S °
ADV SAUX V O e || O2AUXVOL1S °
ADV S AUX V 01 02 e |02V OL1S °
ADV SV o ([|[SAUXYV ° °
ADVSVO e [ SAUX VO . °
ADV SV 01 02 e (| SAUX V 0102 . °
ADVVOS . ° SV ° .
ADVV 010258 ° ° SVO ° .
ADV V S . . SV 0102 ° .
AUXVOS . VOS °

AUX V01025 . V01028 °

AUX VS . VS °

Table 4.4. Compatability of the utterances in language Lo, Ly & L4 with respect to
each other. A ‘e’ signifies that an utterance is accounted for by a particular grammar.
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needs to be accounted for. What appears to be happening is that a learner with
hypothesis L1, on hearing utterances from L, does not reject Ly as its hypothesis in
favour of Ly as none of the utterances of L4 are also in Lg, and no transition is possible
to L4 itself because it it requires 2 parameters to be changed. This means that it is
because the two —V2 language that proliferate are complementary to each other, in that
no utterance occurs in both languages, that a complex +V2 language can be supported.
It is also likely that the pair Ly & L4 do so well because they are complementary in their
utterances, so one is not rejected in favour of the other, and the support for the +V2

language is a mutual one in that the +V2 language also supports the ~V2 languages.



Chapter 5

Conclusions

It has been shown that by adding a complexity factor into the basic TLA definition,
the behaviour of the TLA can be changed quite considerably. A first attempt by
weighting surface word ordering of subject and object resulted in the model losing
its characteristic behaviour almost completely. By dampening the effect of parsing
complexity under this formulation, it was shown that the parsing complexity factor in
the model took much longer to take effect, but it did eventually take hold of the model
and determine the resulting language distribution of the population. The resulting
distribution however was not of particular interest as all languages ended up being
spoken by an approximately equal proportion of the population. This means that
learners will basically end up acquiring a random grammar after a given number of
generations.

The outcome is that this result seems less realistic than that produced by the
unaltered TLA, and hence the incorporation of parsing complexity in this manner is
considered unsuccessful.

The difference in results is itself useful however, because it shows how sensitive
the formulation of the TLA is to slight changes. This is important when considering
how well it reflects real learning because it shows that the TLA or a similar learning
algorithm can produce greatly differing behaviour with only marginal differences in its

definition. There are four probable reasons why the results produced are as they are:

1. The metric used is inappropriate. The metric reflects the consequences of the
EIC metric, it may be that its simplicity is its downfall, in that there other basic
consequences of the EIC metric which are being ignored by using this simplified

form.
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2. The way the metric was used within the algorithm is unrealistic. As noted earlier
the implementation does seem unrealistic in that there is no real competition

between forms, but only absolute complexities taken in isolation.

3. The issue of parsing complexity is inappropriate in this context. In other words

processing issues play no part in language acquisition.

4. The framework is an unrealistic model of language acquisition. The behaviour
of the TLA with the parameters used here obviously has its deficiencies as its
behaviour does not generally reflect historical data. But, it is not possible with

our current understanding to know exactly where these deficiencies lie.

More favourable results were produced by using verb movement as the complexity
measure, and a more competitive decision making process under which the greediness
constraint is adhered to. Sample runs of such a model show that smooth logistic change
is widespread. This suggests that the model may reflect historical change well. Showing
some historic data which the model with the added parsing complexity functionality
can account for is unfortunately beyond the scope of the work here, but it would be
interesting to see if there are historic changes that it reflects.

It is unclear to the author exactly how useful it is to show a small extract from
the model’s general behaviour matching a small extract of historical data, especially
if the widespread behaviour of the two differ. It is obviously useful in showing that
something about the model is right, but focusing on where the more general behaviour
of the model does not so closely match what is seen historically, and finding out why
this is so, would be more useful as an analytical tool in understanding the processes
behind language acquisition and language change.

What has been clearly shown is that parsing complexity is definitely an issue that
should be considered in a model of language change, and that the formulation of it is
important, as slight variations in formulation can cause large differences in results—a
common trait of complex dynamical systems. It has also been shown how a mechanism
involving parsing complexity can be effectively incorporated into the TLA framework.
The results shown by using verb movement as the complexity factor do match some of
the behaviour seen historically

The clear advantages seen in the results of the complexity model include:

o Logistic behaviour is more widespread

Language structures surviving in small proportions.

Less +V2 (cross-linguistically rare) languages

More clearly defined competition between two opposing forms.
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Having a model which is solely based upon complexity presents similar problems
in that, the consequences of underlying parameterisation are ignored. For example in
Kirby’s model a grammar is represented just by the set of utterances it can produce,
and the consequences of any inherent grammatical structure are lost. Both the effects
of parsing complexity and underlying parameterisation need to be accounted for by a
model.

There are still however a lot of areas that need further work and a lot of issues
that are unclear. The V2 complexity model proposed here only assigns binary values
(1 and 0) splitting the grammars into two subsets: one composed of languages of fit
utterances and one composed of languages of unfit utterances. A metric over the whole
interval would reflect current theories (e.g. those of Hawkins (1994) and Kirby (1996))
more accurately. There is also no interaction within the current metric; that is, fitness
is the result of only one factor. How interaction in the metric would effect the model,
(c.f. the way surface word order is the result of the interaction between base word
order and verb movement) needs to be looked at. It would also be interesting to know
exactly what extent the behaviour of the model depends on a particular complexity
metric employed and the parameterisation of the grammars. For instance, the extent
to which the resulting stable solution is dependent upon the parameter interaction or
upon the parsing complexity is unclear. Are other weak forms (like the complex +V2
language that is found to survive), able to survive under different parameterisations or
different complexity metrics?

What is clear is the need for further research. As things stand, explanations of
language change and language acquisition are split into the functionalist and the in-
nateness approaches, and both present valid issues that need to be considered. However,
it seems unlikely that one approach is right and one is wrong, and the need to find
middle ground where aspects of both approaches are taken into consideration is needed.
The model developed here has shown how such theories can be successfully combined,
and that the properties of each part of the combined theory interface well with each
other.



Appendix A

Proposition 1 The model proposed by Kirby in Section 2.3. is equivalent to the Kroch
model defined by Equation 2.2.

If we take the general form with complexities ¢y and c’f and define the functions of
time. Without loss of generality ps(t) is explicitly shown, and ps/(?) is assumed to be

of similar form.

cf-ny
Al ) = , where t = 1.
( ) pf( ) Cf'nf+Cfl-nf/

ny and ny are the frequencies at time, ¢ = 0, so we now show, by induction, that:

1

cst - ps(0)
A2 ) = , Yt > 0.
(8-2) i) = 0 F et py(0)

The base step is true from its definition and Equation (A.1), so assuming (A.2):

cs - ps(t)
t4+1) =
D = e )
. cstpy(0)
cr Cft~pf(0)—|—cf/t~pf/(0)

cst-ps(0) cgrt-pyr(0) ’

8 I PLI () R g 1) MY LIMSPL I () REPLIpe (i)
cf*1pg(0)
Cft~pf(0)+cf/t~pf;(0)
Cft+1~pf(0)+cf/t+l~pf/(0) ’
Cft~pf(0)—|—cf/t~pf;(0)

t41
(A.3) = o 24(0) as required.

s+t ps(0) + ept*h - pp(0)

48



APPENDIX A. PROPOSITION 49

Now, ps(0) = €/ where fo = Inps(0) and pp(0) = efi where o = Inpg(0).

Similarly, ¢s* = et where k = In csand cpt = et where k' = In cyr

Substituting, we now have:

ekt+fo

pf(t) = ekt+f0 _I_eklt_l_fé?

ea—l—bt
(A.4) = — where a = fo — fo, b=k — K

ea—l—bt + 1’

as required.



Appendix B

The following table shows the surface constructs for each Grammar with in the three
parameter framework (Gibson & Wexler 1994).

VOS -V2 VOS +V2
ADV AUXVOS ADV AUX VOS
ADV AUX V01025 ADV AUX V01025
ADV AUX V S ADV AUX V S
ADVVOS ADVV OS
ADVV 01025 ADVV 01025
ADV V S ADV V S
AUXVOS O AUX VS
AUX V01025 OVvVS
AUX VS 01 AUX V O25S
VOS 01vOo2S
V01028 02 AUX V O1S
VS 02V OlS
SAUX V
SAUX VO
S AUX V 01 O2
SV
SVO
SV Ol1l02
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OVS -V2

ADV O VAUX S

APPENDIX B. CONSTRUCTIONS

OVS 4+V2

ADV AUX O VS
ADV AUX 0201V S
ADV AUX V S
ADVV OS
ADVV 02015
ADV V S

O AUX VS
OVS

01 AUX 02V S
01vOo2S

02 AUX O1VS
02V OlS

ADV VSO
ADV V 501 02
AUX SV
OVS

01 AUX SV O2
01VSO02

02 AUX SV O1
02VvSo01
SAUX V

UX Vo
UX VO

<<

102

nwmwmwmwn
<<<®@»

0]
0]

,_.
O
N

51



APPENDIX B. CONSTRUCTIONS

SOV 4+V2

ADV AUX SOV
ADV AUX S0O201V
ADV AUX SV
ADV V S

ADV VSO
ADV V50201
AUX SV
OVS

01 AUXSO2V
01VSO02

02 AUXSO1V
02VvSo01
SAUX OV
SAUX 0201V
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